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1. BASIC EQUATIONS

a) The boundary value problem. The differential problem with non-homoge-
neous mixed boundary conditions (Dirichlet-Neumann) is considered on the rectangu-
lar domain Q = (0, a) x (0, b), with the boundary &€, with respect to the unknown
function U (Fig. 1): ‘

oy . o0
(11) LUE_{XIE-'_}\QEV—Z_J:‘H()C"V)’ (x,y)e.Q
U(x,y)=1 on &, = 04
-@50 on &Q, = OCUCB
ON
aU " i
5\,‘=-1"81(J’) on &y = 4B

where: 8Q = 8Q, U 0Q,, 6Q, = 6Q,UoQY ; 1 + g,(y) = g(y), f, are given func-
tions [gl(O) =0, g(b)= 0] ; A; (const.) > 0 are given and OU/ON is the derivative
along the conormal on 0$2. The boundary

value problem models either heat conduc- ' 2o

tion in a plate (if U is the temperature in a c t i B(ab)
rectangle of conducting material with one i

edge at unit temperature, two edges ' ay an
thermal insulated and the fourth havinga T¢10 00y 0) 2 1300
heat flux; f] - source function of the heat) < 2 ﬂ1 _—

or the flow of an inviscid fluid (if Uis the o

- X
velocity potential, A,=1, f; = 0). Fig. 1 A(a,0)
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b) Operatorial equation (homogeneous boundary conditions). The boundary
differential problem can be written in the operational form:

(1.2) Au=f fe H

where
A: H— H (H = L,(Q2)) - Hilbert space) is a linear differential operator, with

AueL(Q),u=0 on 691,%=71T. OVu=0on 8!)1}

D(4) = {u eCHQ)NCYD)

i R L A L

U-(0w), ) =M - L2 g,

[Vl

(1.3)

b—
h(x,y)=i1—-:%, (n(x,y)=xy(a—x)(b-—y); Vo #0on XY, X3,, &X;

Ay Py
S6,) = Fi(x, ) + 2y o a2 Mg
Remarks. 1°, The function  has been determined as follows: first, the func-
tion @ (o =0 on 06Q) is defined, the normalized function o/ ,Vm] is introduced (in

the sence of the R-functions theory, [4]) and then v is calculated as shown in (1. 3).
2°. From a theoretical point of view, the introduction of the homogeneous
boundary conditions is a useful result. In this case, the definition domain D(A4) of
operator 4 is a linear subspace of space H= L, () and the theory of linear opera-
tors on the Hilbert space H can be employed in order to study equation (1.2).

c) The properties of the operator A : D(A)C L (Q)—L, ().
1. Operator 4 is unbounded on D(4) [D(A) is dense in L,(€)]. This is

verified by considering the function sequence (,,) ©D(A): u,, (x, y) =

=(b - y)cos—= nnx Slnn—- , (%, y)eQ;mn= . We obtain

ab’ 2n%n% -3
el = BT

e tim Ml

mn—0 [t

0, ("Aumn”[Q —>oo for m,n—» oo)

Consequently 4 is not bounded (continuous) [3], [7].
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2. The operator 4 is pre-closed (it possesses closed extension).

Indeed, with ¢ € C;° (), v, mn(eD(A))——>O and (4v,, ) w € L,(Q) we have
(1.4) (AVys D), (on = —J.'[QV,,WV- QVedxdy (—0 for m,n —w)
(1.5) lim (Avm,,,(p)lﬁ(g) =(w, o) Lo = 0= mle, Vo eCR(Q)

m,n—>e0

=w=0 (the set C3(€) is dense in L,(€))) .

This proves (in accordance with the definition) that 4 is pre-closed, [7].
3. The operator 4 is symmetrical. For the operator 4 (unbounded) we have

I°) D(4) is dense in H = L,(Q)
B ijVTV-(QVu)dxdy =
—“.QuV-(QVv)dxdyz(u,Av)Lz

4. The symmetrical operator 4 is positive definite on D(4), i.e. Ja.% (const.)> 0
so that (Au,u)Lz(Q)Zotz(u, Wy (> V1 D).

