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l.INTRODUCTION

Let IcR be an interval of the real axis ardf:I-+R a function. Consider the
equation:

(r 1) f(x):o,

supposed to have a solution x e L Also get giI-+I be a function whose fixed
points from l coincide with the root cf (1.1).
For solving (l,1) one can usually an iterative method of the form:

(t 2) :c"+t = 8(tr), "o 
eI, s=0,1, ,

More generally, if G:Ik-+I is a function depending on & variables, whose
restriction to the diagonal of the set 1& coincides with E, i,e .,

(1 3) s(*) = G(x,x,...,x), for all x e I ,

then one can consider the folloiving iterative method for solving equation (1,1):

(1.4) xk*, = G(xr,xr*r,...,xr+lr-t), ro,xl,...,xk-l e I, s = 0, 1,.,,,

The connvergence of the sequences (xr,),,rg generated by (1,2) or (1.4) to a

solution of equation (1,l) depends obviously orr the properties of the functionsl g
respectively G, and the amount of tirne necessary to obtaili a suitable approxima-
tion for the solution .r is influenced both by the convergence ordel of the methods
( 1,2), resp. (1,4) and by the amourt of elementary operations that lnust be perfonned
at each iteratioli step. This last aspect belongs to a chapter of the calculus theory
and practice, chapter concerning the computational complexity,

Many authors (lll,l2l, [3], [5], [6], [9], [10], [11]), who studied the compu-
t¿tional complexify of the iteration processes, have defined difïerent notions, as:

the fficíency of a method, the fficíency index of a method or lhe cost of a method,

which they liave quantitatively expressed by diff:rent scalar magnitudes,
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Throughout this paper we shall adopt the following definition for the conver-
gence order of an iteration method:

DBrnluoN l.l The real number p>-l is called the convergence order of the

sequence (rn)nro generated by an iterative method if thefollowing limit exists and
ís not zero'.

(1.s) lim
t_t

lrr*l - rl

l*, -¡lo
=a#0

where x is the solution of equatíon (1 ,l).
Concerning the calculus complexity, using the convergence order we can

define now the following notion:
DEFTNITIoN L2 [6), The nutnber I is called the efficiency tndex of the method

(1.2) or (1.4), if theþllowing limit exist and isfinite:
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Suppose that equation (1. 1) has the unique solution 1 e I .

Obviously,

(2.2) ; =,f-t(O) ,

and so the problen of approximating the solution ¡ ¡educes to the approximation
orl-110).

A simple and efficient approximation method for the functions is given
by the interpolating approximation.
Denote by:

(2.3) !t,12,..',!n+r, lí f(*t), i =1rn+1,

the values of the/on the nodes .ri from (2.1).
The Lagrange interpolation poþomial corresponding to the function/-l on the nodes

fronr (2.3) (taking into account that y, * !¡ii + j;i, j =7,n+l) has the form:

2

n-+@

(1.6) =1,
L(!r, !2,

x¡roív)(2.4)

(2.6)

n+l

,rn*r;.f-11!)= U
i=l (v - v,)^r(vt)'

where m,t represents the nutnber of function evaluations that must be perfonned
wlten passing-from the step n to the step nl|

If we suppose that m,, is the same for all n, and take into account that (1.6)
has an asymptotical character, then there results for l the follou,ing expression:

I

(r,7) I=I(p,nt)-p..
In the following we shall study cefain classes of iteration methods, namely

the methods obtained by interpolation, among which r¡,e shall select those for
which the efficiency index given by (1,7) is optimal, i,e. the greatest. For this
purpose in the next section we shall briefly recall the classes of rnethods that
we want to study,

2. INTERPOLATION ITERATIVE METHODS

2. 1 . LAGRANGE'S Iì{VERSE INTERPOLAÏON POLYNOMIAL

Let IcR be an interval and f.I-+R a fi.lnction, Denote bV F--f(I) the set of all
values of f for xeL Suppose that/is one-to-one, i.e, ere exists tire inverse func-
ûonf-r:F-+L Consideiln I, n*l inte¡polation nodes

(2.r) x1,x22...>xn+t>with x, t xj; for i * j; i, j =l,n+l

where ',(y) = fl(y - ¡)
t=1

If we suppose that the function/ has derivatives up to the orderk, kelN and/'(-rr)+O
for all xeI, then we have the following formula for the computation of the fr-th
derivative of on the pointy--flx), xel ([7], |2)):

l+1

(2.s)

where the above sum extends to all nonnegative integernumbers, solutions of the
system:

