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1. INTRODUCTION

Let /R be an interval of the real axis and f:/—>R a function. Consider the
equation:

(1.1) Sx)=0,

supposed to have a solution ¥ € I. Also get g:/—I be a function whose fixed
points from 7 coincide with the root o (1.1).
For solving (1.1) one can usually an iterative method of the form:

(1.2) xs+1=g(xs), xgel, s=0,1,..,

More generally, if G:I¥—[ is a function depending on k variables, whose
restriction to the diagonal of the set /¥ coincides with g, i.e.,

(1.3) g(x) = G(x,x,...,x), for all xel,
then one can consider the following iterative method for solving equation (1.1):

(1.4) e = G(xs,xm,...,xﬁkul), Xy Xyperes Xpq €4, 8 =010 5

The connvergence of the sequences (x,), generated by (1.2) or (1.4) to a
solution of equation (1.1) depends obviously on the properties of the functions f; g
respectively G, and the amount of timme necessary to obtain a suitable approxima-
tion for the solution ¥ is influenced both by the convergence order of the methods
(1.2), resp. (1.4) and by the amount of elementary operations that must be performed
at each iteration step. This last aspect belongs to a chapter of the calculus theory
and practice, chapter concerning the computational complexity.

Many authors ([1], [2], [3], [5], [6], [9], [10], [11]), who studied the compu-
tational complexity of the iteration processes, have defined different notions, as:
the efficiency of a method, the efficiency index of a inethod or the cost of a method,
which they have quantitatively expressed by diffzrent scalar magnitudes.
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Throughout this paper we shall adopt the following definition for the conver-
gence order of an iteration method:

DEFINITION 1.1 The real number p>1 is called the convergence order of the
sequence (x,),-o generated by an iterative method if the following limit exists and
is not zero:

(1.5) lim 1 =

where X is the solution of equation (1.1).

Conceming the calculus complexity, using the convergence order we can
define now the following notion:

DEFINITION 1.2 [6]. The number I is called the efficiency index of the method

(1.2) or (1.4), if the following limit exist and is finite:

1) 1/m,
(1.6) lim [hl K1 __fj) =1,

H—pc0

where m_ represents the number of function evaluations that must be performed
when passing from the step n to the step nt+1.

If we suppose that m,, is the same for all n, and take into account that (1.6)
has an asymptotical character, then there results for 7 the following expression:

1
(1.7) [=1I(p,m)=p".

In the following we shall study certain classes of iteration methods, namely
the methods obtained by interpolation, among which we shall select those for
which the efficiency index given by (1.7) is optimal, i.e. the greatest. For this
purpose in the next section we shall briefly recall the classes of methods that
we want to study.

2. INTERPOLATION ITERATIVE METHODS
2.1. LAGRANGE’S INVERSE INTERPOLATION POLYNOMIAL
Let ICR be an interval and f:/->R a function. Denote by F=f{]) the set of all

values of f for xel. Suppose that fis one-to-one, i.e. there exists the inverse func-
tion f~1: F—I. Consider in I, n+1 interpolation nodes:

(2.1) Xiy Xy ooy Xpyp, With X; 5 X5 for i # jii, j=1n+1
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Suppose that equation (1.1) has the unique solution ¥ €7 .
Obviously,

2.2) %= £7(0),

and so the problem of approximating the solution ¥ reduces to the approximation
of £-1(0).

A simple and efficient approximation method for the functions is given
by the interpolating approximation.
Denote by:

(23) - yl?y2>""yn+l> yl' :f(_xi)’ i:Ln+17

the values of the f'on the nodes x; from (2.1).
The Lagrange interpolation polynomial corresponding to the function £ on the nodes

from (2.3) (taking into account that y, # y ;i # j;i,j = 1,n+1) has the form:

x,0,(y

n+1
(2.4) L y{,52000 951 g1 !
(31> ¥20ei0r Prats S79) = sz = col(y)

n+1 i
where 0)1(_}1) H(y yl)

i=1
If we suppose that the function f* has derivatives up to the order k, keIN and f"(x)#0
for all xe/, then we have the following formula for the computation of the &-th
derivative of on the point y=f(x), xel. ([7], [12]):

0 o (2k—i - 2)(- kﬂ‘l{f J _f((x];)k

YN
(2.5) [f l(y)] 12!13 lk'f 2k 1 k 1

where the above sum extends to all nonnegative integer numbers, solutions of the
system:

Iy + 20+ Hk-1i, = k-1,

2.6
26) L+i+. +, =k-1.

