VARIATIONAL APPROXIMATION FOR A DIRICHLET-NEUMANN PROBLEM OF THE HEAT CONDUCTION THROUGH RECTANGULAR PLATES

RADU BRĂDEAN (Cluj-Napoca)

1. BASIC EQUATIONS

a) The boundary value problem. The differential problem with non-homogeneous mixed boundary conditions (Dirichlet-Neumann) is considered on the rectangular domain $\Omega = (0, a) \times (0, b)$, with the boundary $\partial \Omega$, with respect to the unknown function U (Fig. 1):

function U (Fig. 1):

$$LU = -\left(\lambda_1 \frac{\partial^2 U}{\partial x^2} + \lambda_2 \frac{\partial^2 U}{\partial y^2}\right) = f_1(x, y), \quad (x, y) \in \Omega$$

$$U(x, y) = 1 \quad \text{on} \quad \partial \Omega_1 = \overline{OA}$$

$$\frac{\partial U}{\partial N} = 0 \quad \text{on} \quad \partial \Omega_2' = \overline{OC} \cup \overline{CB}$$

$$\frac{\partial U}{\partial N} = -1 - g_1(y) \quad \text{on} \quad \partial \Omega_2'' = \overline{AB}$$

where: $\partial\Omega = \partial\Omega_1 \cup \partial\Omega_2$, $\partial\Omega_2 = \partial\Omega_2' \cup \partial\Omega_2''$; $1 + g_1(y) \equiv g(y)$, f_1 are given functions $[g_1(0) = 0, g_1'(b) = 0]$; λ_i (const.) > 0 are given and $\partial U/\partial N$ is the derivative

along the conormal on $\partial\Omega$. The boundary value problem models either heat conduction in a plate (if U is the temperature in a rectangle of conducting material with one edge at unit temperature, two edges thermal insulated and the fourth having a heat flux; f_1 - source function of the heat) or the flow of an inviscid fluid (if U is the velocity potential, $\lambda_i = 1, f_1 = 0$).

b) Operatorial equation (homogeneous boundary conditions). The boundary differential problem can be written in the operational form:

$$(1.2) Au = f, f \in H$$

where

A: $H \to H$ $(H = L_2(\Omega))$ - Hilbert space) is a linear differential operator, with

$$D(A) = \left\{ u \in C^{2}(\Omega) \cap C^{1}(\overline{\Omega}) \middle| Au \in L_{2}(\Omega), u = 0 \text{ on } \partial\Omega_{1}, \frac{\partial u}{\partial N} = \vec{n}^{T} \cdot Q\nabla u = 0 \text{ on } \partial\Omega_{2} \right\}$$

$$Au = -\nabla \cdot (Q\nabla u), Q = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}, \nabla = \begin{cases} \partial/\partial x \\ \partial/\partial y \end{cases}, \vec{n} = \begin{cases} n_{1} = \cos(\vec{n}, x) \\ n_{2} = \cos(\vec{n}, y) \end{cases}$$

$$(1.3)$$

$$u = U - (1 + \psi), \ \psi(x, y) = h(x, y) \frac{\omega(x, y)}{|\nabla \omega|} - \frac{1}{\lambda_{1}} \frac{x^{2}}{2a} g_{1}(y),$$

$$h(x, y) = \frac{1}{\lambda_{1}} \frac{x(b - y)}{ab - xy}, \ \omega(x, y) = xy(a - x)(b - y); \ \nabla \omega \neq 0 \text{ on } \partial\Omega_{1}, \ \partial\Omega_{2}, \ \partial\Omega_{2}^{u};$$

$$f(x, y) = f_{1}(x, y) + \lambda_{1} \frac{\partial^{2}\psi}{\partial x^{2}} + \lambda_{2} \frac{\partial^{2}\psi}{\partial y^{2}}$$

Remarks. 1°. The function ψ has been determined as follows: first, the function ω ($\omega = 0$ on $\partial\Omega$) is defined, the normalized function $\omega/|\nabla\omega|$ is introduced (in the sence of the *R*-functions theory, [4]) and then ψ is calculated as shown in (1.3).

- 2° . From a theoretical point of view, the introduction of the homogeneous boundary conditions is a useful result. In this case, the definition domain D(A) of operator A is a linear subspace of space $H = L_2(\Omega)$ and the theory of linear operators on the Hilbert space H can be employed in order to study equation (1.2).
 - c) The properties of the operator $A: D(A) \subset L_2(\Omega) \to L_2(\Omega)$.
- 1. Operator A is unbounded on D(A) [D(A) is dense in $L_2(\Omega)$]. This is verified by considering the function sequence $(u_{mn}) \subset D(A)$: $u_{mn}(x, y) =$

$$=(b-y)\cos\frac{m\pi x}{a}\sin\frac{n\pi y}{b}, (x, y) \in \Omega; m, n = 1, 2, 3, \dots$$
 We obtain

$$\|u_{mn}\|_{L_{2}}^{2} = \frac{ab^{3} 2\pi^{2}n^{2} - 3}{4 6n^{2}\pi^{2}};$$

$$\|A\| \ge \lim_{m,n\to\infty} \frac{\|Au_{mn}\|}{\|u_{mn}\|} = \infty, \left(\|Au_{mn}\|_{L_{2}} \to \infty \text{ for } m, n \to \infty\right)$$

Consequently A is not bounded (continuous) [3], [7].

