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ON THE BEFIAVIOUR OF THE TANGENTIAL MODULUS
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l.INTRODUCTION AND NOTATION

In some investigations on Banach spaces and their applications it is some.
times useful to know the geometry of the unitballs. The geometry of theballs rnay
be reflected in the behaviour of som.e moduli, i.e. of sorne real functions attacheâ
to a Banach space,

In this paper the properties of such a modulus are discussed. The invoked
modulus lias been recently introduced and used (see[7]) at existence problems for
the Lipschitz continuous selections of set-valued mappings. A new geòmetric defi-
nition of this modulus is given. For sorne reasons (see Proposition 2.6) it will be
called the tangential modulus.

From the behaviou¡ of the tangential rnodulus in the neighbourhood of some
points we obtain information about the geometry of the Banach spaces, A charac-
tenzation of the unifonn convexity of a Banach space is reconsidered. The con-
vexity of the tangential modulus in the neighbourhood of I arrd corurections with
known moduli is presented too.

Let (X, ll' lll Ut a real Banach space at'ñ, let X*be its dual. To avoid triviali-
ties we assume thatxhas dimension at least two, For r > 0 and _r e xdenote by
B(x,r) the closed ball with center -x and radius r and by B(x) : B(x,ll , 

ll) ure unit
ball ofx Analogously, 

^s(,Y) will represent the unit sphere ofx choos ing x, y e x,
x + y we shall consider the straight line passing through x and y clenoted by xy as

well as the open and the closed line segment with the vertices x and y denoted by
(x; y) respectively by fx; y). Let \y,z e X x + y.A parallel to ry from z is the set

{z + }' (x - y) : À e R}, The symbol rry will be used for BirkhofÊJames's orthogo-

nalifyi"Ø,ll'll);"a-'ty:xLp¡lif llÌll < ll'* Àyll , forallÀe R.



The modulus of smoothness ofXis defined [5] by:

p*(')= p(,) ='*{;fl x+ryll*ll"- 
"yll-2). x,! es(x)}, t) 0

and the modulus of convexity [5] by:

ô,(r) = i,'r{r -}n.+yll: x,.y e ^s(x), ll"-rll = "} ,0<eaz.
t

The Banach spacexis said to be uniformly cot'Nexif ðle) > 0, 0 < ¿ 12, artd
uníformly sntooth if 1im.-6 px þ) I r = 0.

Tbe ortltogonal modulus of srnoothness (see T. Figier [3], p, 129) is the flinc-
tion Þx defined by

Þ,(,) =.po{;fl x+tyll*ll" -,yll-2): x,v e s(x), and

there exists ,r* e ^S(X*) such that ;*(r)= l, x*(y) = O] , , > 0.

It is well known (see D. Arnir l1l, p. 33) that the condition of orthogonality
used in the definition of þ¡ is equivalent to BirkhofÊJames's orthogonality.

Forany x,y e Xwitft llyil. l.ll.rll, thereis aunique z:z(x¡)tn(x;1)
witti 

ll "ll 
: t. We put as iri'[7]'

ot(x,y¡ = ll";'Í"'Y)il 
.\ '¿ t ll'll-r '

and define the function E: E*: [0, ]) -+ /? by

€(p) :sup{' (*,y)'llyll=B <1< ll"ll }, 0<B <r,
K. Przeslawski and D. Yost name this function in t'o different ways (in the two
variants of the preprint [7]).
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2. PRELIMINARY RESULTS

,. In the sequel the follorving sirnple geometrical lemrna will be freque¡tly
applied,

L¡waZ,t.If xI3¡/ and 01a<b, then llx + ayll .ll, * tyll .

Proof. From the BirkhofÊ James's orthogonalify we have 
ll " ll 

all x + ayll .

If 
il 'll = ll_l * oyll tnen x +ay rB¡r aud rhe result foilows. rr 'jl , il . ll , *'rj,¡¡

tlrentlrecollinearpoints.r, x*ay,r+b\,0<a<b areinthisorderintheinterioi,
on the bounclary, respectively in the exterior of B (0 , ll 

x + oy 
ll ) o
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One observes that symmetrically if x Iily and. b < a < 0 then also

ll, + "yll . ll' * uyll ,

The following useful result can be find in [2], [8], [4].

Lpvvn 2,2, Let X be a two-dimensional Banach space and let K1, K, be

clo s ed co nvex subs ets of X u,ith nonvotd inter io rs. If K r c. K r t h en r (K ) < r ( K 2),
where r (K¡) denotes the length of the círcumference of K, i: 1,2,

Now, we present a first result with respect to the function ( .