Proof. From (1.6) we obtain

(16) 2°) Vu,v e D(4), (du,v),

(1.7) (40)y ey =j f gT u-QVudxdy

Now, the Friedrichs generalized inequality is applied. According to this, [2],
for a domain Q2 that a boundary 6Q with part of it 6Q; (open) of Lebesgue

positive measure m(62;) > 0, there exists a constant Cr.> 0 (depending only of Q ;..

and 6Q,) so that

A7) vuen(@), g <

A J [ [ vl

where H!(Q2) is Sobolev space and [ L2 "uﬂH . If u e D(4) we have u e HI ()

and (1.7) can also be applied on D(A)[ueD(A):>u=O on 6(21] . Consequently,
Yu € D(4),

(1.8)  (du,u), = min(A,hy)] jQ|vL42dxdy > min(Ay, g )Ci s 2 o2l

where o” =6Lmin(xl,xz) is the positive definiteness constant of 4.
F
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2. APPLICATION OF THE RITZ VARIATIONAL METHOD
TO PROBLEM (1.1)

a) The variational functional and the variational Sormulation associaed to
the boundary value problem. The energy variational functional F, which has a
minimum value on the solution of ( 1.2), can be conected to the operatorial equa-
tion (1.2) [according to the properties of operator 4 defined on D(4) — dense in
H=L,(Q) (=L,)]:

(1) Fu)=(duu), ~2fu), ,ueD(4);(f C(Q))
or

= T . B X
(2°)  Fu)= f va u-QVudxdy=2 f fQ fudxdy
ueD(F)=Dy(F) orueD(F)=H};(Q)

‘where DO(F)={u eC2(Q)ﬂC(§)lu=0 on OQI} and H{j(Q) is the linear
space |
Hb(Q) ={u e HY(Q)u=0"on 60y

”u” HYy = ”uul = ( f J;) (u2 + ,Vulz)dx dy) 1/2

as Ou/ ON on 0Q, is a natural condition; it is a eliminated from the boundary condi-

tions for F [here H!(Q) is the Sobolev space = u € C(ﬁ) ].

- Since, here, fis a function that will render the calculations of the Ritz
method more complicated [see (1 .3)], it is recommendable that we return to the
unknown function U= U(x, y), (x, y) € Q. For this purpose, we put U = y+v
where v= 1+ is a given function which verifies the boundary conditions of U (v
is not subject to variation, it is a “variational constant™ §y = 0). The energy func-
tional becomes (the index L,(€) is eliminated):

2.1) FU)=U, U)-2(, U)+(4v, U) - (AU, v) + Cy(v), UeD(L)

where C| (v) is a “variational constant” that can be eliminated GC(v)=0,v
fixed). By using Green’s formula, the following equalities can be inferred:

with the norm

(4v,U)~(4U,v) = |

(71
aglwds +J.69; gUds + CZ(V)
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(4U,U) = ”Q VTU-QVdedy—fan%ds+jaQ-; gUds

Subsequeéntly, with the help of these equalities, we determine from (2.1) the energy
functional [given below in (2.2)]. According to the theorem of the minimum
of the energy functional, the variational problem equivalent (in generalized sense)
with (1.1) is (U=1+w):
(Pv) Find the function i e D(F) so that F(#)= mNi(n )F(u) where F has
’ ueD(F

the following expression

(2.2) F(u)=%J.L(Vru-QVu—2fu)dxdy+LQ;gudy, ueﬁ(F)
5P~ Abfe) - { (), = ([, 70ty < oo} o

(38,5 > 0,5, <, <5

where H, (l,l(Q) is the Sobolev space H (l)l(Q) supplied with the energetic norm ” : ” e

this is the energetic space H [ (the completion of the linear space Dy(F) in the energetic
norm |-||,). We have Dy(F)c Hyc H=L,(Q) with ""H S”'”Hl Sc"-”A [Dy(F)
is dense bothin H,and H; H, < H is a dense imbedding]. The geheralized solu-
tion % is determined approximately by:

b) The Ritz Algorithm. From 5(F) » a linearly independent and complete in

ﬁé 1(2) system of trial functions {®,} is chosen [finite (non-orthogonal) basis in

