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1.INTRODUCTION

For a lincar space Z and a nonvoid set U denote by ZUthe linear space (with
respect to the pointwise operations of addition and multiplication by real scalars)

of all applications from U to Z.

Let Y, X be two nonvoid sets such that Y—Xand let (N v "Y) and (N x| X)
be two normed spaces contained in ZY and Z¥ respectively. Suppose that for every
FeN, the restriction F| y of F'to Y belongs to Ny.

DEFINITON 1. We say that the norms ” : ”Y and ” g ”Y are compatible if

M 174, <171,

for every FeN. v
In the following the norms ” : “Y and ” Y ” x Willbe supposed always compatible.

A nonvoid subset K of a normed space (X h " . ”) is called a coneif:

a) utv ek, and

b) Auek,
forall v, veK and AeR, 2>0.

DEFINITION 2. Let Ky and K be two cones in the linear spaces Ny and
Ny, respectively. We say that the cone Ky has the norm preserving extension
((NPE) in short) property with respect to Kyif F lY € Ky, for every F €Ky, and every

)

SeKy  has a norm perserving exiension F ek, (‘1'-6- F ,Y=f and || F | X =] 7]
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If K has the (NPE)-property with respect to X v let

@ 3= {F e Kx: Fly = f and|F]y |1}
denote the set of all (NPE) extensions of the function JeKy.

Let also

3 My:= Ky - Ky

denote the liniar subspace of Ny generated by the cone K yand let
4) Yt:={G e My:G|y= 0}

be the annihilator of the set ¥ in the linear space My, (remember that we have
supposed Y X).
Obviously that Y* is a closed linear sunspace of M,

A linear subspace ¥ of normed space Uis called proximinal if for everyueU
there exists vye V such that
lu = vo| = d(u,7): = inf{lu - v[:v e 4
The set
Br(u):={v e Vifu - v] = d(u, V)]
is called the set of elements of best approximation for u by elements in V.

If P (w)2& for all w in a subset W of I/ then the subspace V is called
W-proximinal.

THEOREM 1. If the cone Ky has the (NPE)- property with respect to the
cone Ky then:
(a) The equality

(5) d(F, Yi) = "F[Y “Y

is true for all F €K,y
(b) The inclusion

© F-#(Fly) < ArL(F)

holds for every FeK.,,;
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(c) If furthermore Y1 < K, , then

F-g(F

Y) = Py L(F)

forall FeK,,

Proof. Let F € K. For G e Y* taking into account that the norms ””Y
were supposed compatible in the sense of Definition 1, we have

Ik, =ty = bl =k -0l <17 -l
It follows that
“F[Y”Y <d(F,1).
On the other hand, because F — H e Y+ for H e %(F|Y>, we have
7y), = 1l = |7 = (7 - 7)) 2 int{}F - 6l o6 e ¥4 = (R, 74
"Combining the obtained inequalities one can write '

d(F, YY) < |F = (F - H)| = “F[Y“Y < d(F,YH).

It follows

"

forevery H e %( F[Y), proving formula (5) and inclusion (6).

I - (- )= ) < |,

L )
In order to prove equality (7) suppose that Y~ < Ky and let G be an
arbitrary element of Fy.L(F). Since G|, = 0 and the norms I, and ||, are

compatible, it follows that (F = G)|, = Fl, and, by (5),
|F -6l = d(F,7) =[], .

showing that F-G is a (NPE) extension of F l y. Toprove'that F — G e %’(F IY) it
P L

remains toshow that F — G € Ky (see(2)).But G e Y 1 implies — G € Y~ and,

by hypothesis, ¥ < K Ximpiying— G € Ky ,and, sinceKyisacone, F~G=FH-GeKy,
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showing that F — G € %(F IY) . This last relation is equivalentto G e F — %( F'Y)
forevery G e Py (F), ie. P,y (F)c F - %(F‘Y), which together with inclusion

(6), prove equality (7).
Taking Ky =Ny and K, =N, one obtains:
COROLLARY 1. If Ny has the (NPE)-propety with respect to N ' then

(a") The subspace v = {G eN X:G'Y = 0} is proximal in Ny, and

o 457 I,
Jor every FeN,,

(b") The equality
7 Py.(F)=F-¢&(F|,)
holds for every FeN .

Proof. 1t suffices to prove equality (7). By Theorem 1 it follows that
F-%(Fly)< By1 (F). If FeN, and G « P,i(F) then

|F~dly = dFxt) =],

Since (F - G)y = FIY it follows that F-G is a norm preserving extension FIY .

But K, =N, implies My =Ny so that F-GeM,, showing that F -G e %’(FIY) or
equivalently G ¢ F — %’(F lY) for every G e Py, (F). This proves the inclusion
Py (F)c F - %’(F,Y) and equality (7).

EXAMPLES

Il ot X = [a,b] CRand Y ={q, b}. Take Ny = C[a, b] -the space of all

realvalued continuous on [a,5] with the sup-norm and N ¥ =C({a, b}).
Let K, be the cone

Ky:={F eCla,b}:F(a) = F(b) 2 0}
and Ky =Ky NC({a,b}) ,i.e.

