REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Tome 24, N^{os} 1-2, 1995, pp. 45-52

SELECTIONS ASSOCIATED TO THE METRIC PROJECTION

tim. If every a elliptic warder manager within an her firm

S. COBZAȘ, C. MUSTĂȚA

(Cluj-Napoca)

Let X be a normed space, M a subspace of X and x an element of X. The *distance* from x to M is defined by

(1)
$$d(x, M) := \inf\{||x - y|| : y \in M\}$$

An element $y \in M$ verifying the equality ||x - y|| = d(x, M) is called an *element of best approximation* for x by elements in M. The set of all elements of best approximation for x is denoted by $P_M(x)$, i.e.

(2) $P_M(x) := \{ y \in M : ||x - y|| = d(x, M) \}.$

If $P_M(x) \neq \emptyset$ (respectively $P_M(x)$ is a singleton) for all $x \in X$, then M is called a *proximinal* (respectively a *Chebyshevian*) subspace of X.

The set-valued application $P_M: X \to 2^M$ is called the *metric projection* of X on M and a function $p: X \to M$ such that $p(x) \in P_M(x)$, for all $x \in X$, is called a *selection* for the metric projection P_M . Observe that the existence of a selection for P_M implies $P_M(x) \neq \emptyset$, for all $x \in X$, i.e. the subspace M is necessarily proximinal.

The set

(3)
$$\operatorname{Ker} P_M := \{ x \in X : 0 \in P_M(x) \},\$$

is called the kernel of the metric projection P_M .

In many situations for a given subspace M of X the problem of best approximation is not considered for the whole space X but rather for a subset K of X. This is the case which we consider in this paper and to this end we need some definitions and notation.

If K is a subset of the normed space X and $P_M(x) \neq \emptyset$ (respectively $P_M(x)$ is a singleton) for all $x \in K$, then the subspace M is called K-proximinal (respectively K-Chebyshevian). The restriction of the metric projection P_M to K is denoted by $P_{M|K}$ and its kernel by Ker $P_{M|K}$:

46 Ştefan Cobzaș and C. Mustăța

(4)

 $\operatorname{Ker} P_{M|K} := \{ x \in K : O \in P_M(x) \}.$

For two nonvoid subsets U, V of X denote by $U + V := \{u + v : u \in U, v \in V\}$ their algebraic sum. If every $x \in U + V$ can be uniquely written in the form x = u + v with $u \in U$ and $v \in V$, then U + V is called the *direct algebraic sum* of the sets U and V and is denoted by U + V. If K = U + V and the application $(u, v) \rightarrow u + v, u \in U, v \in V$, is a topological homeomorphism between $U \times V$ (endowed with the product topology) and K then K is called the *direct topological* sum of the sets U and V, denoted by $K = U \oplus V$.

F. Deutsch [2] proved that if M is a proximinal subspace of X then the metric projection P_M admits a continuous and linear selection if and only if the subspace M is complemented in X by a closed subspace of Ker P_M ([2], Theorem 2.2).

In [4], one of the authors of the present paper considered a similar problem for a closed convex cone K in X and a K-proximinal subspace M of X, asking for $P_{M|K}$ to admit a continuous, positively homogeneous and additive selection. The following sufficient condition for the existence of such a selection was obtained:

If there exist two closed convex cones $C \subset \text{Ker } P_M$ and $U \subset M$, such that $K = C \oplus U$, then the metric projection $P_{M|K}$ admits a continuous, positively homogeneous and additive selection ([4], Theorem A).

This condition is not necessary for the existence of such a selection. In this paper we shall give a reformulation (called Theorem A') of Theorem A from [4] and prove that if $P_{M|K}$ admits a continuous, positively homogeneous and additive selection, satisfying some suplementary conditions, then the cone K admits a decompositions $K = C \oplus U$, with $C \subset \text{Ker } P_{M|K}$ and $U \subset M$, closed convex cones (Theorem B). Although the conditions in theorems A' and B are very close to be necessary and sufficient for the existence of a continuous, positively homogeneous and additive selection for $P_{M|K}$, we weren't able to find such conditions. Some situations which may occur are illustrated by some examples following Theorem B.

By a convex cone in X we understand a nonvoid subset K of X such that:

a) $x_1 + x_2 \in K$, for all $x_1, x_2 \in K$, and

b) $\lambda \cdot x \in K$, for all $x \in K$, and $\lambda \ge 0$.