2. The operator A is pre-closed (it possesses closed extension). Indeed, with $\varphi \in C_0^{\infty}(\Omega)$, $v_{mn}(\in D(A)) \rightarrow 0$ and $(Av_{mn}) \rightarrow w \in L_2(\Omega)$ we have

(1.4)
$$(Av_{mn}, \varphi)_{L_2(\Omega)} = - \iint_{\Omega} v_{mn} \nabla \cdot Q \nabla \varphi \, dx \, dy \quad (\to 0 \text{ for } m, n \to \infty)$$

(1.5)
$$\lim_{m,n\to\infty} (Av_{mn}, \varphi)_{L_2(\Omega)} = (w, \varphi)_{L_2(\Omega)} = 0 \Rightarrow w \perp \varphi, \ \forall \varphi \in C_0^{\infty}(\Omega)$$
$$\Rightarrow w = 0 \quad \text{(the set } C_0^{\infty}(\Omega) \text{ is dense in } L_2(\Omega)).$$

This proves (in accordance with the definition) that A is pre-closed, [7].

3. The operator A is symmetrical. For the operator A (unbounded) we have

1°)
$$D(A)$$
 is dense in $H = L_2(\Omega)$

(1.6)
$$2^{\circ}$$
 $\forall u, v \in D(A)$, $(Au, v)_{L_2} = \int \int_{\Omega} \nabla^T v \cdot (Q \nabla u) dx dy =$
$$= -\int \int_{\Omega} u \nabla \cdot (Q \nabla v) dx dy = (u, Av)_{L_2}$$

4. The symmetrical operator A is positive definite on D(A), i.e. $\exists \alpha^2$ (const.) > 0 so that $(Au,u)_{L_2(\Omega)} \ge \alpha^2(u,u)_{L_2(\Omega)}$, $\forall u \in D(A)$.

Proof. From (1.6) we obtain

(1.7)
$$(Au,u)_{L_2(\Omega)} = \iint_{\Omega} \nabla^T u \, Q \nabla u \, dx \, dy$$

Now, the Friedrichs generalized inequality is applied. According to this, [2], for a domain Ω that a boundary $\partial\Omega$ with part of it $\partial\Omega_1$ (open) of Lebesgue positive measure $m(\partial\Omega_1)>0$, there exists a constant $C_F>0$ (depending only of Ω and $\partial\Omega_1$) so that

(1.7)
$$\forall u \in H^{1}(\Omega), \ \|u\|_{H^{1}(\Omega)}^{2} \leq C_{F} \left[\iint_{\Omega} |\nabla u|^{2} dx dy + \int_{\partial \Omega_{1}} u^{2} ds \right]$$

where $H^1(\Omega)$ is Sobolev space and $\|u\|_{H^1} \ge \|u\|_H$. If $u \in D(A)$ we have $u \in H^1(\Omega)$ and (1.7) can also be applied on $D(A)[u \in D(A) \Rightarrow u = 0 \text{ on } \partial \Omega_1]$. Consequently, $\forall u \in D(A)$,

(1.8)
$$(Au, u)_{L_2} \ge \min(\lambda_1, \lambda_2) \iint_{\Omega} |\nabla u|^2 dx dy \ge \min(\lambda_1, \lambda_2) C_F^{-1} ||u||_{H^1}^2 \ge \alpha^2 ||u||_{L_2}^2$$

where $\alpha^2 = \frac{1}{C_F} \min(\lambda_1, \lambda_2)$ is the positive definiteness constant of A .

2. APPLICATION OF THE RITZ VARIATIONAL METHOD TO PROBLEM (1.1)

a) The variational functional and the variational formulation associated to the boundary value problem. The energy variational functional F, which has a minimum value on the solution of (1.2), can be conected to the operatorial equation (1.2) [according to the properties of operator A defined on D(A) – dense in $H = L_2(\Omega)$ ($\equiv L_2$)]:

(1°)
$$F(u) = (Au,u)_{L_2} - 2(f,u)_{L_2}, u \in D(A); (f \in C(\overline{\Omega}))$$

or

$$(2^{\circ}) \qquad F(u) = \iint_{\Omega} \nabla^{T} u \cdot Q \nabla u \, dx \, dy - 2 \iint_{\Omega} f u \, dx \, dy$$
$$u \in D(F) = D_{0}(F) \text{ or } u \in D(F) = H_{01}^{1}(\Omega)$$

where $D_0(F) = \{u \in C^2(\Omega) \cap C(\overline{\Omega}) | u = 0 \text{ on } \partial\Omega_1 \}$ and $H^1_{01}(\Omega)$ is the linear space

$$H_{01}^1(\Omega) = \left\{ u \in H^1(\Omega) \middle| u = 0 \text{ on } \partial\Omega_1 \right\}$$

with the norm

$$\|u\|_{H_{01}^1} = \|u\|_1 = \left(\iint_{\Omega} \left(u^2 + |\nabla u|^2\right) dx dy\right)^{1/2}$$

as $\partial u/\partial N$ on $\partial \Omega_2$ is a natural condition; it is a eliminated from the boundary conditions for F [here $H^1(\Omega)$ is the Sobolev space $\Rightarrow u \in C(\overline{\Omega})$].