Ky:={f eC({a,8}): f(a) = f(b) 2 o}
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Obviously that Ky has the (N PE)-properly with respect to K x- If FeK, then
FlY €Ky and function H(x)=f{a), x&[a,b), is an (NPE) extension of fe C({a,b}).
The space generated by th cone K v is :

My =Ky -Ky = {F € C[a, b]:F(a) = F(b)}
and the annihilator space of the set Y in M 1S
Yt:={G e My:G(a) = G(b) = 0}.
By Theorem 1, the subspace Y- is KX-proxima_l and d(F, Y J‘) = F(a) and
F- %(F,Y) < PrL(F) | for each FeK, . We have
#(Fly) = {H e Ky:H(a) = H(b) = ], } =
= {H € Ky:H(a) = H(b) and 'H(x)] < F(a), for all x &[a, b]}

It follows that Y Ky and therefore the equality F — %’(FIY) = PY_L(F )

for each FeK, .

2°. Lot X =[-2,2]cR Y = {~1,0,1} and let
Ny:=Lipo[~2,2] = {F:[-2,2] » R F is Lipschitz on [-2,2] and F(0) = 0} equip-
ped with the Lipschitz norm

”F”X = sup{iF(x) = F(y), / x - yhxye [-2.2])x » y}.
For Ny take
Ny:=Lipp{~10,1} = { f:{~1,0,1} - R: f(0) = 0}
equipped with the norm
1y = max{]r(=s} |0}
For Ky and K, take
Ky:= {F € Lipo[-2,2]: F is convex on [-2.2]}
Ky:={f eLipy{-1,0,1}: / is convex on{—l,O,l}}.
By definition F e Lipy[-2,2] is in K if |
F(dx+(1-2)y) < AF(x)+ (1-1)F(y),

for every x,y€[-2, 2] and every Ae[0,1] and S isin K, if the divided difference
[-1,0,1; ] is nonnegative.
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Obviously that K, has the (NPE)-property with respect to K v for Fe K the
restriction Fly isin K, and F(x)= l{nin }[f(y) + ||f||Y|x - y”, xe[-22] isa
ye{-1,0,1

(NPE) extension in Ky, of feK, .

Let
-x, x €[-2,0]
F(x)
—x x€(0,-2]
2
and
-x~1 xe[-2-1)
G(x) =10, x e[—l,l]
1 1 ( l}
—x-——,x€|l,—=
2 2 2

It follows that G e Y™ (in fact G e Ky < Ky — Ky),
1, x e[-2,-1]

-x , x €(-10]
F(x)-G(x) = %x , x (0]

1
5 , X E (1,2]
and

|7 =6l = [#ly], = a(F.v4), (F-G)y=F,.
implying that -G is a (NPE) extension of FIY . But F~-Gis not convex function on

(-2, 2] showing that, in general, F — %( FIY) canbe strictly contained in Py, (F).
Therefore equality (7) is not true without any supplementary hypotheses on the

space Y o
3°. LetX, Y, Ny, Nybe as in Example 2° and

v+ ={G e Ny:G, = 0}
By Mc Shane’s theorem (see [9]), the space Ny, has the (NPE)-property with

respect to Ny. By Corollary the subspace ¥+ is proximinal in Nyand every element
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G of best approximation of a function FeN, by elements in ¥ L has the form

G=F-H for a functionHe #(Fly ) Also d{F,Y*)=[A,| and B (F)= F-5(H|)

Other examples to which Corollary 1 applies are given by Hahn-Banach
extension theorem, by Tietze extension theorem, by Helly extension Theorem (see

[7), [8], [12], [16).
2. THE QUOTIENT MAPPING

Consider the quotient subspace My /Y L with respect to its subspace YT,
defined by

®) My /Y* ={F+YhF e My,

Since the subspace Y L is closed in M, it follows that

) HF+Yl“ = d(F,Y1), F e My,
is a norm on MX/YJ‘

Let
(10) Ky /Yt= {F+ vhFe KX}
and let
(11) KetP,. IKX ={F eKy:0eP, (F)

be the kemnel of the restriction of the metric projection F,1 toKy .
Obviously that

ke ={F e Kxilfly = a(m )} = {F e ol =[] }

The application

(12) O, Ky » Ky /YL, O(f)=F+Y*, Feky,

is called the quotient mapping of the cone Ky onto the cone K, / Y+,

THEOREM 2. If the cone K, has the (NPE)-property with respect to the cone
Ky then

1°.Ky c¥Yt+ KerPYL'KX L {G+H:G eY*,G eKetP,, le };
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2°.0(KerPy.

k)= Kx /1YY

x,(F), for every F e K.

-1
KerPleXX) (F -+ Y-L) - P}r.L

Proof. 1°. By Theorem 1. (b), each FeK, there has an element of best
approximation G € Y and G=F-H for a function He %( FI},)_ It follows that
43 . 4
”H"X = nFIY”Y = d(H,Y )1mp1y1nng eKerPYl’KX ;and then F=G+Y—,
H eKerPy, |k, -
2°.Let F+Yt e Ky /Y. Since Fly €Ky and Ky, has the (NPE)-property

3°.F—(Q

with respect to K it follows that for every H e %(FIY) < KerP,y ’ Ky We have

OH)=H+Yt=F+7t,
because F — H €Y. Therefore QKerPYl'KX is a surjection.

3°. By 2°, the application

-1
3 . 1 KeP g
(13) E‘(QKerPYilxX) Ky /Yt 2 rtlRx
given by
(14) E(F+Y")=&(Fly) c ety |,

is well defined.
But then, by Theorem 1. (b), it follows that

F-3(Fly) < By |k, (F).
Theorem 2 is proved.
Using Theorem 2 one can obtain some relations between the properties of
the selections associated to the metric projection Fy1|k, and the properties

of the selections associated to the application E defined by (13) and (14). (see
(31, [12], [13], [16]).
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