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1.INTRODUCTION

In this paper we continue our earlier investigations [12], [13], [16] concem-
ing the use of probabilistic methods for constructing linear positive operators use-
ful in approximation theory of functions. By starting from the beta distribution of
second kind bp = (with positive parameters), which belongs to Karl Pearson’s Type
VI, one defines at (3) the beta second-kind transform T,,ofafunctiong: [0, 0) - R,
bounded and Lebesgue measurable in every 1nterval [a b}, where 0 <a< b < oo,

such that T | gl <oo, At (4) is given an explicit expression for the moment of

order r (1 < r < q) of the functional T, .- Ifone applies this transform to the image
of a function f: [0, ) - IR, by the éa,kakov operator &, , defined at (8), we
obtain the functional F, (p,q) = i) (83 f), given expllcltly at (9). If we choose
p=xla, q=1/a, where aisa pos1t1vc parameter, then we arrive ata parameter-

dependent operator lf,:‘ , introduced in 1970 in our paper [14] (see also [15]), as a

generalization of the Baskakov operator.

The main result of this paper consists in introducing and investigating the
approximation properties of a new beta operator of a second kind L. =T he e
which is an integral linear positive operator reproducing the lmear functions.
' As we have mentioned in the final part of the paper, this operator is
distinct from the other beta type operators used so far in approximation theory
of functions.

At (13), (14) and (15) we gave estimations of the orders of approximation,
by using the moduli of continuity of first and second orders. At (16) we gave an
asymptotic formula of Voronovskaja type, while at (18) and (19) we established
two representations for the remainder term of the approximation formula (17).
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2.SOME RESULTS ON THE PROBABILISTIC METHODS USED
FOR CONSTRUCTION OF LINEAR POSITIVE OPERATORS

One denotes by F,,  a family of probability distribution functions having the
expectation x € IR and the variance 87, (x) , forany m € IN. Let Z, .bearandom
variable with the distribution function £, .and fasingle-valued functionf:; R — IR,
integrable with respect to /' mx 1T Weassume that the expected value of the random
variable Y/ = f(Z nx) EXists, then we can define it by the following improper
Riemann-Stieltjes integral

E[1(2,.)]= [ r(®)E, (o),

with the requirement
[lr®|e, , o) <e.

Therefore we can consider a general linear positive operator L associated

with the function fand the distribution function F, . defined by
(1) (Lnf)x) = L, (f();x)= | f(1)dF, (2) .

It is easy to see that this is a contraction operator, since we have
1L A<M a6 = A1

Let us denote by e, the monomial e (x) = x" (r = 0,1,2, ...). Beside the
evident relation L.ey= €, We assume that we have L,e, = e; and that
L, ((¢x)*x) = 82 (x) — 0, uniformly on a compact subinterval [ of the real axis.
Then we can state that: for any_bounded continuous Junction f we have L, =
uniformly on I. This result constitutes the statement of a fundamental Lemma of
W. Feller ([3], pag 218), which was proved by using Chebyshev’s inequality and
the weak law of large numbers, Usually the operator L defined at (1) bears Feller's
name [7], [2], [5].

It can be easily observed that this result is a consequence of the quantitative
estimates of the approximation of the function S by means of the operator L.,
given in our paper [12]. In that paper we have shown how can be obtained, by
using the theory of characteristic functions, the operators of Bemnstein, Favard-
Szasz, Baskakov, Meyer-Kénig and Zeller and Stancu, by starting, respectively
from the distributions: zero-one, Poisson, Fisher, Pascal and Markov-Polya. For
the operators of interpolatory type we gave representations by means of finite
differences and factorial moments of corresponding distributions. The above
operators represent special cases of the Feller operators

(L S)() = E[f(X’ et *‘"'*Xm)],

m

where (X)) represents a sequence of independent random variables, identically
distributed as a random variable X with finite mean x and finite variance 8%(x). In
this case F,,  Tepresents the distribution function of the arithmetic mean

N+t X X
m

m

Now we have
(L,e)® =L, (Lx)=x, L, ((t-x)* x) = 82(x)/m.

Such operators were called by R. Bojanic and M.K. Khan [2] averaging
operators.

3. THE BETA SECOND-KIND TRANSFORM T, .

Let us denote by M[0,c0) the linear space of functions g(1), defined for¢> 0,
bounded and Lebesgue measurable in each interval [4,b], where 0 < a < b < oo,
We shall define a linear transform by using the beta distribution of second
kind, with the positive parameters p and ¢, which has the probability density

P!