D(F)] and it is supposed that the # - order Ritz approximation for the exact solution
u of the problem (Pv) is:

n 1
(2.3) u,,(x,y)=2ck(pk(x,y), ¢t (unknown)eR!; n= 1,2,3,...

k=1

n .
that belongs to the set of functions v, =Zak<pk(x, ¥), Vag €R!; this set repre-
1

sents a linear subspace H, so that the sequence {H,,} ={H,|n €IN*} is dense in

GF(un)

=0,i=1n,
66‘,’

the energetic space H, =I-I(1)1(Q). Then, the conditions
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are necessanly satisfied. These stationarity conditions of 7 on R" at point (c;, c,,
, ¢,) are transformed into Ritz algebraic system:

(24) ZKUCJ =b—g;; [or (u"’(Pi)A=(f1—g’(Pi)L2i|; i=ln

where ¢;,j = 1,7 are unknown and

Kg- E((Pi;(Pj)A 7 .”;1 VT(P:"QV(PJ' dedy, b = ijfI(Pidxdy y Bie ngcpdy

The notation is changed. The solution (2.3) and the system (2.4) are written in
the form

n n
(2.5) Ua(%,3) = D D ComWin(%,7) » o €R!
k=1m=1
n .
(2.6) Z(Wknvwrs) Crom = (fi’wr.\') = (gl’w"-")[,z(an';)
k,m=1
where the coefficients of the Ritz syst\,m have the values:
Kionrs = (Wons Wrs) g = | [ V7 Wiy - Qs Ay =
PG i e i
ox Ox
@27 sl ‘

rs = (/i’wrs Lz(Q) N J_"in’ Wy dXdy ;
s = (g7 Wrs)[,z('a'Q;) 0 '['39-2 gwr;v(a’ y)dy
c) The choice of trial functions and the solving of the Ritz system.
1. Trigonometric polynomials. A system of trial functions wj,,, cH} ()

[ka eDy(F )] of the following form is chosen:

a mmy

T kmx b '
2.8 ,Y)=—==] —sin—-~(x+a) | —sin—=+y |; k,m=135,...
@8 win(s)= | v ()| Lin ™ )
These functions verify the boundary condition for y =0 [w,,, (x, 0) = 0 but according
to the theory, verification of natural conditions is not obligatory (on
O—C, CB and AB)]. However, here w0, )/ 0x=0(k,m=1,3,..) but the
condition on 4B is not verified. The Ritz solution only verifies it approximately.
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The properties of the trial function system. Let us consider the trigono-

metric functions

2 . knx 2
(29) (Pk<x) \/;SIH ’\Vm(y) \/Zisul%

The function system {v,,, }:
Vkm(x’y):(pk(x)\ym(y)s (x7y) EQ> k’m:‘ 1’233" L

has the properties:
1°. {%,,} belongs to the linear subspace D(F) c L,(Q)
2°. {,,,} is orthonormal (i.e. linearly independent) in L,(Q):
(Vy, Vkm)Lz(Q) 0 if i#k or i#m and (v, Vip Vkm)LZ(Q) =1ifi=k j=m
3°. {v,,} is complete in L2(Q). the Parseval equality holds, [2]:

[ o]

2100 Y,

kym=1

(u, Vkm . —"uﬂ L) eC(Q) —(dense in L,(Q))

4°. {v,,} is orthogonal in Hg (linearly independent) but it is not orthonormal
in HY(Q). Here Hg[E Hﬂ(Q)] is the space Dy(F) supplied with the energetic
product (.,.) , and energetic norm defined by the following equalities (4 is posi-
tive definite)

(v) , ‘“VTu QVvdxdy; u,v e Dy(F)
(2.11)
"”“A = (u,u)A ; u,eDO(F)
Indeed, simple calculations lead to the equalities and the orthonormalized
system {v,}
0 ,f k#r, mzs
: 2
VimsVrs) 4= T ,
( kem rs)A E{(Mkzbz+7v2m2£12)(=""/0n”f4) i k=r,m=s
Vim