- Since, here, f is a function that will render the calculations of the Ritz method more complicated [see (1.3)], it is recommendable that we return to the unknown function U = U(x, y), $(x, y) \in \Omega$. For this purpose, we put U = u + v where $v = 1 + \psi$ is a given function which verifies the boundary conditions of U(v) is not subject to variation, it is a "variational constant": $\delta v = 0$). The energy functional becomes (the index $L_2(\Omega)$ is eliminated):

(2.1)
$$F(U) = (AU, U) - 2(f, U) + (Av, U) - (AU, v) + C_1(v), U \in D(L)$$

where C_1 (v) is a "variational constant" that can be eliminated ($\delta C_1(v) = 0$, v fixed). By using Green's formula, the following equalities can be inferred:

$$(AV, U) - (AU, V) = \int_{\partial \Omega_1} \frac{\partial u}{\partial N} ds + \int_{\partial \Omega_2} gU ds + C_2(V)$$

 $(AU, U) = \iint_{\Omega} \nabla^T U \cdot Q \nabla U \, dx \, dy - \int_{\partial \Omega_1} \frac{\partial u}{\partial N} \, ds + \int_{\partial \Omega_2} g U \, ds$

Subsequently, with the help of these equalities, we determine from (2.1) the energy functional [given below in (2.2)]. According to the theorem of the minimum of the energy functional, the variational problem equivalent (in generalized sense) with (1.1) is (U=1+u):

(Pv) Find the function $\widetilde{u} \in \widetilde{D}(F)$ so that $F(\widetilde{u}) = \min_{u \in \widetilde{D}(F)} F(u)$ where F has the following expression

$$(2.2) F(u) = \frac{1}{2} \iint_{\Omega} \left(\nabla^{T} u \cdot Q \nabla u - 2 f u \right) dx dy + \int_{\partial \Omega_{2}^{n}} g u dy , u \in \widetilde{D}(F)$$

$$\widetilde{D}(F) = \widetilde{H}_{01}^{1}(\Omega) = \left\{ u \in H_{01}^{1}(\Omega) \middle| \|u\|_{A} = \left(\iint_{\Omega} \nabla^{T} u \cdot Q \nabla u dx dy \right)^{1/2} < \infty \right\} \equiv H_{A}$$

$$\left(\exists \widetilde{c}_{1}, \widetilde{c}_{2} > 0, \widetilde{c}_{1} \|u\|_{1} \le \|u\|_{A} \le \widetilde{c}_{2} \|u\|_{1} \right)$$

where $\widetilde{H}_{01}^1(\Omega)$ is the Sobolev space $H_{01}^1(\Omega)$ supplied with the energetic norm $\|\cdot\|_A$; this is the energetic space H_A (the completion of the linear space $D_0(F)$ in the energetic norm $\|\cdot\|_A$). We have $D_0(F) \subset H_A \subset H = L_2(\Omega)$ with $\|\cdot\|_H \le \|\cdot\|_{H^1} \le c \|\cdot\|_A$ [$D_0(F)$ is dense both in H_A and H; $H_A \subset H$ is a dense imbedding]. The generalized solution \widetilde{u} is determined approximately by:

b) The Ritz Algorithm. From $\widetilde{D}(F)$, a linearly independent and complete in $\widetilde{H}^1_{01}(\Omega)$ system of trial functions $\{\varphi_i\}$ is chosen [finite (non-orthogonal) basis in D(F)] and it is supposed that the n-order Ritz approximation for the exact solution u of the problem (Pv) is:

(2.3)
$$u_n(x,y) = \sum_{k=1}^{n} c_k \varphi_k(x,y), c_k \text{ (unknown)} \in \mathbb{R}^1; n = 1,2,3,...$$

that belongs to the set of functions $v_n = \sum_{1}^{n} a_k \varphi_k(x, y)$, $\forall a_k \in \mathbb{R}^1$; this set represents a linear subspace H_n so that the sequence $\{H_n\} = \{H_n | n \in \mathbb{N}^*\}$ is dense in the energetic space $H_A = \widetilde{H}_{01}^1(\Omega)$. Then, the conditions $\frac{\partial F(u_n)}{\partial c_i} = 0$, $i = \overline{1, n}$,

are necessarily satisfied. These stationarity conditions of F on \mathbb{R}^n at point $(c_1, c_2,$..., c_n) are transformed into Ritz algebraic system:

(2.4)
$$\sum_{j=1}^{n} K_{ij} c_{j} = b_{i} - g_{i} ; \left[or \left(u_{n}, \varphi_{i} \right)_{A} = \left(f_{1} - g, \varphi_{i} \right)_{L_{2}} \right] ; i = \overline{1, n}$$

where c_j , $j = \overline{1,n}$ are unknown and

$$K_{ij} \equiv \left(\phi_i \,, \phi_j\right)_A = \iint_\Omega \nabla^T \phi_i \cdot Q \nabla \phi_j \, \mathrm{d}x \, \mathrm{d}y \;, \; \; b_i = \iint_\Omega f_1 \phi_i \, \mathrm{d}x \, \mathrm{d}y \;, \; \; g_i = \int_{\partial \Omega_i} g \phi \, \mathrm{d}y$$

The notation is changed. The solution (2.3) and the system (2.4) are written in the form