B(p,q)(1+1)7’

where £> 0 and b (¥) = 0 otherwise; by B(p,q) is denoted the beta function. This
distribution belongs to Karl Pearson’s Type V1. It is easy to see that there is a
considerable resemblance to the case of the gamma distribution, used by us in [12]
for obtaining the Post-Widder gamma operator.

By using distribution (2) we can define the beta second-kind transform 7"

X%
of a function g € M[0, o), by

2) bp,q (t) T

T, 2= j""g(t)bp_q (£)d =

3) 1 O 0 P dr
" B(p.q) J g(l)(1+t)’”" ’

such that T | gl <oo. : .
One observes that T is a linear positive functional.

We need to state and prove
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THEOREM 1. The moment of order ¥ (1 <r < q) of the functional T, 0 has the
Jfollowing value

p(p+l) (p+r—1)

@) v.(p.a) =T, e = @-D(g-2) .. (g-r)
Proof. We have
1 w Pl
TaTigt —dt .
P4 B(p,q)v[o (]+t)p 1

If we make the change of integration variable y = #/(1+7), we have 1 = y/(1-y),
dz = (1 — y)y? dy and we obtain

) i : jl B (1 ) 0T o Blaodal) |

e, y y =
P B(p,q) % B(p,q)

Applying successively 7 times the known relation

we obtain the following formula
(a+b-1)(a+b-2)..(a+b-r)
(b-)(-2)..6-7)

Taking @ =p + rand b = g, we get

(6) B(a,b-7) = B(a,b).

(p+q+r—1)(p+q+r—2)...(p+q)B

(a-0(¢-2)..(g-7)

By using successively 7 times the relation

U B(p+r,q-r)=

(p+r,9).

B(a—i—l,b) =

B
a+b (a,b) ’

we find the relation
a(a + 1)...(a+r— 1)

B(a+r,b)= (a+b)(a+b+l)"'(a+b+r—1)

B(a,b) ,

If we take @ = p and b = g we get

plp+1)..(p+r-1)
p+D)(p+qg+1)..(p+qg+r-1

B(p+r,q)=(

)B(p,q)-

- we get
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By replacing it into (7) and taking (5) in consideration, we obtain the desired
result (4). '

4. THE FUNCTIONAL F/(p,q)=T, (%, /) .

Now let us apply the transform (3) to the Baskakov operator &, defined by

(8) (%’,nf)(t)=i[nl+:_lj attk)mf[k)'

%=0 m

We may state and prove

THEOREM 2. The T, | transform of %, f can expressed under the follow-
ing form

©) Fl(p.a9)=T,,(% f)=
& (m+k=1) p(p+1)..(p+g-Ng(g+))..(g+m-1) (&
=3[ 15

(p+q)(p+q+1)...(p+g+m+k-1) m

Proof. We can write successively

Tp.q (‘%m f) o=

© 1 & ptk-1
k=0 k B(p,q) o (1+1¢) iy m

If we make the change of variable y = /(1 + 1) in the integral

; S
Lo (p:0)= Pk

1 h -1 '
Ini(psa)= [ 777 (1= )" dy =

L T{k+p)im+gqg
=Blk+pymeg)= F((m +plz+(p+q)) i

_p(p+D)..(p+g-Dg(g+D)..(g+m-1)
(p+a)(p+q+1)..(p+g+rm+k-1) B(p,q)

and we obtain formula (9).
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We can make the remark that if we select p = x/a, g =1/, where a is a
positive parameter, then formula (9) leads us to the parameter-dependent operator
éﬁ) , introduced in 1970 in our paper [14] (see also [15]), as a generalization of the
Baskakov operator. By using the factorial powers, with the step h=—a., it can be
expressed under the following compact form '

o - [k,-a] [m,-a]
10 L(“) . (m+k l)u* "(E) .
(10) (Z31)(x) kZ A v

It should be noticed that the operator Tx 1 = r was used in the paper [1]

X *
for obtaining our operator LS:O given above.”

