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1.INTRODUCTION AND NOTATICN

In some investigations on Banach spaces and their applications it is some-
times useful to know the geometry of the unit balls. The geometry of the balls may
be reflected in the behaviour of some moduli, i.e. of some real functions attached
to a Banach space. :

In this paper the properties of such a modulus are discussed. The invoked
modulus has been recently introduced and used (see[7]) at existence problems for
the Lipschitz continuous selections of set-valued mappings. A new geometric defi-
nition of this modulus is given. For some reasons (see Proposition 2.6) it will be
called the tangential modulus.

From the behaviour of the tangential modulus in the neighbourhood of some
points we obtain information about the geometry of the Banach spaces. A charac-
terization of the uniform convexity of a Banach space is reconsidered. The con-
vexity of the tangential modulus in the neighbourhood of 1 and connections with
known moduli is presented too.

Let (X, “ . ") be a real Banach space and let X* be its dual. To avoid triviali-

ties we assume that X has dimension at least two. For » > 0 and x € X denote by
B(x,r) the closed ball with center x and radius r and by B(X) = B(X, ” : ”) the unit
ball of X Analogously, S(X) will represent the unit sphere of X. Choosing x, y € X,
x # y we shall consider the straight line passing through x and y denoted by xy as
well as the open and the closed line segment with the vertices x and y denoted by
(x; y) respectively by [x; y]. Let x,y,z € X, x # y. A parallel to xy from z is the set
{+A(x-y): X e R}. The symbol L, will be used for Birkhoff-James’s orthogo-
nality in (X, || . ” ); namely: x 1y if ”x ” < ”x + Ay| , forallA € R.
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The modulus of smoothness of X is defined [5] by:
pe(s)=p ()= swp{ 3|+ o]+ | 2= w]-2) .y es(x)], <20
and the modulus of convexity [5] by:
Sy (e) = inf{l— %” x+y|ix,yes(X),

The Banach space Xis said to be uniformly convex if8 (e)>0,0<e<2,and
uniformly smooth if lim,_,opx (1)/1=0.

The orthogonal modulus of smoothness (see T. Figiel [3], p. 129) is the func-
tion Py defined by s

e () s {3 (5t b elx-v]-2): 7,y e5(x),

x—y”:s},OS:—:SZ

there exists x* € S(X *) such that x*(x)=1, x*(y):O}, 20,

Itis well known (see D. Amir [1], p. 33) that the condition of ortho gonality
used in the definition of Py 1is equivalent to Birkhoff-James’s orthogonality.

For any x,y € X with “ y “ <1< ll xl , there is a unique z =2z (x,)) in (x; y)
with |[z] =1. Weputas in [7]

and define the function & =& v:[0,1) > R by

)~ swpfo (x,): [y <8 <1< ] ], 05p <1,

K. Przeslawski and D. Yost name this function in two different ways (in the two
variants of the preprint [7]).

2. PRELIMINARY RESULTS

In the sequel the following simple geometrical lemma will be frequently
applied,

LEMMA 2.1. If x 1p,y and 0<a<b, then ”x + ay” < “x + by” :
Proof. From the Birkhoff- James’s orthogonality we have ” x” < ” X+ ay ”
If ”x” = ”x + ay ” then x +ay 1,y and the result follows. If “x” < ”x + ay H

then the collinear points x, x+ ay, x + by, 0<a<b areinthis orderin the interior,
on the boundary, respectively in the exterior of B (0,” x+ay ”) ¥]m]
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One observes that symmetrically if x 1;; y and b < a < 0 then also
”x + ay” < ||x + by” ;

The following useful result can be find in [2], [8], [4].

LEMMA 2.2. Let X be a two-dimensional Banach space and let K|, K, be
closed convex subsets of X with nonvoid interiors. IfK, c K, thenr (K,) < r (K,),
where r (K, ) denotes the length of the circumference of K, i =1, 2.

Now, we present a first result with respect to the function & .

LEMMA 2.3. Let X be a two-dimensional Banach space and x, y € X be such that

[»l<B<1<]x].

Then there exists a vector y’e B(0, B) such that xy’ is the supporting line of
B(0, B) and

o(x y) Solx y').

Proof. If x and y are linearly dependent, theno (x, y’)2 o (x, y)=1, for
every y’e B(0, B). In the other case, in every semi-plane determined by Ox there
exists a supporting line of B(0, ) passing through x. Let xy’, ('€ B(0, B)) be the
supporting line of B(0, B) contained in the semi-plane determined by Ox and y.
Then the triangle with vertices 0, x, z(x, y) is contained in the triangle determined
by 0, x, z(x, y’ ). From Lemma 2.2 we have:

2G| +]x =20+ %] <
S“Z(x,y')”+"x—z(x,y')”+||x

>

and hence o (x, y)<o(x, y’). O
Remark 2.4 From Lemma 2.3 the function & may be defined by

x|>1 yle(x=y)}, Bel0,1).