(2.5)
$$u_n(x,y) = \sum_{k=1}^n \sum_{m=1}^n c_{km} w_{km}(x,y), \ c_{km} \in \mathbb{R}^1$$

the form
$$(2.5) u_n(x,y) = \sum_{k=1}^n \sum_{m=1}^n c_{km} w_{km}(x,y), c_{km} \in \mathbb{R}^1$$

$$(2.6) \sum_{k,m=1}^n (w_{km}, w_{rs})_A c_{km} = (f_1, w_{rs})_{L_2(\Omega)} - (g_1, w_{rs})_{L_2(\partial \Omega_2^n)}$$

where the coefficients of the Ritz system have the values:

$$K_{lonrs} \equiv (w_{km}, w_{rs})_{A} = \iint_{\Omega} \nabla^{T} w_{km} \cdot Q \nabla w_{rs} \, dx \, dy =$$

$$= \iint_{\Omega} \left(\lambda_{1} \frac{\partial w_{km}}{\partial x} \frac{\partial w_{rs}}{\partial x} + \lambda_{2} \frac{\partial w_{km}}{\partial y} \frac{\partial w_{rs}}{\partial y} \right) dx \, dy ;$$

$$(2.7)$$

$$b_{rs} \equiv (f_{1}, w_{rs})_{L_{2}(\Omega)} = \iint_{\Omega} f_{1}, w_{rs} \, dx \, dy ;$$

$$g_{rs} \equiv (g, w_{rs})_{L_{2}(\partial \Omega_{2}^{i})} = \int_{\partial \Omega_{2}^{i}} g \, w_{rs}(a, y) \, dy$$

- c) The choice of trial functions and the solving of the Ritz system.
- 1. Trigonometric polynomials. A system of trial functions $w_{km} \in H_{01}^1(\Omega)$ $[w_{km} \in D_0(F)]$ of the following form is chosen:

(2.8)
$$w_{km}(x,y) = \frac{\pi}{\sqrt{ab}} \left[\frac{a}{k\pi} \sin \frac{k\pi x}{a} - (x+a) \right] \left(\frac{b}{m\pi} \sin \frac{m\pi y}{b} + y \right); k,m = 1,3,5,...$$

These functions verify the boundary condition for y = 0 [$w_{km}(x, 0) = 0$ but according to the theory, verification of natural conditions is not obligatory (on \overline{OC} , \overline{CB} and \overline{AB})]. However, here $\partial w_{km}(0, y) / \partial x = 0$ (k, m = 1, 3, ...) but the condition on AB is not verified. The Ritz solution only verifies it approximately.

The properties of the trial function system. Let us consider the trigonometric functions

(2.9)
$$\varphi_k(x) = \sqrt{\frac{2}{a}} \sin \frac{k\pi x}{a}, \ \psi_m(y) = \sqrt{\frac{2}{b}} \sin \frac{m\pi y}{b}$$

The function system $\{v_{km}\}$:

$$V_{km}(x,y) = \varphi_k(x) \psi_m(y), (x,y) \in \Omega; k,m = 1,2,3,...$$

has the properties:

1°. $\{v_{km}\}$ belongs to the linear subspace $\widetilde{D}(F) \subset L_2(\Omega)$

2°. $\{v_{km}\}$ is orthonormal (i.e. linearly independent) in $L_2(\Omega)$:

 $(v_{ij}, v_{km})_{L_2(\Omega)} = 0$ if $i \neq k$ or $i \neq m$ and $(v_{ij}, v_{km})_{L_2(\Omega)} = 1$ if i = k, j = m

3°. $\{v_{km}\}$ is complete in $L_2(\Omega)$: the Parseval equality holds, [2]:

$$(2.10) \quad \sum_{k,m=1}^{\infty} \left| (u, v_{km})_{L_2(\Omega)} \right|^2 = \left\| u \right\|_{L_2(\Omega)}^2, \quad \forall u \in C(\overline{\Omega}) - (\text{dense in } L_2(\Omega))$$

 4° . $\{v_{km}\}$ is orthogonal in H_A^0 (linearly independent) but it is not orthonormal in $H^0_A(\Omega)$. Here $H^0_A=H^0_A(\Omega)$ is the space $D_0(F)$ supplied with the energetic product (.,.), and energetic norm defined by the following equalities (A is positive definite)

$$(u,v)_{A} = \iint_{\Omega} \nabla^{T} u \cdot Q \nabla v \, dx \, dy; \ u,v \in D_{0}(F)$$

$$\|u\|_{A} = \sqrt{(u,u)_{A}} \qquad ; u, \in D_{0}(F)$$

Indeed, simple calculations lead to the equalities and the orthonormalized system $\{\overline{v}_{km}\}$

$$(v_{km}, v_{rs})_A = \begin{cases} 0, & \text{if } k \neq r, m \neq s \\ \frac{\pi^2}{a^2 b^2} (\lambda_1 k^2 b^2 + \lambda_2 m^2 a^2) (= \|v_{km}\|_A^2), & \text{if } k = r, m = s \end{cases}$$

$$\overline{v}_{km} = \frac{v_{km}}{\|v_{km}\|_A}$$

5°. The system $\{v_{km}\}$ is also complete with respect to the energetic norm in the energetic Hilbert space H_A - the completion of the subspace H_A^0 with respect to the convergence in energy. Indeed, according to the theorem : A - positive definite on D(A), $\phi_k \in D(A)$ - dense in H_A and $\{A\phi_k\}$ - complete in H implies $\{\phi_k\}$ - complete in H_A , a simple calculus shows that

$$Av_{km} = -\nabla \cdot (Q\nabla v_{km}) = \pi \left(\lambda_1 k^2 a^{-2} + \lambda_2 m^2 b^{-2}\right) v_{km}$$

Consequently, since $\{v_{km}\}$ is complete in $L_2(\Omega)$, $\{Av_{km}\}$ is complete in $H=L_2(\Omega)$ [multiplication with a constant $(\neq 0)$ maintains completion] and then, $\{v_{km}\}$ is complete in energetic norm (in H_A).