If we suppose that fadmits derivatives up to the order n+1 on the interval / and the
n+1-th derivative is bounded on J, then by (2.5) we obtain,

-1,y]"+Y
et}

@7 x=f70)= Ly yas s Vs £0)
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where c is a point belonging to the smallest interval containing 0, Vis Yar vos Vi1

and o,(0) = (_l)nﬂf(xl)f(xz)- S () -

Denote by x,,, , the number:

(28) 3 Tniz = L(yl’ y2""’yn+1;f_llo) ’
and by (2.7) we get:
29) R T A B IEA

from which we see that if x;, Xy, ..y X,41 are chosen in a neighbourhood of X such

that l o (x,.)l <1l,i=1n+1, thenx,,, can be considered as a new approximation

n+l

for x . We have denoted in inequality (2.9), M,,, = sg% [f_l(y)]( )
y

Letnowxy, x;, 1, ..., X, €/ be n+1 approximations for x . Then the Lagrange

polynomial corresponding to the function £ -1 on the nodes yi=f (x,.), i=kn+k

has the form:
k+n
(2.10) Ly Yirise oo Vs S |) = )
O e ) = 2 = s

n+k
H(y—y,-). From this relation, for y=0, we obtain a new
=k

where @,(y) =

approximation for x , namely

(211) Lnk+1 = L(yk7yk+l5""yk+n;f—]|0)) k= 1)2>"'

which satisfy the delimitation

(2-12) 'E - xn+k+l| = ""f(ka)

s )

It is well known that the iterative method given by (2.11) has the convergence
order ,,;, which is the unique positive root of the equation, [6]:

(213) th - - tn_l——...—t —1=0.

Itis also known (see [6]) that 8, ,; verifies:

2An+1
(2.14) Zzianm 0,, <2
n+2
and
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(2.15) 0, <06,,; imo, =2, for alln>1.

"
H—>®©
Remark 2.1. In the successive computation of the elements the sequence
(x,),>0 generated by (2.11) it is necessary to compute at each step k the values
o(0)and 0", (), i=k k+1, ..., kt+n.
We observe that practically there exists a connection both between o +(0)
and 0, ;(0) and between 0',(y;) and @', () .

Indeed:

n+k

o,(N=]1-»)
i=k

and

n+k+1

©p(y) = H(J’_ Vi)
i=k+1

hence we get:
® k(y) (y o yn+k+1)

(2.16) 0n(y) = :
Y=
which for y=0 yields
0,0y,
2.17) 04,1(0) = ©4(O) ks
Yk

From (2.16) we obtain:

[0% D)= Yokt + 03] (7 = 3) = 0L () (3 = i)
(v-n)

2.18) o'y, (y)=

¥

which gives us the following recurrence formula:

(D'k(yi)(yi_yn+k+1) l=k+],k+2 k+n
Yi— Yk

ﬁﬂ&l, i=k+n+1

Vi ™Mk

@.19) o (n)=

Recurrence formulae (2.17) and (2.19) hold for all k=1, 2, ..., .
3
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2.2, HERMITE INVERSE INTERPOLATING POLYNOMIAL

We consider, besides the interpolatory nodes (2.1), the natural numbers ai,
Ay, .y @, g Witha>l i =1n+1 and

(2.20) a+ayt..ta,, =m+1, melN

Suppose that " admits derivatives up to the order m+1 on the interval . Then,
by (2.5) it follows. that the function /! also admits derivatives up to the order m-+1.
The Hermite polynomial of degree m associated to the function £-1 on the nodes

Win= f(x,-), i = L n+ 1, assuming that /'(x)#0 for all xel, is:

(2'21) H(yl;al’ y2;a2""’yn+1;an+1;f_1ly) 5
a—la—j— : (k)
= ZH > ZJ 1[f‘l( S -x)" ,(»)
. yi k'j' o ( ) a,-—j—k
i=1j=0 k=0 = 1184 b= (y— J’i)
where ntl

(2.22) o,(y) = H(y—y,-)
This polynomial satisfies:

(2.23) H 350135030105 Vs s £7) = [ £700)]
forall j=0, 1, ..., a;-1; i=1, 2, ..., n+1.