í, + 2ir+...+(k - l)to = ¡ - 1'

ir+ir+...*io = þ-1,

If we suppose that/admits derivatives up to the order n*l on the interval land the
n+l-th derivative is bounded on { then by (2.5) we obúain,

n+1)

^'(o) ,(2.7) ; =,f-t(O) = L(tt, !2,..., lr*t; f-tll) Ir-'(41' (z+1)!
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(2.I5) 0, ( 0,*r' 
,,tjå 

A, = 2, for all n > l,

Rentark 2,1. rn the successive computation of the elements the sequence
(.!,)r>O generated by (2.11) it is necessary to compute at each step fr the values
c'r¿(0) and a'¡(ù¡), i:k, k4'1, ..., k+n.

'We 
observe that practically there exists a connection both between oÀ(0)

and o¿*1(0) and between a'¡(!¡) and co'¿*10r¡) .

Indeed:

'1+ 
k

,00) = fl(v-¿)
t=k

and

tt+ k+l

'u*'(v) = fI(v-¿)
i=k+l

hence we get:

(2,1,5)

whiclr for y:0 yields

(2.17)

to*,(/) =
(ùk )(y - y,.ru)

!-lt

t**r(o) =
, o(o) y,*o*,

!*
From (2.16) we obtain:

(2.15) ,'o*r(y) =
,'r(l)(l - /,*t*t)+ o¡¡,(y) 0 - v)- ro(v) (! - !,*o*r)

U-vo)

u4rich gives us the following recurrence fonnula:

,'o(v,)(v, - !,+t*t) i = k+1rk+2,...,k+n
(2.I9) a:'r*, (/¡) = !¡- lr

a r(y,) i=k+n+l
l¡-lr

Recurrence formulae (2.17) and (2.I9) hold for all lFl,2,
)
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where c is a point belonging to the smallest interval containing 0,11, !2, ..., !n+l
and o,(o) = (-r)".' f(\)"f6),.. f(r,*r) .

Denote by xr+zthe number:

Q'S) . xn+z = L(lr,lz, "',lr.t; f-tl}) ,

and by (2,7) we get:(2.s) lî - *,*,1= 
ffivt",)l¡(¿)l ,.1.f(,,.,)l ,

from which \rye see thatif xp x2, ..., xr¡1îra chosen in a neighbourhood of .x such

tttat lf(x)l < 7, i = 1,, + l, then rr+t can be considered as a new approximation

for i , we have denored in i'equaliry (2,g), M*1= j5l[t-'rr)]''."1
Letnow x¡,x¡+7, ,,.,xk+neI benll approximations for .r , Thenthe Lagrange

polynonrial corresponding to the function/-1 on the nodes /¡:-f (x¡), r = ¡,,, ¡ ¡
has the form:

(2'10) L(!0, ro*r,..., !**,i f-1¡y7 =i -U 
rØ-

?r 0 - v,)a'*(v¡)
t+k

where ,r0) = fI(r-¡). from this relation, for y:0, we obtain a new
i=k

approximation for x, namely

(2.11) xn+k+1 = L(lo, h,*r,..., !m,i f-|lo), l, = 7,2,...

which satisfy the delimitation

(2.12) li - *,*r*,lrëfrv60)llfiu.,)l...lr(*r.,)l

It is weil kriown that the iterative method given by (z.rl) has the convergence
order 0,,a1, which is the unique positive root of the equation, [6]:
(2,13) Íh+t -{ -{-1-..,-t-i = 0,

It is also knorvn (see [6]) that 0r+1 verifies:

(2.14) ry+ 10n,t 12
n+2

and
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Q.26) t"*7 -ar*rtn -ort"-'-...-azt-A=0.
In the particular cases whenar:ar:..,:ct,r¡1:e we have the iterative method

(2.27) xu+k+t = n(lt;Q,lr*tle,,,.,lk+uiø;f-tlO),

and when n:0 rve get the Chebyshev iterative rnethod of order r¿*l:

(2.28) xk+l = ):k - fQ)+. +(-r),,1-f-'00)]þ')

7

lr-'0)l'
1! m!

f''(rn), k = 1,2,

wlriclr has the convergence order p:m-ll.
For the method (2,27),by (2.26) it follows that the covergence order is given

by tlie positive root o,,a1 of the equation:

(2.29) t'+1 -q¡'t -qi,,-t_...-qt-e = 0.

wliich satisfies:

(2.30) o, ( or+1 ; 11 = 1,2,,..,

(2.31)

(2.32) Iim o,,*, - q+I
t7--)q)

3. THE DFFICIENCY INDEX OF THE CIIEBYSIIEV METHOD OF ORDER rt+1

In the following we shall make the assumptions:
a) Consider as a function evaluation, the evaluation of the deriyatives

V-l6ù)&), assurning;f(k)$), te t,* ot having been computed.

b) Consider as a fuuction evaluation, the evaluation of tlie right hand side of
explession (2.2s) assurning/(.r) and [/ct)9¡l(k),lt:t, * as having been computecl.

c) Consider as a fuiiction evaluation the evaluation of the function/ or
of any of its derivatives.

an iteration step rvith method (2.28) to
Í;-f ',,..,f ('') at thepoiut.rr-, altogether
ofthe successive derivativõs of/ 1, b¡,
luating the right hand side expression

from relation (2.28) is computed another function value, we have altogetlterZ(tn+l)
function evaluations at each iteration step,

^ *{n,fitn. t)} ( o,+1 < q + t; n = t,2,.,.,

206

we consider, besides the interpolatory nodes (2.1), the natural numbers a1,

Q,), ,,,,4r,+1 With ar>I i = l,n + I and

(2.20) al+a2+...*a,+1 =nt+l,øelN.
Suppose that/ adnrits derivatives up to the order lz*i on the interval L Then,

by (2.5) it follows that the functi onf -r also admits derivatives up to the order m*1.
The Hennite polynomial of degree n¿ associated to the furrcti orrf -1 on the nodes

y, = f 8,), i = \n + l, assuming thatf '(x)+0 for all.xe d is:

(2.21) H(y;or, !ziaz,...,!n+l,or*r;f-tly) =

='ä8" 
ä' ¡¡, {r,))(,, nl+#|,,;S=,

where

(2,22)
i=1

Ion Päväloiu

2,2. HERMITE I}N/ERSE INTERPOLATING POLYNOMIAL

tt+1

''(v) =fl(r-v,)"'

6

This polynomial satisfies:

(2.23) uç)(lr; ctt, !z) a2,. , ., !n+t) o*r; f-tly,) =f.rt(r,)f(t)

for allj:O, 7; ..., ar-l; i:I,2, ,,,, n*|.
As in 2. l. we obtain fron (2.21) the following iterative rnethod for solving

equation (2, l):

(2.24) xn+k+t = n(lt ;at, lk*tiaz).', ) lk*r)ar*t) ftl}), k = 1,2,,,,,

where in the polyn omial H,^ n = frQ - y,)"' .

i=k

Using the differentiability assumptions forl we obtain:

ez5) lr,,*r*r - rl < 
#ffrVrtr)l'lf 

(t0.,)1, ...1f (tr.,,)1"..,

where M,n+t =;:åll/'(/)]''' 
"1.

It is well known that the convergence order of (z.z$ is given by the positive
root o,,a1 of the equation:
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"f'6) z 
l-f,(rn)]'

(3.3) rk*t = rk

2

, k=0rl,,,,rxreI

5

us,ing definition (1,7) lor the efficiency index, method (z.zg) has the following
index:

(3 1) Iþn + \Z(ru + 1)) = þn* Ð#Ð
(We have taken into account that the convergerlce order is n+1).

'We 
are searclúng for the maximum value of the index lfroln (3.1), for rt e ÌN.

Forthis purpose we consider the auxiliary function g:(0,*) ) R*, q(¡) = tù and

we note that: 
/$¿p(¡) = 0,rlgq(¡) = t, rp is increasing for le (0,e) ancl

decreasi'g for re (e,co); t: e is a maximtun point for the functio' rp,

For le lN, the function g attains its maximum fbr /:3, so IQn+r,2(n*l))
attains its maximum for nt=2,
So, the following holds:

THEOREM 3.1. ht the above assuntpfions a) _ c) qtnong all the Cltebyshev
iteratíve meîhods of thefann (2.28) lhe method with the greatest e/ficiency index is
the one of 3'd order, natnely

-rG) 1 .f" (x)f'(xr)
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By (2.15) we have that I(A,t,2)< -I(0,,.,.1, 2) for alln>1.
So we colrclude:

THEoREM 4.1.If tlrc assurnptions a) - c) hold, for the Laþrange methods
given by (2.10) lhe elf ciency index ís increasing u,ith respect to the nutnber of
inlerpol ati ott nodes and

]ry¿r(e,,,27 = Jt
Now we study the efficiency index for the methods given by (2.27), for which

the convergence order c'rr*1 verifies (2.29) - (2.32). Obviously, we suppose that
q>1, q:l in (2.27) giving (2.1 i),

There are two aspects that rnust be cousidered: the effìciency with respcct to
tlre number of interpolation nodes, when their niultiplicity order q is kept fixed
and, on the secoutl hand, the efficiency with respect to the nultiplicity order q for
fixed n, n)1.

We again suppose that assumptions a) - c) hold. So fiom the right hand side
of (2.27), at each iteration step, excepting the first one, we have the follou,ing

function evaluations: we compute -f (*r*r), f,(x,,*¡),.. ., -f(o-t) (*,,**) , i.", q flinc-

tion evaluations, and theri. by (2,5) we compute lf-t(1,,.))',1-f-'(1,,*))",..,,
r ^ t, 'r(q-l) .

l-f-'(1,,.ò)" 
' i.e, q-l flinctions evaluations, and finally we compute the right

lrand side of (2,27), so, altogether,2q function evaluations.
Using (2.30) - (2.32) we get:

(4.2) I(a,,*r,2q)> I(a,,2q), for all n) l,q>1,

and

( ( t¡t't 'l\-a 
1(4.3) |niax{ q,-(q+t)l l'. r(a,,*,,2q)<(q+r)u .

\ t n+¿' '))

forall rù1, q>7,
Forafixed q,by(4.2)wegetthattheefÍicierrcyindexisincreasingasaflinctionof

In'andbY(a3) 
/5r¿r1r"*,,2q)=(t+q)ø .

(4.4)

and

(4;5)

From (4,3) we also obtain:
lr

q't < I(o't,+2e) < q(q+t)ã, for q> nr|

8 9

^ ^_ 
Ilt the following table are shown the approxirnations of the efficie¡cy ildex

of Chebyshev methods for some values of lz.

n7

Ifur+ 1, 2(nt+ I)) 1.1892 1.2009

We see that I(3,6)= 1.2009

J

1.t892 1.1746

6

1 1610

4

4. TIIE EFFICIENCY INDDX FOR TIIE LAGRANGE-IIERMITE METHODS

I' the following we shall study trre case when rùr, i,e. when nu'rber of
nodes is greater than one. In the beginning
(2,11) for which, if we take into account the
first step, we get that each iteration step we
rrarnely thc value of the function f at x..
evaluíri on, for the .isil r'."d ;iã, å räiíiå,fr'f
evarluations. Recalling that the conv-elgence.order for (2,11) is 0r*r, wlúc¡ safisfies
(2.14) a:nd (2,15) we get for the efficiency index the relatíon 'ti

(4,1) I(o,,*t,z) = Jq;,
l4t *Ð-lt <I(. n*1,2Q).(q*r)!u, ø, q<tx+t.
ln+2" 'l

A. For the first case, when q>n*l we consider the auxiliary functions
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g,\y:(0,0o) + rÇ givenby <p(t) = tzr and y(r) = (t+ t)a ., Aswehaveseenbe-

fore, g satisfies: |tge(t) = 0,timg(l)= L is increasing on (0, e) and decreasing

f>0

on (e, +æ), so at Fe attains irs maxinrum.

One can esúablish the following relations for ry:lim V(¡) = Gt t:lv(¡) = t
and V is decreasiug on (0, +co).

Recalling that g attains its maxinum value at Fe,leti be the solution of the
equation

(4.6) Q+ln -e 0

then for t>lwehave (l + 1); < .:", h"n"",by (4.4),we obtain that the values of

q for which I(ot r+Þ2q) attains its maximum lie in the set {qe h{; l<q<l}, One can

easily prove that { e(4,5) so wc shall study the cases Q =2, e:3, and q: 4.

Since q>n*I we study 1) q:2, n:l; 2) q=3. n:l; q=3, n:2 and 3) q:4,
n:I; n:2, n:3.
1) The corresponding equation from(2.29) for q:2, n:l, is P-2t-Z:0, with the

positive solution az = l+16. So I(a r,4) = S* {S =\2856...
2) The convergence orders corresponding for this case are the solutions of the

equations t2-3t-3:0 for n:|,4:3 respectively t3-3t2-3t-3:0 for n=2, q:3.
We obtain ( @ z, 6) = 1,2487 .., respectively (ot r, 6) = 1,257 3 ... .