Remark. Taking into account the system $\{\widetilde{\varphi}_k\}$ in which $\widetilde{\varphi}_k(x,y) = \sqrt{\frac{2}{a}y\sin\frac{k\pi x}{a}}$, we have

$$\left(\widetilde{\varphi}_{k},\widetilde{\varphi}_{m}\right)_{A} = \begin{cases} 0 & , \text{ if } k \neq m \\ \frac{1}{3}b^{3}\lambda_{1}\left(\frac{k\pi}{a}\right)^{2} + \lambda_{2} & \left(\equiv \left\|\widetilde{\varphi}_{k}\right\|_{A}^{2}\right) & , \text{ if } k = m \end{cases}$$

and hence $\left\{\widetilde{\varphi}_k\right\}_1^{\infty}$ is orthogonal in H_A^0 .

Now, using (2.8), the scalar products (2.7) have the expressions:

$$(2.12) K_{kmrs} = (w_{km}, w_{rs})_{A} =$$

$$= \begin{cases} \frac{3}{4} \left[5\lambda_{1}b^{2} \frac{1}{m^{2}} - 11\lambda_{2}a^{2} \frac{1}{k^{2}} + \frac{2\pi^{2}}{3} (\lambda_{1}b^{2} + 7\lambda_{2}a^{2}) \right] &; k = r, m = s \\ \lambda_{1}b^{2} \frac{m^{2} + s^{2}}{m^{2}s^{2}} - 3\lambda_{2}a^{2} \frac{k^{2} + r^{2}}{k^{2}r^{2}} + \frac{\pi^{2}}{3} (\lambda_{1}b^{2} + 7\lambda_{2}a^{2}) &; k \neq r, m \neq s \\ \frac{3}{2}\lambda_{1}b^{2} \frac{m^{2} + s^{2}}{m^{2}s^{2}} - \frac{11}{2}\lambda_{2}a^{2} \frac{1}{k^{2}} + \frac{\pi^{2}}{3} \left(\frac{3}{2}\lambda_{1}b^{2} + 7\lambda_{2}a^{2} \right) &; k = r, m \neq s \\ \frac{5}{2}\lambda_{1}b^{2} \frac{1}{m^{2}} - \frac{9}{2}\lambda_{2}a^{2} \frac{k^{2} + r^{2}}{k^{2}r^{2}} + \frac{\pi^{2}}{3} \left(\lambda_{1}b^{2} + \frac{21}{2}\lambda_{2}a^{2} \right) &; k \neq r, m = s \end{cases}$$

$$(f_{1}, w_{rs})_{L_{2}(\Omega)} = \int_{0}^{a} \int_{0}^{b} f_{1}(x, y) w_{rs}(x, y) dx dy$$

$$(g, w_{rs})_{L_{2}(\partial \Omega_{2}^{n})} = \int_{0}^{b} g w_{rs}(a, y) dy = -\pi g b \sqrt{ab} \left[\left(\frac{2}{s\pi} \right)^{2} + 1 \right]$$

These values are introduced into the Ritz system (2.6) which becomes a Cramer system with a unique solution $c_{km} = c *_{km} (k, m = 1, 3, 5, ...)$; the matrix of (2.6) is nonsingular, symmetrical and positive definite like the operator A.

Numerical application (n=3). We choose the values a=2, b=1, $f_1=0$, $\lambda_1=\lambda_2=1$, g=-1, [$\partial u/\partial x=1$ on \overline{AB} indicates a heat flux on \overline{AB} towards the inside of the plate]. The Ritz solution has the form

$$(2.13) \quad u_3(x,y) = \sum_{k,m=1}^{3} c_{km} w_{km}(x,y) = c_{11} w_{11} + c_{31} w_{31} + c_{13} w_{13} + c_{33} w_{33}$$

The coefficients of the Ritz system are $(\pi = 3.14)$

$$(w_{11}, w_{11})_A = 113.8592638 \; ; \quad (w_{13}, w_{14})_A = 76.71777661$$

$$(w_{31}, w_{11})_A = 123.9643297 \; ; \quad (w_{33}, w_{11})_A = 83.18395365$$

$$(w_{13}, w_{13})_A = 110.5259305 \; ; \quad (w_{31}, w_{13})_A = (w_{33}, w_{11})_A$$

$$(w_{33}, w_{13})_A = 121.7421075 \; ; \quad (w_{31}, w_{31})_A = 143.1927971$$

$$(w_{33}, w_{31})_A = 96.27333217 \; ; \quad (w_{33}, w_{33})_A = 139.8592638$$

$$(-1, w_{11}) = (-1, w_{31}) = 6.24351557 \; ; \quad (-1, w_{13}) = (-1, w_{33}) = 4.642953231$$

By means of the Gauss method, the following solution has been found for the Ritz system

(2.14)
$$c_{11} = -0.125130 ; c_{13} = -0.004312$$
$$c_{31} = -0.068856 ; c_{33} = -0.002417$$

with the residual error of the solution c_{km} of the 4.10^{-9} (only six exact decimals have been considered in the (2.14)).