As in 2.1. we obtain from (2.21) the following iterative method for solving
equation (2.1):

(/)

(2-24) Kokl = H(yk;al’ yk+1;a2,...,yk+”;a,’+];f_ll()), k = L2/

nt+k
where in the polynomial H,o, = H( Y=y )a' .
i=k
Using the differentiability assumptions for £, we obtain:
(225) Ix _fl<h_if(y )01 f( )02 )f( )Hn+l
. n+k+1 Ti (771 + 1) ! k yk+1 N yk+n
i, (m+1)
here M,,,, = ’ :
where m+1 }S;lég [f (y)]

Itis well known that the convergence order of (2.24) is given by the positive
root @, ,; of the equation:
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(2.26) r—a " —atm - Rt A ="0"

In the particular cases when a;=a,=...=a, ,,;=¢ we have the iterative method:

(2.27) Xpskal = H(yk;q’ yk+1;q’""yk+n;q;f—llo)’

and when n=0 we get the Chebyshev iterative method of order m+1:

0] o

1! m!

(Z:28) o 1 Xk =025 10 S )+ H=1) S (%), €= L2,

which has the convergence order p=m+1.
For the method (2.27), by (2.26) it follows that the covergence order is given
by the positive root o, of the equation:

(229) I”+1 -~ qtn o, qtn—l ——qt —gq = 0.
which satisfies:

(230) Dy <Opyys B = 1:2>""

2.31) max{q,—::;(q+l)}<mn+l<q+1;n=1,2,...,
(2.32) nhj;rcln O, =qg+1.

3. THE EFFICIENCY INDEX OF THE CHEBYSHEV METHOD OF ORDER n+1 )

In the following we shall make the assumptions:
a) Consider as a function evaluation, the evaluation of the derivatives

[-1()]®, assuming f ®(x), k=1, m as having been computed.
b) Consider as a function evaluation, the evaluation of the right hand side of

expression (2.28) assuming /(x) and [f (1(3)]®), k=1, m as having been computed.

c) Consider as a function evaluation the evaluation of the function f* or
of any of its derivatives. ,

In this hypothesis, it is necessary for an iteration step with method (2.28) to
compute firstly the values of the functions: £ £, ..., £ at the point x;, altogether
m+1 function for the calculus of the values of the successive derivatives of /1, by
(2.5). If we take into account that for evaluating the right hand side expression
from relation (2.28) is computed another function value, we have altogether 2(m+1)
function evaluations at each iteration step.
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Using definition (1.7) for the efficiency index, method (2.28) has the following
index:

(3.1) I(m+l,2(m+l)) = (m +1)2(m+1)

(We have taken into account that the convergence order is m+1).

We are searching for the maximum value of the index J from (3.1), for meIN.

1
For this purpose we consider the auxiliary function @:(0,00) > R,, o(t) = 12 and
we note that: }1_1)1(1)(;)(1‘) = O,tll)ngo @(t)=1, @ is increasing for 7e(0,e) and

decreasing for & (e,0); 1=e is a maximum point for the function P.

For t€IN, the function ¢ attains its maximum for £=3, so I(m+1, 2(m+1))
attains its maximum for m =2,
So, the following holds:

THEOREM 3.1. In the above assumptions a) ~ c) among all the Chebyshev
iterative methods of the form (2.28) the method with the greatest efficiency index is
the one of 3" order, namely :

S (%) 13l S () ()
) 2 [

(3.3) ’ a1 = ¥ = k=01,..,x, €l.

In the following table are shown the approximations of the efficiency index
of Chebyshev methods for some values of m.

1 m ‘ 2 3 4 5 6
I+, 2(m+ 1)) 11892 1.2009 1.1892 1.1746 11610

We see that /(3,6) = 1.2009.