%
" el 4
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5°. The system {v,, }is also complete with respect to the energetic norm in
the energetic Hilbert space H; - the completion of the subspace HY with respect to

the convergence in energy. Indeed, according to the theorem : 4 - positive definite
on D(A), , € D(A) - dense in H ;and {4¢,} - complete in Himplies {¢,} - complete
in H ,, a simple calculus shows that

AVkm =-V. (QVV/\,") (}‘lk a +7»2m2b )Vlan

Conse;qgcnt.ly, sir}ce {Vi} is complete in Ly(Q), {4V, } is complete in H = L,(Q)
[multiplication with a constant (#0) maintains completion] and then, {v,,} iscom-
plete in energetic norm (in ). "

Remark. Taking into account the system {@, } in which @y (x,y)= ngsin@:,
a \ata
we have
0 ,if k#m
(P(ﬁk’am)/i: 1 3 ke ¢ ~ 12 5 L.
30N |+ (= 1@4l;)  if k=
and hence {@c};o is orthogonal in H .
Now, using (2.8), the scalar products (2.7) have the expressions:
2.12
( ) Kkmr_v = (wkm » W )A =
3 ot 1 22 '
Z[S?\qb ;2“ = 117\42&2?‘ + T()\.Ibz + 7).2(12):‘ % k= rsm=yg
2 g Lo
ame+s k*+rt =
1 Ab Lo ol 3Aqa? PR T(xllﬂ + 7X2a2) s ktr,m=#s
3, ,m2+s? 11 - (3
—2-7\,1b 2 e ?\.Zazﬁ —\—2-X1b2+77»2a2) s k=rm#s
5,51 9. ,k¥+r2 g2 e
‘ Exlb e —ikzaz—kz"z ?(Klbz + —2—7\,2a2)  k#r,m=s

apb .
(fl ’WI‘S)LZ(Q) = jojo-fl(x’y) wrs(x’y)dXdy

(g, ws),, f g Wys(a,y)dy = —Tcgbf[(m)z+ 1J
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These values are introduced into the Ritz system (2.6) which becomes a Cramer
system with a unique solution ¢y, = c*, (k, m=1,3,5,...) ; the matrix of (2.6) is
nonsingular, symmetrical and positive definite like the operator 4.

Numerical appllcatlon (n=3). We choose the values a=2, b=1 170, A=A=1,
g=-1,[ ou/ox=1on AB indicates a heat flux on AB towards the inside of the

plate]. The Ritz solution has the form
3

(2.13) (%, ) = > ChmWian(%5 ¥) = Ciwiy + €31Way + Ci3Wi3 + C33W33
k,m=1

The coefficients of the Ritz system are (x = 3.14)
(Wyp> Wy1)g = 113.8592638 ; (w3, wyig), = 76.71777661
(w3, W) = 123.9643297 ; (w33, wyq), = 83.18395365
(wy3, wy3), = 110.5259305; (wy;, wi3)e = (W33, Wiy
(W3g, Wi3) = 1217421075 ;5 (w3y, w31),= 143.1927971
(W3, W) = 96.27333217 5 (w33, W33), = 139.8592638
(-1, wy;) = (-1, wy) = 6.24351557 ; (-1, wy3) = (-1, way) = 4.642953231

By means of the Gauss method, the following solution has been found for the Ritz

system
¢y =-0.125130 ; ¢;5=- 0.004312

(2.14) Cgy =~ 0.068856 ; ¢33 = - 0.002417

with the residual error of the solution ¢, of the 4.10°° (only six exact decimals
have been considered in the (2.14)).
The Ritz solution in the 3 rd order approximation is

T 2. mx 1.
u3(x,y)=r/_E a —7;s1n—2-—x—2 ;—smny+y +

e i
+cp3| =sin—-x~2 || —sin3ny+y |+
(2.15) e M2 3n

+c | —2—s1n§n—x-—x 2)(—lsinny+y)+
0 \3n 2 T

+e33 B-zgsin%ﬁ—x 2)(§;sin3ny+ y)]
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For example, we obtain the values (Us(x, y) = 1 + u5(x, )):
uy(2; 1/2)=0.43274 ; us(1; 1/2)=0.15123 ; u5(0; 1/2)=0.2163 ; us(1, 1)=0.20549