A carefull examination of the statement and of the proof of Theorem A in [4] yields the following more detailed reformulation:

THEOREM A'. Let M be a closed linear subspace of a normed space X and K a closed convex cone in X. If there exist two closed convex cones $C \subset \operatorname{Ker}P_{M/K}$ and $U \subset M$ such that $K = C \oplus U$, then the application $p: K \to M$, defined by p(x) = z, for $x = y + z \in K$, $y \in C$, $z \in U$, is a continuous, positively homogeneous and additive selection of the metric projection $P_{M|K}$. The subspace M is K-proximinal and $C = p^{-1}(0)$, U = p(K).

The following theorem shows that, in some cases, the existence of a continuous, positively homogeneous and additive selection for $P_{M|K}$ implies the decomposability of K in the form $K = C \oplus U$, with C and U closed convex cones.

THEOREM B. Let X be a normed space, M a closed subspace of X and K a closed convex cone in X. Suppose that the metric projection $P_{M|K}$ admits a continuous, positively homogeneous and additive selection p such that:

a) p(K) is closed and contained in K, and

b) $x - p(x) \in K$, for all $x \in K$.

Then $p^{-1}(0)$ and p(K) are closed convex cones contained in Ker $P_{M|K}$ and *M* respectively, and $K = p^{-1}(0) \oplus p(K)$.

If p(K) is a closed subspace of K or $M \subset K$ then the conditions a) and b) are automatically fulfilled.

Proof. By the additivity, positive homogeneity of p and the fact that K is a convex cone, it follows immediately that p(K) is a convex cone contained in M. By hypothesis a) it is also closed.

By the continuity of p the set $p^{-1}(0) \subset \text{Ker } P_{M|K}$ is closed. If $y \in p^{-1}(0)$ and $\lambda \ge 0$ then $p(\lambda \cdot y) = \lambda \cdot p(y) = 0$, showing that $\lambda \cdot y \in p^{-1}(0)$. Similarly, $y_1, y_2 \in p^{-1}(0)$ and the additivity of p imply $p(y_1 + y_2) = p(y_1) + p(y_2) = 0$, showing that $p^{-1}(0)$ is a closed convex cone contained in Ker $P_{M|K}$.

Now we prove that $K = p^{-1}(0) + p(K)$. If $x \in K$ then by Condition b), $y := x - p(x) \in K$. By Condition a), $p(x) \in K$ implying x = y + p(x) with $y, p(x) \in K$. Using the additivity of the function p and the fact that p(p(x)) = p(x)(in fact p(m) = m for all $m \in M$) we obtain p(x) = p(y) + p(p(x)) = p(y) + p(x). It follows p(y) = 0, i.e. $y \in p^{-1}(0)$ and $K \subset p^{-1}(0) + p(K)$. Since $p^{-1}(0)$ and p(K) are contained in K and K is a convex cone, it follows that $p^{-1}(0) + p(K) \subset K$ and $K = p^{-1}(0) + p(K)$.

To show that this is a direct algebraic sum, suppose that an element $x \in K$ admits two representations: x = y + p(x) and x = y' + z', with $y, y' \in p^{-1}(0)$ and $z' \in p(K) \subset M$. It follows p(z') = z' and, by the additivity of p, p(x) = p(y') + p(z') = 0 + z' = z', implying y' = x - p(x) = y and z' = p(x).

It remains to show that the correspondence $(y,z) \rightarrow y+z, y \in p^{-1}(0), z \in p(K)$, is a homeomorphism between $p^{-1}(0) \times p(K)$, equipped with the product topology, and K. To this end consider a sequence $(y_n, z_n) \in p^{-1}(0) \times p(K)$, $n \in N$, converging to $(y, z) \in p^{-1}(0) \times p(K)$. It follows $y_n \to y$ and $z_n \to z$, implying $(y_n, z_n) \to y + z$, which proves the continuity of the application $(y, z) \to y + z$. To prove the continuity of the inverse application $x \mapsto (y, z)$, where x = y + z, $y \in p^{-1}(0)$, $z \in p(K)$, take again a sequence $x_n = y_n + z_n \in K$, $y_n \in p^{-1}(0)$, $z_n \in p(K)$, converging to $x = y + z \in K$, where $y \in p^{-1}(0)$ and $z \in p(K)$. It follows $z_n = p(x_n)$, $n \in N$, z = p(x), and, by the continuity of the application p, $z_n = p(x_n) \to p(x_n) = z$. But then $y_n = x_n - z_n \to x - z = y$, proving that the sequence $((y_n, z_n))_{n \in N}$ converges to (y, z) with respect to the product topology of $p^{-1}(0) \times p(K)$. This shows that the application $x \mapsto (y, z)$, $x = y + z \in p^{-1}(0) + p(K)$, is continuous too and, consequently, the application $(y, z) \mapsto y + z$ is a homeomorphism between $p^{-1}(0) \times p(K)$ and K.