L¡vva 2.3. Let X be a two-ditnøtsional Banach space and t y e X be srch that

llyll=p<r.ll'll.
Then tltere exísts a vector y'e B(0, p) such that xy' ís the supporting line of
B(0, B) and

a(x, y) < r¡(¡ y'),

Proof. If.r andy are linearly dependent, then o (x, y' ) > c¡ (¿ y) = l, for
every y'e B(0, P). In the other case, in every semi-plane detennined by 0x there
existsasupportinglineof B(0, B)passingthrough x.Letxy',þ,,'e B(0, p)) bethe
supporting line of .B(0, B) contained in the semi-plane determined by 0:r and y.
Therr the triangle with vertices 0, Jr, z(x, y) is contained in the triangle determined
by 0,.r, z(x, y'). From Lemma 2,2 wehave:

ll'þ,v) ll 
. 

ll 
x - z(x,r) 

ll 
+ 

ll ' ¡¡ =

=ll'G, r') ll 
+ ll, - "(,, v') ll. ll' ll,

and hence a(x, y) l r(¿ y'), a
Remark 2,4 Frorn Lemma 2.3 the function ( may be defined by

((B) = sup{r,r (r,y),llyll= F,ll'll> t, yLu(x- y)} , p e fo,r) .

Levva 2,5. Let X be a huo-dimensíonal Banach space and let xy be in X
suclt thctt

llyll.p.r.ll'll,
If x' e (x; z (x, y)) then

a(x, y) 3 a(x', y).

Proof. We have a(x, y) = cù(ï', y): I for x andy two collinear vectors. Let-r-

andybe linearlyindependent. Denotebyx, theprojection x lllxll of; onB(X);
analogously x't = I f ll f ll It is clear that z(x, y) : z(x', y): z, The parallel to
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the straight hne xy from origin intersects the straight lines zxr, respectively zx, , itt
-r, respectively x'r. A comparison of similar triangles xrrx andr,rrO yi.tO, ¡

ll,- "(,,ùll- þ.1
ll"ll-ll",llll",ll

and tlren o>(x, y) : llt ll By a similar argument one obtains ot(x,, ¡¡ : ll "; llFrom the convexity of B(X) it foilows thar 
ll xr ll = ll ¿ ll o

PRoposlrrox 2,6. Thefunction ( can be defined by

€(B) ='up{ ll" -"ll:, u ^S(x), v ç x, u Lorv,
(l)

'rufll 
(t - ),)u+ I'v 

ll = p J,

for eaclt Þ e [0, ]), natnely \(p) represents the maxinrul length of the line seg-
ments lu;trl, of the batt B(O,p) whitett e S@ attcl uL,,v.Proof. is sufficienr to suppose (in or (.r; y)), 

ll yll"": p
and that.ry i e ball B(O,p). Then using Lemma 2.5 ancl the
corresponding notation one gets:

6 (p) < 
'rp { ll x,ll: 

" 
(* , y) ro, (, (, , y) _ *,) ,(*)

yror(! -'(r,/))], o <B < 1 .

Lr fact in (x) instead of an inequalify we have an equality as we ca¡ see a little
later. Now. if the parallel to the support line xç of B(X) from origin iltersects thc
straiglrt line ;:y in v and if u'e rvrite u : z(r,y), then from the parallelogra n-t tr\ûx,
lvelrave 11.", ll = ll"-uii, llrll = r, ulwv, min,.,oll(t_rl u_t)uvil= B , u,r¿

fonrrula (1) followq, It rernains to prove the reverse inequalify i,, (*). Let zbe in
^s(-ll and d be asupporti'g li'c ofB(.! passing trrrough z. supposoy e B(0, p) and
zy is a support line ofB(O, p). Denote rty zrthe vector (l + r) z-wttl.te > 0 fìxed and
by zrthe intersection of (y; z ) rvith ^SQf . In the trvo-dirnensional space spa¡necl by..
y and z the parallel to yzr(r'espectively to z) fi'om origirr intersects the straiglrt line
z:r(respectívely d) i'-r'r(respectivery-rr). The'r¡ (zt,y)= iltrll Ife\0irrni,
tends to a vector -r", coilinear to x, By frre 

"onvexiiy k n14 we rravá
il"",ll > il¿ ll o

TIte new defirrition of (r enables us to call now this functiolrthe tøtrgenti1l
tnodalus of X In [7] the authors have presented solne applications ancl esse¡tial
properties of the tangential modulus. Forinstance, it was proverl that ( is an
iucreasing fi.urction, 6(0) =1,

6"(p) < (r*p)/(r-B) = 6,,14(F), B e [o,r)

and that if flis a Hilbert space then €H(p): (l - pz¡-u. The locally Lipschitz conti-
nuify of ( was obtained by the sha¡p inequality

1,(v) - 6"(B) < €,'r,l(v) - €, '14(P) = ,

0 < p < y < 1. The geometry of the unit ball ofXwas reflected in the behaviour of
the function (. For instance, one obüains that X is uniformly convex if and only if
lim inf pzr(1 - P)6r,(P) = 0.
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3, TIIE BEHAVIOI]R OF TTIE TANGENTIAL MODULUS
IN THE NEIGIIBOI]RHOOD OF I
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In the sequel we sliall continue the investigation of the properties of ( insist-

ing on the relations between the behaviour of the function ( and the geometry of
the unit sphere ofX

First of all, one observes that lirnp-,ËlF) : oo. For the proof it is sufficient

to consider only the two-dirnensional spaces . Let F be a two-dimensional space

arid let ube a point of smoothness of the unit sphere 
^9(,F). 