4. THE EFFICIENCY INDEX FOR THE LAGRANGE-HERMITE METHODS

In the following we shall study the case when nz1, i.e. when number of
nodes is greater than one. In the beginning we shall take the method given by
(2.11) for which, if we take into account the assumptions a) — ¢) and neglect the
first step, we get that each iteration step we have first one function evaluation,
namely the value of the function /* at X, and then we have another function
evaluation, for the right hand side of relation (2.11), hence altogether two function
evaluations. Recalling that the convergence order for (2.11) is 8, ,,, which satisfies
(2.14) and (2.15) we get for the efficiency index the relation

(41) I(OHH’Z) i Ven-l-l %
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By (2.15) we have that 1(8,, 2)<I(8,,,, 2) for all n>1.
So we conclude:

THEOREM 4.1 If the assumptions a) — ¢) hold, for the Lagrange methods
given by (2.10) the cfficiency index is increasing with respect to the number of
interpolation nodes and

lim 1(6,,,2) =2 .
n—>o0 ) .

Now we study the efficiency index for the methods given by (2.27), for which
the convergence order o, ,; verifies (2.29) — (2.32). Obviously, we suppose that
g>1, ¢=11n(2.27) giving (2.11).

There are two aspects that must be considered: the efficiency with respect to
the number of interpolation nodes, when their multiplicity order ¢ is kept fixed
and, on the second hand, the efficiency with respect to the multiplicity order ¢ for
fixed n, n=1.

We again suppose that assumptions a) - ¢) hold. So from the right hand side
of (2.27), at each iteration step, excepting the first one, we have the following

function evaluations: we compute f(x,,.), /' (%,,4)5--+» f(q_l)(xn+k) , 1.e. g func-

tion evaluations, and then, by (2.5) we compute [f‘l(ywk)]',[fﬁl(yw,\.)]",...,

[ e ‘1( yﬁk)}(qq)i.e, g-1 functions evaluations, and finally we compute the right

hand side of (2.27), so, altogether, 2¢g function evaluations.
Using (2.30) — (2.32) we get:

(4.2) I{o,,,29) > I(0,,2q), forall n>1,¢>1,
and :
1
n+1 2 RS
4.3) _ (max{q,j(q + I)}) < I(®,,1,2q) <(g+1)2 .
n

for all n>1, ¢>1. . W
Fora fixed ¢, by (4.2) we get that the efficiency index is increasing as a function of

1
e by #.3) lim f(@,,,29) = (1+9)% .

n—
From (4.3) we also obtain:
1

= 1
(44) qu < ](0) "+1,2q) < q(q+ I)Z’ for q >n+1
and :
4.5 n+1 2 \ zi ; 1
&) n+2(q+l) <I(©,,1,29) <(g+1)2, for g <n+1.

A. For the first case, when g=n+1 we consider the auxiliary functions
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J 1

@, y:(0,00) —> R, givenby @(¢) = t¥ and (r) = (1+1¢).. As we have seen be-

fore, ¢ satisfies: Lim o(z) = 0, lim ¢(z) = 1, is increasing on (0, ) and decreasing
—©
>0

on (e, +c0), so at t=e attains irs maximum.

One can establish the following relations for y:lim y(z) = Ve; lim y(r) =1

t—>0 0

and v is decreasing on (0, +0). —> 0

Recalling that ¢ attains its maximum value at r=¢, let 7 be the solution of the
equation

1 1

(4.6) (c+1)7 —e¥ =0

then for £>7 we have (¢ + 1)2% < ei, hence, by (4.4), we obtain that the values of
g for which /(o ,, 2¢) attains its maximum lie in the set {g€IN; 1<g<7}. One can
easily prove that 7 €(4,5) so wc shall study the cases ¢ =2, ¢ =3, and ¢ =4.
Since gzn+1 we study 1) ¢g=2, n=1; 2) ¢=3, n=1; ¢=3, n=2 and 3) g=4,
n=1; n=2, n=3.

1) The corresponding equation from (2.29) for g=2, n=1, is t2-2¢-2=0, with the

positive solution o, = 1+ V3. So I@,,4) =31+ Nok= L2856...