The polynomial type trial functions. Chebyshev polynomials. The Chebyshev

polynomials T,(x), xe R are determined by recurrence relation

T ) =0T, (x)-T (&), n=1,2,3,.

o[ sty

[with To(¥)=1 ()= (7,
- 1-x2
These polynomials can be introduced by means of the Schmidt orthogonalization
o0
of the lineary independent system {x”} 5 with respect to the scalar product
n=

Ly p1,1) Imthe space L oy 4y the system T,=v2/nT,(x) is orthonormal [and

complete: Vu eCz(—l,l) ! (u,Ti)2 = 0=u(x)=0
In the two-dimensional case the Chebyshev polynomials p,(x, y) can be
introduced by means of the formulas

(2.16) 2% ¥)=TMT(), k=1,2,3, ..
with k = %(i+j)(i +j+0+j+1; i,7=0,1,2,...
The first polynomials are:
P15 ) = Ty®To0) = 1, o5, 3) = % P35 3) =, Pyl ) = 251

pS(xl J’)zxy,Pg(x; .V)=2y2'1, ---’Plo(x: J’)=4)’3‘3y,

We consider the arbitrary ue C3(Q2) on the domain Q = (-1, 1) x (-1, 1) of the plane
Oxy. We notice that the implication holds:

' 1

0=(u,pk(x,y))2,p =_[_1T '(Y)(jjlpuﬂ dx)dy :f_llTJ‘(”’Tf (x))z,pdy =

:>(u,T,-)2’p=0:> u(x,y)=0, (x,y)eQ

Therefore {p,} is a complete orthogonal system on Q.
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.The fourth order Ritz approximation (n=4; a=2, b=1, \=\=1, £1=0, g=-1;
du/6x=1 on x=2). The Ritz solution is chosen, for the variational problem (Pv), in
the form

; 4 i
u4(xay): ch(pk(x’y) » (Pk(x,J’)=J’Pk(ny’) » k= 1,4
k=1
The coefficients Kij, b, given in formulas (2.7) are calculated exactly and have
the values:

] 10 10
' 26 8 10 . 1402
Ky =2, K24=?; K33=§; K34=—3‘, Ky = 25

= — =1’ == =
&1 2,82 &3 3 84 4

“Ne solve the Ritz system (2.4) by means of the Gauss method:

2 \1y2 0 200 10312 ,
12 | oss: [equazbizlt[| gy (B35 200 o
| —
b [ieen | graltyp s ool 0 43 2 1/3 |2
I —
10/3 126/3 10/3 1—44%2- 7/2 32/31 0 =~ |16/3
1

The Ritz system has the solution
1
(218) ¢ = % =015625 ; ¢ = ¢, == =-025000 ; ¢, = 0.48958
We obtain the values:
uy(2;1/2) = 0.4791; u,(1;1/2) = 0.13542;
u,(0;1/2) = 0.1041; u,(1,1)=0.14583

Solving on the computer. A TURBO-PASCAL computer program has been

used in order to perform tha calculations of the Ritz algorithm (The program is

presented in [8]). The program is applied to the approximation of the boundary
value problem (1.1) by means of the Chebyshev polynomials. The numerical

(2.19)
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results (the values of the solution c(”) of the Ritz system) are given up to the n =28
approximation (see Table 1). Only four decimals are considered for the values. We
notice that in the case n = 4 the values in Table 1 coincide with those calculated

(without programmmg) and given in (2.18)
By using Table 1 the following values for u,(1, 1/2) are obtalned (Table 2).