The Ritz solution in the 3 rd order approximation is

$$u_{3}(x,y) = \frac{\pi}{\sqrt{2}} \left[c_{11} \left(\frac{2}{\pi} \sin \frac{\pi x}{2} - x - 2 \right) \left(\frac{1}{\pi} \sin \pi y + y \right) + c_{13} \left(\frac{2}{\pi} \sin \frac{\pi x}{2} - x - 2 \right) \left(\frac{1}{3\pi} \sin 3\pi y + y \right) + c_{31} \left(\frac{2}{3\pi} \sin \frac{3\pi x}{2} - x - 2 \right) \left(\frac{1}{\pi} \sin \pi y + y \right) + c_{33} \left(\frac{2}{3\pi} \sin \frac{3\pi x}{2} - x - 2 \right) \left(\frac{1}{3\pi} \sin 3\pi y + y \right) \right]$$

For example, we obtain the values $(U_3(x, y) = 1 + u_3(x, y))$:

$$u_3(2; 1/2)=0.43274$$
; $u_3(1; 1/2)=0.15123$; $u_3(0; 1/2)=0.2163$; $u_3(1, 1)=0.20549$

The polynomial type trial functions. Chebyshev polynomials. The Chebyshev polynomials $T_i(x)$, $x \in \mathbb{R}^1$ are determined by recurrence relation

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), \quad n = 1, 2, 3, ...$$

with
$$T_0(x) = 1$$
, $T_1(x) = x$; $(u, v)_{2, \rho} = \int_{-1}^{1} \rho(x) u v \, dx$, $\rho(x) = \frac{1}{\sqrt{1 - x^2}}$

These polynomials can be introduced by means of the Schmidt orthogonalization of the lineary independent system $\left\{x^n\right\}_{n=0}^{\infty}$ with respect to the scalar product $L_{2,\,\rho(-1,1)}$. In the space $L_{2,\,\rho(-1,1)}$ the system $\overline{T}_n = \sqrt{2/\pi}\,T_n(x)$ is orthonormal [and complete: $\forall u \in C^2(-1,1), (u,T_i)_{2,0} = 0 \Rightarrow u(x) \equiv 0$

In the two-dimensional case the Chebyshev polynomials $p_k(x, y)$ can be introduced by means of the formulas

(2.16)
$$p_k(x, y) = T_i(x)T_j(y), k = 1, 2, 3, ...$$

with
$$k = \frac{1}{2}(i+j)(i+j+1)+j+1$$
; $i, j = 0,1,2,...$

The first polynomials are:

$$p_1(x, y) = T_0(x)T_0(y) = 1, p_2(x, y) = x, p_3(x, y) = y, p_4(x, y) = 2x^2 - 1$$

$$p_5(x, y) = xy, p_6(x, y) = 2y^2 - 1, \dots, p_{10}(x, y) = 4y^3 - 3y, \dots$$

We consider the arbitrary $u \in C^2(\Omega)$ on the domain $\Omega = (-1, 1) \times (-1, 1)$ of the plane Oxy. We notice that the implication holds:

$$0 = (u, p_k(x, y))_{2, \rho} = \int_{-1}^{1} T_j(y) \left(\int_{-1}^{1} \rho u T_i \, \mathrm{d}x \right) \mathrm{d}y = \int_{-1}^{1} T_j(u, T_i(x))_{2, \rho} \, \mathrm{d}y \Rightarrow$$
$$\Rightarrow (u, T_i)_{2, \rho} = 0 \Rightarrow u(x, y) \equiv 0, (x, y) \in \Omega$$

Therefore $\{p_k\}$ is a complete orthogonal system on Ω .

The fourth order Ritz approximation (n=4; a=2, b=1, $\lambda_1 = \lambda_2 = 1$, $f_1 = 0$, g=-1; $\partial u/\partial x = 1$ on x=2). The Ritz solution is chosen, for the variational problem (Pv), in the form

$$u_4(x,y) = \sum_{k=1}^{4} c_k \varphi_k(x,y), \ \varphi_k(x,y) = y p_k(x,y), \ k = \overline{1,4}$$

The coefficients K_{ij} , b_i given in formulas (2.7) are calculated exactly and have the values:

$$K_{11} = 2$$
; $K_{12} = 2$; $K_{13} = 2$; $K_{14} = \frac{10}{3}$; $K_{22} = \frac{10}{3}$;
 $K_{23} = 2$; $K_{24} = \frac{26}{3}$; $K_{33} = \frac{8}{3}$; $K_{34} = \frac{10}{3}$; $K_{44} = \frac{1402}{45}$
 $g_1 = \frac{1}{2}$, $g_2 = 1$, $g_3 = \frac{1}{3}$, $g_4 = \frac{7}{4}$