Denoteby d the support

line of.B(fl passing through uandby draparallelto dfrom origin, Choose vne d,

such tlrat ll ,, ll : n e N . Then the straight line uv,contains at leasta point t, with

llq,ll 
: F, . 1, We have that (lp,) ) r¡ and since (*is increasing it follows that

timp-r€lP): co.

On the other hand if p is chosen so closed to I that EIB) > 1 + B and if tlie
vectors u and v in formula (1) verify ll"-"ll t 1 f p then min2r¡

ll(t - tl u + )uv ll ir attai"eaforl. e (0,1).Indeed', fo.l.'^S1O,F)and t:?,.v4Q -?ù;;,
rvithÀ) l weliave

ll"- ull 
= il,- úll < ll,ll *llr ll = t*8,

whichis irnpossible. It is clear that €,,trl(F) > 1+Þ, forall P e (0,1) and so in

tlris case À in forrnula (1) can be taken in [0,i], In the opposite case when Xis a
Hilbert space we have that if I e .S(O,p) ancl ¡ I (u - t) then from the orthogonalify's
symmetry it follows: ll" - tll . llrll = t . Since {lp) ) 1, for all p e (0,1) it
irnplies that À in fonnula (1) can be taken in [0,1], I do not know if 1" in fonnula (1)

can be taken only in [0,1] for every Bariach space Xand every p e (0,1).

IJow we cornpute again the tangential modulus €nG) whe¡e I-I is a Hilbert
space and (' | ') denotes its inner product. In this case we have:
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ll" - *,ll = ll, - u, 
ll ,

and

,[ry) =+ll"-uu ll* ll,-u,lD*" = 
jlerol*E(v))+e , e > 0

and the convexity of { follows. Ë
As it is well known (see V.I. Liokoumovich [6]) the modulus of convexity ô,

is not always a convex fuirction, but it is a sirnple exercise to prove the convexiú
of modulus of smoothness p¡ and the convexity of the orthogonal lnodulus of
smoothness p" . Now, because'the tangential modulus is convex in a
neighbourhood of 1 we can expect that there exists a strong relation between ("
and po (respectively px .) Such a subject will be treated elsewhere in the second
part of this paper. There, the behaviour of the tangentiai modulus in the
neighbourhood of 0 is crucial. So, it is natural to study also the behaviour of ("in
the neighbourhood of L In this direction the following proposition was provecl in
the second variant of the preprint Ul, In the spirit of this paper we give finally a
new proofofthe "if" part.

PRopostttoN 3.2. The Banach spqce X is uniformly convex if and only if

rim infpzr (r - p)E" (p) = o .

P,oof. Suppose thatxis unifomrly convex and lirn in$rr(1- F)Ex (F) = o .

Letu e S(X),v eX be suchtliat uLurvand mirl^rolli"u+(t-f)rll=Þ . f.t
y e uv n B(O,p) and let w be the seconcl intersection of uvwíthB(,f]. The segment

line [0; ø] intersects B(0, p) in ø,. In the two-dirnensional space generated by.ø and

v the parallel to 0 y from u, intersects uv in vr. It is clear that v, e ly; u). A compari-
son of sinilar triangles uurv, and u.v yields:

; with î/,v efl such that u e S(ø),

""0 
^:f;:lllx" 

+ (r - r)u 
ll = P

It means that for Hilbert spaces the ,,sup" in formula (l) can be omitted. Indeed, letu,vbe as above. Then

^ï,'llll 
xu + (t- r) u ll' =

= 

^l¡å1,1[^' 

(r + ll v ll') - zx¡" il' * il "l'f= il,ll't (r + ii v ll') = ø,

we have ll " ii: 
pe - p,)-% and,

ll" - ,ll = (r * llril')"' = (r - p:¡-rr' = Eu (þ) ,

PRopostrtoN 3. l. h-or every Banach space x the tangenríar ntocrurus E,r í, ocotrexfuncríon ín a neigltborhood of L

Proof. From the co'tinuity of { it is sufficient to prove that:

€.'(P) =

(u

l"- rll
lu) =o

).+fr(p)*E(y)), 
p, < F <y < r,

þ:41

yliirr p6 is' chosen so that €(pd > 2> r + po. Let u.v e xbesucri rrrar \((p + y)rz)s ll¿r - yll + s. e > 0 being arbitrarity small. Here 
lj "ll 

: t, ulo, v,
rnirrrno,,,ll xu+(t-1")vll=(p+y¡t z=l!/1, y beins in fu,vlarrcl po < p < y < l.