2) The convergence orders corresponding for this case are the solutions of the

equations #2-3t-3=0 for n=1, ¢=3 respectively 3-3r2-31-3=0 for n=2, g=3,
We obtain /(@ ,, 6)=1,2487 ... respectively I(w,, 6)=1,2573 ...,

3) The corresponding equations give us:

I(0,,8) = 12175..;1(0,,8) = 1,2218... and /(o,,8) = 1,2226...

So the greatest efficiency index when g>n+1 is obtained for n=1, ¢=2 i.e.

I(0,,4) = {1++3.

B. Let g<nt1, so (4.5) holds. We shall again consider two auxiliary functions

#:(0:40) > R, :(0,4) > R,, o{t) = [Z:(m)]g, W) = (¢4
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which possess the following properties: ling o(t) = 0; limg(z) =1;
t— {—>0

LR lnn—+—1—(t+1)

¢'(f) = l[” +1 (¢ + 1)]2r 1+l n+ ,and one can easily prove that:

2 n+2 t?
the equation ¢'(f)=0 has a unique positive solution, denotedby 1,,, ¢' (£) <0 for

t>1, and ¢'(£)>0 for 1&(0,7,), ie. @ attains its maximum value at 1=1,.
Taking into account the properties of y one can see that the equations

1
1
4.7 (t+1)2 - 20, n=23,..

have a unique positive solution p, for each n22.
In the table below we give the approximative values p, and 1, for ne (2, 10].

n T, o,

2 1.3816... 3.6711...
3 1.1201.., 2.8679..
4 0.9566.. 2.3871,..
5 0.8436... 2.0649...
6 0.7601... 1.8327...
7 0.6955... 1.6566...
8 0.6438... 1.5180...
9 0.6013... 1.4056...
10 0.5656... 1.3125...

An elementary reasoning proves that t, and p, are decreasing functions of #,
n>2, as we can see in the above table.

If £>p -then ¢(t,)>p(#) so the optimal values for ¢ must lie in the set
{geN : 2<g<max{n+1 m,l}}

It can be shown that for n26, p <2 and for ne(2, 5], 2<p,<4.1t follows
that the only suitable value for ¢ is g=2. In this case we get that I(o,, H)<Lo,,q, 4),
n>2, i.e. the efficiency index increases with n, but anyway the best results

hold for g=2.

\\

5.MARGINS FOR THE EFFICIENCY INDEX
IN THE CASE OF LAGRANGE-HERMITE METHODS

We end this note by indicating, in the above assumptions, left and right
margins of the efficiency index of the Lagrange-Hermite methods. .

In this respect we shall first establish an inequality that will give left margins
for the positive roots of equations (2.26).
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Let
5.1 P(t) =gl a, t" — ant"_l—...—al =0,

where aytayt .. a, ;=mtl, a2 for i=1pn+1.
The following Lemma holds,

LEMMA 5.1. The positive root @, of (5.1) satisfies:

m+l
m

(n+1){m+1) ‘é{i—l)a[
(52) 0')n+1 = [’n + 1]
Proof.
m+l
(n+l)(m+l)—m£(ll—l)a,-

i=1

Let a:[m+1]

It will suffice to show P(d)<0 using the inequality betws i :
: : <0, ¢
arithmetic and geometric mean, i ¢, quality een the weighted

n+l

1
i Z]: &2 n+l CrT
( '3) _u+_| E H arﬂ ‘%’PI'
D abs| ¥
)
=]
We get
n+l
n+l Z afa'{_] n+l
P o) = GUH'I £ DL-"—I s n+l _ =1 >
(o) 2t ol LN
i=1 Z a =
1
i=1
1 ntl
n+l n+l E!_ ,Zl(i_l)a'
n+l1 j—~ & e
fa = Zai Hq(’ 1)a, i = a™l (m + ])q m+l =
i=1 i=1
el n+1
2V >(i-1)g
=q m+l a”+1—L=l—————.—(m+l) =0
m+1 ’
ie. P(a)<0,

We also geto,,;<a+l, where @ = max a}.

I<isp41* !

b
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In the hypotheses of 3., using (2.24) in generating the sequence (x,
the number of function evaluations at each step is 2(m+1)-n.
The efficiency index (2.24) then satisfies

1
Am+1)-n

o then

1

a < I(m,,+1,2(m+l)~n)s(a+1)2(m+1)'—n,

with a and a specified above.
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