We solve the Ritz system (2.4) by means of the Gauss method:

$$\begin{bmatrix}
\frac{2}{2} & 2 & \frac{10/3}{2} & \frac{1/2}{2} \\
\frac{10/3}{2} & \frac{2}{2} & \frac{26/3}{3} & \frac{1}{1} \\
\frac{2}{10/3} & \frac{2}{2} & \frac{8/3}{3} & \frac{10/3}{3} & \frac{1/3}{1/3} \\
\frac{10/3}{2} & \frac{26/3}{3} & \frac{10/3}{3} & \frac{\frac{1402}{45}}{7/2}
\end{bmatrix}
\xrightarrow{(1)}
\begin{bmatrix}
\frac{8/3}{0} & \frac{0}{32/3} & \frac{1}{1} \\
0 & \frac{4/3}{3} & \frac{0}{0} & \frac{-1/3}{16/3}
\end{bmatrix}
\xrightarrow{(2)}$$

$$\xrightarrow{(2)}
\begin{bmatrix}
\frac{32/9}{0} & \frac{0}{1024} & \frac{-8/9}{32/9} \\
0 & \frac{1024}{45} & \frac{32/9}{32/9}
\end{bmatrix}
\xrightarrow{(3)}
\underbrace{(3)}_{2}
\underbrace{(3)$$

The Ritz system has the solution

(2.18)
$$c_4 = \frac{5}{32} = 0.15625$$
; $c_3 = c_2 = -\frac{1}{4} = -0.25000$; $c_1 = 0.48958$

We obtain the values:

(2.19)
$$u_4(2;1/2) = 0.4791; u_4(1;1/2) = 0.13542; u_4(0;1/2) = 0.1041; u_4(1,1) = 0.14583$$

Solving on the computer. A TURBO-PASCAL computer program has been used in order to perform the calculations of the Ritz algorithm (The program is presented in [8]). The program is applied to the approximation of the boundary value problem (1.1) by means of the Chebyshev polynomials. The numerical

results (the values of the solution $c_k^{(n)}$ of the Ritz system) are given up to the n=28 approximation (see Table 1). Only four decimals are considered for the values. We notice that in the case n=4 the values in Table 1 coincide with those calculated (without programming) and given in (2.18)

By using Table 1 the following values for $u_n(1, 1/2)$ are obtained (Table 2).

Table 1

The solutions $c_k = c_k^{(n)}$

k/n	3	5	6	10	15	20	25	28
1	0.1250	0.4896	0.1496	0.1370	0.1824	0.0136	-0.7197	0.0146
7 2	0.3750	-0.2499	0.0900	0.0071	-0.1734	0.0136	1.2913	-0.0452
3	-0.2500	-0.2500	0.1386	-0.1062	-0.0102	0.0220	1.5583	0.3174
4	She	0.1563	0.1563	0.1089	0.0880	-0.1062	-0.4244	-0.0506
5	mud5mm	0.1505	-0.3886	0.1971	0.0000	0.0483	2.3159	-0.0522
6			0.5000	-0.0837	0.0677	-0.1734	-0.9311	1
7			-	0.0349	0.0473	0.0374	-0.0938	-0.1989
8		Tarrest Land	THE PERSON	-0.2045	-0.2561	0.0374	0.9188	-0.1009
9		W		0.0837	0.0299	0.2401	1.3163	0.2869
10		i sortiani	man Add	0.0000	0.0299	-0.0739	0.4780	-0.0309
11			10	0.0000	-0.0085	0.0259		0.2041
12	100	-HJ ()			0.1130		0.0382	0.0391
13	1	CAST	7. 1. 63.8		-0.0299	-0.0618	0.1212	0.1314
14	1.0		1 0	0.0		-0.2061	-0.5339	-0.1582
15		0.30 (10)	Mileninia.		0.0000	0.1754	-0.7432	-0.2282
16	8181	OCA.	7.189		0.2	-0.0080	-0.0076	0.0392
17		4.3.11	71-77	XI P		0.0008	0.0096	0.0096
18			- 7		(C)	-0.0356	-0.0609	-0.0622
19		100 150	New York	218-1	Y . 14	0.0923	-0.0785	-0.0822
20	0.00	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	St. 15. (61)		io (1)	-0.0609	0.3740	0.2294
		18 14	R / 1	PASE		0.0080	0.0076	-0.0874
21	ett	10.00		4	45	1.1	0.0000	0.0035
22		-12-11					0.0001	0.0000
23	4				110)[10	DOWN FRE	-0.0131	-0.0131
24	N XI - 1	الشياء اللو			- 33	100	0.0563	0.0568
25	1750 St. 17		550 m				-0.0716	-0.0717
26	37 134	= (8, · . / *	7		7010	our filt =	5 P 18	0.0290
27		2 1					y F	-0.0035
28		V)				199	this suit of	0.0000

Table 2

n	3	4	5	10	15	20	25	28
$U_n\left(1,\frac{1}{2}\right)$	1.1875	0.1355	0.1355	0.1156	0.1203	0.1270	0.1269	0.1270

c) The error in the energetic norm of the Ritz approximate solution $u_n (\in D(A))$. We put $Au_n = f_n$ and $u_n = \widetilde{u}_n$, where \widetilde{u}_n is the generalized solution for $Au = f_n$.