E)=sup{o(x,y):|y]=B,

LEMMA 2.5. Let X be a two-dimensional Banach space and let x,y be in X
such that

[yl<B<1<|x].
If x'e€ (x;z (x,y)) then
o(x, y) S o) y).

Proof. We have o(x, y)=o(x, y)=1 forx and y two collinear vectors. Letx
and y be linearly independent. Denote by x, the projection x / || X “ of x on B(X);
analogously x|= x'/ ” x || . Itis clear that z(x, y) = z(x’, y) = z. The parallel to



244 Ioan Serb 4

the straight line xy from origin intersects the straight lines zx,, respectively zx'| in
x, respectively x',. A comparison of similar triangles x,zx and x,x,0 yields

|s-2 )] ||
S VR EY
and then o (x, y) = ” x, ” . By a similar argument one obtains o (x’, y) = “ by ” :

From the convexity of B(X) it follows that (ER | = || .o
PROPOSITION 2.6. The function & can be defined by

é(ﬁ)=sup{”u—v”: N ES<X)>V~EX; ulpv,

0 (1-Mu+rv]|=p},

min
220
Jor each B € [0,1), namely EB) represents the maximal length of the line seg-
ments [u;v], uv being a support line of the ball B(0,B) while u < SX) andul, v.

Proof. Applying remark 2.4 it is sufficient to suppose (in o > ), ” ¥ ” =p
and that xy is a supporting line of the ball B(0,8). Then using Lemma 2.5 and the
corresponding notation one gets:

é(B)S sup{”x2 “:Z(x,y)J_BJ (z(»x,y)—xQ) .
y_LBJ(y—z(x,y))}, 0<pB<1.

In fact in (*) instead of an inequality we have an equality as we can see a little
later. Now, if the parallel to the support line x,z of B(X) from origin intersects the
straight line xy in v and if we write u = z(x, y), then from the parallelogram uvix,

(1=2)u+rv

formula (1) follows. It remains to prove the reverse inequality in (*). Let z be in
S(X) and d be a supporting linc of B(X) passing through z. Suppose y € B(0, ) and
zy 1s a support line of B(0, B). Denote hy z, the vector (1 +€) z with € > 0 fixed and
by z, the intersection of (y; z ) with S(X). In the two-dimensional space spanned by.
y and z the parallel to yz, (tespectively to yz) from origin intersects the straight line
zz, (respectively d) in x', (respectively x,). Then o (z,,y) = “ X )) Afe\ 0 theny',
tends to a vector x", collinear to %,. By the convexity of B(X) we have
]2 5] .0

The new definition of €, enables us to call now this function the tangential
modulus of X. In {7] the authors have presented some applications and essential
properties of the tangential modulus. For instance, it was proved that € is an
increasing function, £(0) =1,

*)

we have H b ” =S “ u— v", “ u H =1, wulp;v, min,,,

l: 3, and
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x(B) < (1+8)/(1-B) = &1, (8), B <[0,)

and that if A is a Hilbert space then & (B)= (1 — B?)™. The locally Lipschitz conti-
nuity of & was obtained by the sharp inequality

£1)=Ea(B) Sy 1) By =

0 <B <y < 1. The geometry of the unit ball of X was reflected in the behaviour of
the function &. For instance, one obtains that X is uniformly convex if and only if

lim inf B/l(l - B)ELB) = 0.

3. THE BEHAVIOUR OF THE TANGENTIAL MODULUS
IN THE NEIGHBOURHOOD OF 1

In the sequel we shall continue the investigation of the properties of € insist-
ing on the relations between the behaviour of the function £ and the geometry of
the unit sphere of X,

First of all, one observes that limg ;& ,(B) = oo. For the proof it is sufficient
to consider only the two-dimensional spaces. Let F be a two-dimensional space
and let u be a point of smoothness of the unit sphere S(F). Denote by d the support
line of B(F) passing through u and by d, a parallel to 4 from origin. Choose v, € d,
such that || v, =7 € N. Then the straight line uv, contains at leasta point 7, with
H t, “ =B, < 1. We have that £,(B,) > n and since £, is increasing it follows that
limB_ﬂéX(B) = o0, '