R~

5.THE BETA SECOND-KIND LINEAR POSITIVE OPERATOR me’ =
APPROXIMATION PROPERTIES OF IT

Now we introduce a new beta second-kind approximating operator.
Ifin (3) we choose p = mx and g = m+1, then to any function f'e M [0,00) we
associate the linear positive operator L, , defined by

(1) L)) = Doesir S = [ L (0) b (1)
or more explicitly

. e 1 0 tmx—l
(2 (L, /)(x) = L, (1 (1);x) = B(T’HDJ" f@m :

Because

(B 20)(2) = [ ()= 1

and according to (4) we have (L,,e,) (x) = x, it follows that L, reproduces to linear
function.

It is easily seen that this operator is of Feller’s type, but it is not averaging
operator,

If we use an inequality established in our paper [12] we can find immedi-
ately the order of approximation of /by means of L.f

THEOREM 3. If f'e C[0,0), such that Lm(l fl; x) <oo, then for any m>1 we
have the following inequalities

13 ’f(x)—(me)(x)’S(1+\/x(x+1))®1(f; ! )

m-1

(14) ’f(x)—(me)(x),S(3+x(x+1))032(f; : ),

m-—1
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where o, (f; 8) represents the modulus of continuity of order k of the function

flke=1,2).

Proof. From (12) and (4) we deduce

) x(mx+1) 5 x(x+1)

(LmeZ)(x)— m—1 =x"+ m—1

and
g2

If we use the following inequality, given at page 686 of our paper [12]:
f@ - @, @ < (1+870, W) 0,0 6),

where
x+1
m—1"

gl )= Lm((t ~ x)2;x) =
we obtain
x(x+1)

lf(x)—(me)(x)' s [1'*'51 'mﬁ]@l(fﬁ) .

If we take § =1/ +m — 1 we arrive at inequality (13). .
By using Theorem 4.1 from a paper by H. H. Gonska and J. Meier [4] we can

obtain at once the next inequality (14). )
According to the Bohman-Korovkin convergence criterion, we can deduce
COROLLARY 1. If f'e M [0,0) and is continuous at all point of an interval
[a, 5] (0 < a<b<w),then L f converges uniformly in [a, b] to the Sfunction [

when m —» oo,
Appealing to an inequality given at page 689 of our paper [12] we can estab-

lish an inequality of Lorentz type.
THEOREM 4. If f has a bounded uniformly continuous derivative for x > 0,
then for m >1 we have

|

(15) 'f(x)—(me)(x)l S’\/”:__'l-\/x(x+1)[1+\/x(x+l)J031(f';ﬁ] -

Proof. If in our mentioned inequality

/) =L))o, ()10, (5)] 0 (£138)

0, ()= e(x ) /m=1, 8 =1/m-1

we arrive just to the inequality (15).

we replace
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For the operator L _ introduced at (12) one can be established also an asymp-
totic formula of Voronovskaja type.

THEOREM 5. If f€ M [0,%) is differentiable in some neighborhood of a point
x € [a,b] (0< a< b <o) and at this point the second derivative exists, then we have

(16) lim m[f(x)—(me)(x)]: —Mf"(x) .

m—yoo 2

If f e C?[a,b] then the convergence is uniform.
For the proof of this theorem we can use a result of R. G. Mamedov [9] (see

also M.W. Miiller [11]).
Concerning the remainder of the approximation formula

(17 f&)=(L,) @)+ R, ),
which has the degree of exactness N=1, we can give an integral representation.

THEOREM 6. If the function [ € M [0,00) has a continuous second derivative
for t = 0, then we can represent the remainder of formula (17) in the following
integral form

(18) (R, £)(5)= [, G (t5%) £ ()
where
G, (15)= (Ry 9 )0 .= (x-0), = 222

and R, operates on @,(7) as a function of x.

This representation can be obtained at once if we apply the well-known theo-
rem of Peano.

It can be easily verified that for any fixed point x €(0,00) we have G, (1; x) <0
when ¢ € [0,00). Consequently we may apply the mean value theorem of the inte-
gral calculus and we obtain

S) = (L, ) )+ 1) [ G (t5x)dt

If we choose f'(x) = e,(x) =x?, we can deduce from this equality the value of
the integral of Peano’s kernel

JOwG," (t;x) dt = —;—((:% ,

Therefore from the preceding theorem there follows

COROLLARY 2. If f'e C?[0,00) then for all m> 1 there exists a point & € (0,00)
such that the remainder of the approximation formula (17) can be represented
under the following form
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x(x+1)

(19) (By ) = =55 /" E) > & €(0,0)

Finally, we mention that our operator defined at (11) — (12) is distinct from
other beta operators considered earlier in the papers [10], [8], [17], [6], [1].
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