Table 1
The solutions ¢, = C,S ")

k/n 3 5 6 10 15 20 25 28 |
1 0.1250 | 0.4896 | 0.1496 | 0.1370 | 0.1824 | 0.0136 | -0.7197 | 0.0146
2 0.3750 [ -0.2499 | 0.0900 | 0.0071 | -0.1734 | 0.0226 12913 | -0.0452
3 -0.2500 | -0.2500 | 0.1386 | -0.1062 | -0.0102 | 0.1782 |- 1.5583 03174
4 0.1563 0.1563 0.1089 | 0.0880 | -0.1062 | -0.4244 | -0.0506
5 -0.3886 | 0.1971 | 02111 | 0.0483 | 2.3159 | -0.0522
6 -0.0837 | 0.0677 | -0.1734 | -0.9311 | -0.1989
7 0.0349 | 0.0473 | 0.0374 | -0.0938 | -0.1009
8 -0.2045 | -0.2561 | 0.2401 0.9188 | 0.2869
9 0.0837 | 0.0299 | 0.0555 1.3163 | -0.0309
10 0.0000 | 0.0068 | -0.0739 | 0.4780 | 02041
11 -0.0085 | 0.0259 | 0.0382 | 0.0391
12 0.1130 | -0.0618 | 0.1212 0.1314
13 -0.0299 | -0.2061 | -0.5339 | -0.1582
14 0.0000 | 0.1754 | -0.7432 | -02282
15 -0.0080 | -0.0076 | 0.0392
16 0.0008 | 0.0096 | 0.0096
17 -0.0356 | -0.0609 | -0.0622
18 0.0923 | -0.0785 | -0.0822
19 -0.0609 | 03740 | 02294
20 0.0080 | 0.0076 | -0.0874
21 0.0000 | 0.0035
22 0.0001 0.0000
23 © | -0.0131 [ -0.0131
24 0.0563 | 0.0568
25 -0.0716 | -0.0717
26 0.0290
27 -0.0035
28 0.0000

Table 2
n 3 4 5 10 15 20 25 28 ]
U, (1,%) 1.1875 | 0.1355 | 0.1355 | 0.1156 | 0.1203 | 0.1270 | 0.1269 | 0.1270

c) The error in the energetic norm of the Ritz approximate solution u,(€D(4)).
We put 4w =f, and u, =1, , where %, is the generalized solution for Az
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If (e H 4) is the generalized solution for Au=f(4-positive definite; H ;~ener-
getic space) and the Riesz theorem is used on H, (H -Hilbert space)
we have (ueH,)

. 1
(220) 42, = f = (o) = (oot s (Ea)=(f0) 5 by, <=l

If we use (2.20), the following relations can be written
= 1
(a) (17"—14, U)A.:_(f;,_f, u)LZ , Vu e}IA ; (b) ”u"A S;”f"[Q

From (a) it results that V=% —u is a generalized solution for the equation
= f, - fand, if (b) is further considered, we get the estimation

WA 1
(2.21) ”u,,—u"ASQHAu,, —f”L2

If #eD(A) [then % =1, is the classical solution: Au, = f] and if f= 0, from
(2.21), we obtain the estimation (the error)

1

(2.22) ”u,, uOHA— ”A ”Lz ) az_\/(','—_p , ty €Dy(F)

where Cp, is Friederichs’ constant (1.8).

Remark. 1t is known that for an orthonormalized trial function system
{o1}(= D(4)) we have ||4u, - f| 1, >0, asn—coand that theRitz algorithm
is stable [2], [1].

Approximation by trigonometric trial functions. For n = 3 (u3eDy(F)):

3 3
= [ [ [Vis(u @xty= 3 S chncrolioms

k,m=1 r,s=1
where (k, m, r, s#2)

21
Tprs = '[0 J.OVw/lew,.s dxdy=

2 2 2
ST _m” 15 ol K Lm mes
16m2 K2 2 24 3
1 1 311 2
_ 2 k‘z(—-—+—~————— J S k=r,m#s
=] 8m? 852 k% 24
o2 omt 3
~12 ' s k#xr,m#s
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Then we have
(2.23) |7, ~0:2691and s~ <0519/Cr

Approximation by Chebyshev polynomials. In this case, we have
2

- 9
s € Do(F), Jul =[] ch( Wik +2§) dxdy
k=1

For n =4 we obtain
(2:24) [ dug]l7, 0135417 and Jug ~] , <0368/Cr

Remark. With the Chebyshev polynomials the error is smaller than the
resulting from the employment of the trigonometric functions.
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