On the other hand if {3 is chosen so closed to 1 that & ,(B) > 1 + f3 and if the

vectors ¥ and v in formula (1) verify |u - V“ > 1 + B then min,,,

” (1-2)u+arv " is attained for A € (0,1). Indeed, for z € S(O,B) and t=Av+ (1 — A,
with A = 1 we have
Ju-vi<fu-t]<fu]|+]e]=1+8,

which is impossible. It is clear that E,.,l(z)(ﬁ) >1+B, forall B e (0,1) and so in

this case A in formula (1) can be taken in [0,1]. In the opposite case when X is a
Hilbert space we have thatif t € S(0,) and ¢ L (u— £) then from the ortho gonality’.s
symmetry it follows: || ul- t|| < ”u” = 1. Since £,(B) = 1, fqr al.l B e (0,1)it
implies that A in formula (1) can be taken in [0,1]. I do not know if A in formula (1)
can be taken only in [0,1] for every Banach space X and every B € (O,.l). _

Now we compute again the tangential modulus & ,(3) where / is a Hilbert
space and (- | ) denotes its inner product. In this case we have:
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E4(B) =|lu—v|; with u,v € H such that ueS(H),

(ulv): 0 and min]“Xu+(l—7L)V”:B.
xe[o,lj

It means that for Hilbert spaces the “sup” in formula (1) can be omitted. Indeed, let
u,vbe as above. Then ,

A?f(l)nl] ” Au+(1-A)y ”2 L]

N Afféfll}[kz (1 +| V”2) v +| Vﬂ = [v|? /(1_ T V”2) —p

We have || v | =B(1 - p?)% and

lumvll=(1+1v )" = (-8 = £, ).

PROPO..SITION 3.1. For every Banach space X the tangential modulus & . is a
convex function in a neighborhood of 1. d

Proof. From the continuity of € it is sufficient to prove that:

(B <3 €@ 2. pospey <,

where [3, is chosen so that EBp>2>1+ By Letw,v € Xbe such that &((B + ¥)/2)

< Jlu-v | +& &> 0 being arbitrarily small, Here [u| = 1, uly; v,

=(B+v)/2=]»|, y being in [u,v] and p, < p <y < 1.

Now we consider the collinear vectors Yp=2By/(B+y) e BO,B)and y, = 29y /
E] - o

(B+17) € B(0,y). Let s respectively Y be defined by: Vp = uyp (1 0v respectively v,

min;_E{n_,]” A+ (1-A)v

=uy, [ Ov. The parallel to 0y from v, intersects uv respectively wv, in z respec-
tnfcly zy allld the parallel to uv from z intersects Ov inw.. It is clear that 2 is the
middle point of [v ;zT] and v is the middle point of[vﬁ; wy] . We have ;

g[-‘zﬂjsuw”ﬂ:

u—Vﬁ+u—w

b
+E<
2

Syllevlsfun .

Since wTE[ v; VT] and ul,, v, by Lemma 2.1 one obtains:
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b

““-WyNSN“— 7‘

and

(B2) < vo |, Do s dE@ v v o0

and the convexity of & follows. [

Asitis well known (see V.I. Liokoumovich [6]) the modulus of convexity §_
is not always a convex function, but it is a simple exercise to prove the convexity
of modulus of smoothness p_ and the convexity of the orthogonal modulus of
smoothness p, . Now, because the tangential modulus is convex in a
neighbourhood of 1 we can expect that there exists a strong relation between &,
and p,, (respectively py .) Such a subject will be treated elsewhere in the second
part of this paper. There, the behaviour of the tangential modulus in the
neighbourhood of 0 is crucial. So, it is natural to study also the behaviour of . in
the neighbourhood of 1. In this direction the following proposition was proved in
the second variant of the preprint [7]. In the spirit of this paper we give finally a
new proof of the “if ” part.

PROPOSITION 3.2. The Banach space X is uniformly convex if and only if

lim infy, (1-B)Ex(B)=0.

Proof. Suppose that X is uniformly convex and lim inf,, (1-B)&x(B)=0.
Letu € S(X), v € X besuch that ul,; vand min,, | av +(1-1)u ” =p . Let
y € uv ] B(0,8) and let w be the second intersection of uv with B(X). The segment
line [0; u] intersects B(0, B) in u,. In the two-dimensional space generated by v and

v the parallel to Ov from u, intersects uvin v;. It is clear that v; € [y; u]. A compari-_
son of similar triangles uu, v, and u-v yields:

o] _Juv]
[ull - Ju=v]”
(1—[3)"u—v”=”u—v1" .
Passing to supremum over all pairs (u, v) with “u” =1, uly, vand

7\,V+(1—7\,)u” =B wehave
(1-B)EB) = sup“u—v1 ” <supflu—w|.

For every B sufficiently close to I, there exists a pair (u,v) such that
“u - w" >b/2, | u || -_”w“ = 1 and from yl,, (u - w) it follows:

min, 5,
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U+ w
2

1-

<1-[5]=1-p

and s0 8, (b/2) = 0, a contradiction with the uniform convexity of X. (1

BN —
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