3) The corresponding equations give us:

1(o:r,8) = 1,217 5... ; 1(c,:r,8) = 1,2218... and 1(o0,8) = 1,2226...

So tlre greatest efficiency index wltet q>nrl is obtained for n:l , q:2 i.e.

I(ar,4)= t[*16.
B. Let q<n*|, so (4.5) holds. We shall again consider two auxiliary functions

I

e:(o,r-"o) + &, ,y:(o,r-*) + &, q(¿) = l,*rr. t)] v(¡) = (t + r¡*

.p,(¿) = ililu. r)] h-n#t'.t),and one can easilv prove that:

the equatiùr g'(Ð:0 hai auniquepositive solution, denotedby Í n, Q'(r) < o for

which possess the following properties: liq 9(r) = 0; 
,15* 

q( t) = I;

t>r,rand,p'(r)>0 fo¡ /e(O,t,,), i.e. q attains its maximum value at t:1,,'

Taking into accouut the properties of \y one can see that the equations

(4.7)

lrave a unique positive solution F,, for each n>2.

In the table below rve give the approximative values P,, and r,rfor ne[z,10].

lL,
3.6'711

2.8619

2.38',t I
2.0649

1.8327

1.6566...

1.5180...

1.4056...

r.3t2s.

I

I .3I 16..

t.t20L
0,95 66.

0.843 6

0.'7601

0.6955

0.6438

0.6013

0.5 65 6...

t1

)
J

4

5

6
,|

8

9

10

A.n elementary reasoniug proves that t,, and p,, are decreasing functions of n,

n22, as we can see in the above table.

If l>p,, then g(r,,)>g(/) so the optimal values for q rnust lie in the set

{q.N : 23q<nax{n+\, F,}i.
It can be showr that for n)6, ¡t',,<2 and for nef2, 51, 2<¡t',,<4, It follows

that the only suitable value for q ís ç2.In this c¿ße we get that I(a,,, )<I(ot n+þ 4),

n22, i.e. the efficiency index inc¡eases with n, but anyway the best results

hold for q:2.

'i

5. MÁ,RGINS FOR TIIE EFFICIENCY INDEX

IN TIIE CASE OF LAGRANGE-I{ERMITE METHODS

Computational Complexity 2tll1

n=0.
z(r,+t)

-e
1

(r+t); L,J,

1

2"

We end this note by indicatirrg, in the above assumptions, left and right

margins of the efficiency index of the Lagrange-Hermite methods.

In this respect we shall first establish an inequality that will give left margins

for the positivo roots of equations (2'26).
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Let
(s.1) PQ) = tn*t - ar*ttn - oot'-t -.,.-a.t = o,

. In-the hypotheses of 3., r:'ing (2,24) in generating the sequence (-r,,),,r0 then
the number of function evaluations at each step is Z(mit)-n.

The efficiency index (2,24) then satisfies

ir
where ar*arl ...an¡1:ntll, ar) for t=¡il]1.
The following Lemma holds,

LpWa 5.1. The positive root a n*1 of (S,l) satísfies:

IoW < I(6,*r,4m + t) - n) < (a + t)fi*j., ,

with ø and a specifiecl above.

(s.2) o,+r ) lnt+l]

r+l

lil+t)ln+r)- Z.(i_t)¿r
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(n+t)(n+t)-\lrt)a¡

Let a:[m+t] í=,

It rvill suffice 
1?iliy-p(T)<0, using rhe inequatiry berween rhe weighredarithmetic and geometric mean, i.e.

n+l

(s.3)

i=l

We get

n+l

nrt Zo,ot-t ,n,
P(cr) = un+l -lo,o,-, - on+t -Ãn+t -2o,,

'-r Z"' í=t
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hstitutul de Calcul
"Tiberíu Popovíciu"

P.O. Box 68
3400 Cluj-Napoca I

Romônia

( 6¿rr+1 -
( n+t

IT
\ ¡=r

ai

Itü
tli-r¡o,

= s¿/r*l - (tn +1)ø-,r*r- =

ún+l _

n+1

r(r - 1)o,

m+7 -(m+r) -0,

i.e. P(ø)<0

Wealso geton+r<a*I, where a= 
tp:,\{a}