If $\widetilde{u}(\in H_A)$ is the generalized solution for Au=f(A-positive definite; H_A -energetic space) and the Riesz theorem is used on H_A (H_A -Hilbert space) we have $(u\in H_A)$

(2.20)
$$A\widetilde{u}_n = f_n \Rightarrow (\widetilde{u}_n, u)_A = (f_n, u)_{L_2}; (\widetilde{u}, u) = (f, u)_{L_2}; \|u\|_{L_2} \le \frac{1}{\alpha} \|u\|_A$$

If we use (2.20), the following relations can be written

(a)
$$(\widetilde{u}_n - \widetilde{u}, u)_A = (f_n - f, u)_{L_2}, \forall u \in H_A; (b) \|u\|_A \le \frac{1}{\alpha} \|f\|_{L_2}$$

From (a) it results that $\tilde{v} = \tilde{u}_n - \tilde{u}$ is a generalized solution for the equation $A_v = f_n - f$ and, if (b) is further considered, we get the estimation

(2.21)
$$\|\widetilde{u}_{n} - \widetilde{u}\|_{A} \le \frac{1}{\alpha} \|Au_{n} - f\|_{L_{2}}$$

If $\widetilde{u} \in D(A)$ [then $\widetilde{u} = u_0$ is the classical solution: $Au_0 = f$] and if f = 0, from (2.21), we obtain the estimation (the error)

(2.22)
$$\|u_n - u_0\|_{A} \le \frac{1}{\alpha} \|Au_n\|_{L_2}, \ \alpha = \frac{1}{\sqrt{C_F}}, \ u_n \in D_0(F)$$

where C_F is Friederichs' constant (1.8).

Remark. It is known that for an orthonormalized trial function system $\{\phi_k\}(\subset D(A))$ we have $\|Au_n-f\|_{L_2}\to 0$, as $n\to\infty$ and that the Ritz algorithm is stable [2], [1].

Approximation by trigonometric trial functions. For n = 3 $(u_3 \in D_0(F))$:

$$||Au_3||_{L_2}^2 = \iint_{\Omega} [\nabla u_3(x,y)]^2 dx dy = \sum_{k,m=1}^3 \sum_{r,s=1}^3 c_{km} c_{rs} I_{kmrs}$$

where $(k, m, r, s \neq 2)$

$$I_{kmrs} = \int_0^2 \int_0^1 \nabla w_{km} \nabla w_{rs} \, \mathrm{d}x \, \mathrm{d}y =$$

$$= \pi^{2} \begin{cases} \frac{5k^{2}}{16m^{2}} - \frac{11m^{2}}{k^{2}} - \frac{15}{2} + \pi^{2} \left(\frac{k^{2}}{24} + \frac{14m}{3} \right) &, k = r, m = s \\ k^{2} \left(\frac{1}{8m^{2}} + \frac{1}{8s^{2}} - \frac{5}{k^{2}} + \frac{1}{24} \pi^{2} \right) &, k = r, m \neq s \\ -m^{2} \left(\frac{2}{k^{2}} + \frac{2}{r^{2}} + \frac{7}{m^{2}} - \frac{14}{3} \pi^{2} \right) &, k \neq r, m = s \\ -12 &, k \neq r, m \neq s \end{cases}$$

Then we have

(2.23)
$$||Au_3||_{L_2}^2 \approx 0.2691 \text{ and } ||u_3 - u_0||_A \le 0.519\sqrt{C_F}$$

Approximation by Chebyshev polynomials. In this case, we have

$$u_n \in D_0(F), \|Au_n\|_{L_2}^2 = \iint_{\Omega} \left[\sum_{k=1}^n c_k \left(y \nabla p_k + 2 \frac{\partial p_k}{\partial y} \right) \right]^2 dx dy$$

For n = 4 we obtain

(2.24)
$$||Au_4||_{L_2}^2 \approx 0.135417 \text{ and } ||u_4 - u_0||_A \le 0.368 \sqrt{C_F}$$

Remark. With the Chebyshev polynomials the error is smaller than the resulting from the employment of the trigonometric functions.

REFERENCES

- 1. Mikhlin S. G., Variational Methods in Mathematical Physics, Macmillan, New York, 1964.
- Rectorys K., Variational Methods in Mathematics, Science and Engineering, Moskva, "Mir", 1985 (in Russian).
- 3. Milne R. D., Applied Functional Analysis. An Introductory Treatment Patman Ad. Publ. Progr., London, 1980.
- Rvachev V. L., Theory of R-Functions and Their Applications, Naukova Dumka, Kiev, 1982 (in Russian).
- Connor J. J., Brebbia C. A., Finite Element Techniques and Fluid Flow, Newnes-Butterworths, London, 1976.
- Farlow S. J., Partial Differential Equations (for Scientists and Engineers, John Wiley and Sons, Inc., 1982 (in Russian).
- Szilágy Pál, Ecuațiile fizicii matematice, Student text-book Publishing House of the University of Cluj, 1972.
- Brădeanu P., Boncuţ M., Brădeanu D., O metodă variațională Ritz pentru o problemă a conducției căldurii în plăci plane. Aplicații cu funcții de probă sub formă de monoame xⁱyⁱ, St. cerc. mec. apl., 54, 5-6 (1995), 371-379.

Received 5 III 1993

Universitatea "Babeş Bolyai" Facultatea de Matematică și Informatică, Cluj-Napoca