äîi:;äïiî:[ïJ;:îiliï',::,::::^,f ,:,?,;JÁ',?;:i!:,.î{î,!
: uyT n 0v. The orritl"] to 0y from v, intersects øv respectiv ery ,t,.,in z resl-rcc_
,,u.",ry.traud the_¡rarallel to uvfrotnzriniemects 0vinruu. It js cleartrlatz js trrc
nriddle poi't of IvO;zrl and vis then.í¿¿1" poi.t of ¡rO;rlrrJ. We have :

e[]).rr u - vl+e-ll=l *ll." 
=

. 
)(ll" -,,11*ll" -,, |i) 

+,

Since wre I v,' vrJ and ulo, v,by Lernma 2.1 one obtains:

ll,ll
-ll,-"'ll

ll,-"ll
(r - B)ll " -,,11= ll, - o ll .

Passing to supremurn over all pairs (u, v) with llr ll : l, uLu, y and

rnin^,' 
ll 

1," * (t - l,) "ll = þ we have

(r- p)€(p) = .upll,- 
", ll 

.'upll ø-,ll .

For every p sufficiently close to 1, there exists a pair (ø,v) such that

ll"- *ll, t, tz ,ll"ll =llrll = t un¿from ylrr(u-w) itfollows:
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'-llryll='-llvll =r-P
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and so Ex(blz): 0, â contradiction with the unifonn convexify of X, t:
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The extrapolation theory, elaborated by the author, mainly in collaboration with B. Jawerth
(see Bjöm Jawertb and Ma¡io Mihnan, Extrapolation Theory rvith Applications, Mernoirs Amer.
Math. Soc. vol. 440 (1991) is coricemed with aproblem which is sourehol converse ro the interpo-
lation problem.

Tlre basic notion of iulerpolation theory is that of Banach couple, whicb means apair A :
(Ao, A ) of Banach spaces enrbeded in a Hausdorff topological vector space 1L Let A (A ) = Aol A,

and D (A-) : Ao + A, equipped with the norms ll'll^ = 'nax{ll'll,:i = o,r} and

ll'll, = inf {ll'.lL, *ll¿ llr, '' = xo #x7, x, eA¡, t =0,1} , respectively. An intennediate

space is aBanach spaceA suchtlratÁ(7 )-+-,i-+ X(l ). The spacesl andB a¡ecaiied interpolation

spaceswithrespecttothecouples Á:(Ao,A) and B- = (Bo,B)if r: A -+ B implies T:A-+8.
If moreove¡ ll, llr." , 'o"* (ll r llr. ,o , ll , llr,.",) tben A, B are caled exact interpotation spaces. An
interpolation rnethod is a functor ,l? defined on the category of Banach couples and linea¡ bounded

operators benvecn tlrem, such rhat F(A ), F(E) are iuteqpolation spaces for A , E and F(D = T for

all T: 7 -+ ,B . The interpolation method is called exact if it yields exact interpolation spaces. A good
reference for the interpolation theory, both classical and abstract, is Yu. A, Brudnyi and N. ya,
Krugljak, Interpolation Functors aud Interpolation Spaces, vol. I, North-Holland Math. Library vol.
4:7,718 pp., Anrsterdam New York, Oxford. Tokyo, 1991.

The extrapolation theory is dealing rvith the converse problem: Given a faurily of interpola-
tion spaces reconstructthe originating pair. In this fonnulation, the problem is directly related to best
possible interpolation theorelns and in some sense, it could be considered as a chapter of interpola-
tion theory of infinitely many spaces. The precise connection betleen these theo¡ies is a¡ open
problem.

The book is dealing also rvith weaker fonnulations of the problem, such as the extrapolation
ofthe continuity ofan operator l"or the extrapolation ofinequalities for its nonn, usually based oti
the basic fuuctionals K and J.

More exactly, let {Ar:0 e @} be a family of Banach spaces indexed by some fixed index set
@ (usually @ : (0,1). These families of Ba¡rach spaces are strongly compatible in the seuse that there
are two Banach spaces Á and Ð (depending on the family Øu)) such that L c ArcL,O e @. If ft.)
and {8.} are two families of shongly compatible Banach spaces, a, c ArcE", auc Brcl,o, a natu¡al
morphism is a bounded linear operator T : {Ar) + {8.}, i.e. T : ), -+ E, is an operator whose
reshictions to l, maps l. into B, with nonn I l, 0 e @.