If p(K) is a closed subspace of K then Condition a) holds and, for $x \in K$, p(x) and -p(x) are in $p(K) \subset K$ so that $x - p(x) \in K$, showing that Condition b) holds too. If $M \subset K$ then $M = p(M) \subset p(K)$ and, since $p(K) \subset M$, it follows that p(K) = M is a closed subspace of K. Theorem B is completely proved.

Remark. Conditions a) and b) are fulfilled by the selection p given in Theorem A'. Indeed, $K = p^{-1}(0) \oplus p(K)$ implies that p(K) is a closed convex cone contained in K. Since every $x \in K$ can be written in the form x = y + z with p(y) = 0 and z = p(x), it follows that $x - p(x) = x - z = y \in K$ for all $x \in K$. In the following examples, there always exists a continuous, positively homogeneous and additive selection of the metric projections but, the equality $K = p^{-1}(0) \oplus p(K)$ is not true in all these cases.

Example 1. Take $X = R^2$ with the Euclidean norm and $M\{(x_1, 0): x_1 \in R\}$. Then $P_M((x_1, x_2)) = \{(x_1, 0)\}$, for all $(x_1, x_2) \in R^2$, i.e. M is a Chebyshevian subspace of X and the only selection of the metric projection is $p((x_1, x_2)) = (x_1, 0)$, for $(x_1, x_2) \in R^2$. Let $R_+^2 := \{(x_1, x_2) \in R^2: x_1 \ge 0, x_2 \ge 0\}$. a) Take $K = \{(x_1, x_2): x_1 = x_2, x_1 \ge 0\}$. In this case Ker $P_{M|K} = \{(0,0)\}$ so that the only closed convex cone contained in Ker $P_{M|K}$ is $C = \{(0,0)\}$. The subspace M contains two nontrivial closed cones $U_+ = \{(x_1,0): x_1 \ge 0\}$ and $U_- = \{(x_1,0): x_1 \le 0\} \ p(K) = U_+$ and $K \ne C \oplus U_+ = U_+$. b) Let $K = \{(x_1, x_2) \in R^2: x_2 \ge x_1, x_1 \ge 0\}$. In this case Ker $P_{M|K} = \{(0, x_2): x_2 \ge 0\}$ and the only nontrivial closed convex cone contained in Ker $P_{M|K}$ is $C = \text{Ker } P_{M|K}$. Again $p(K) = U_+$ but $K \ne C \oplus p(K) = R_+^2$. c) Let $K = \{(x_1, x_2): x_2 \le x_1, x_1 \ge 0\}$. In this case Ker $P_{M|K} = \{(0,0)\}$ implying $C = \{(0,0)\}$. We have $p(K) = U_+ \subset K \cap M$ but $K \ne C \oplus p(K) = R_+^2$. d) $K = \{(x_1, x_2): x_1 \ge 0, x_2 \ge 0\}$. In this case Ker $P_{M|K} = \{(0, x_2): x_2 \ge 0\}$, $C = p^{-1}(0) = \text{Ker } P_{M|K}, p(K) = U_+$ and $K = p^{-1}(0) \oplus p(K)$. e) $K = \{(x_1, x_2) \in R^2: x_2 \ge 0\}$. In this case $p(K) = M \subset K$, Ker $P_{K|M} = = \{(0, x_2): x_2 \ge 0\}$ and $K = C \oplus p(K)$, where $C = \text{Ker } P_{M|K}$. *Remarks.* In Example 1.a) none of the Condition a and b from Theorem A' is verified.

In Example 1.b) condition b) is fulfilled but $p(K) \not\subset K$, while in Example 1.c), $p(K) \subset K$ but $x - p(x) \in K$ only for x = (0,0).

In Example 1.d) Conditions a) and b) are both verified but p(K) is not a subspace of K.

In Example 1.e) p(K) = M.

The following example shows that p(K) may be a closed subspace of K with $p(K) \neq M$.

Example 2. Let $X = R^3$ with the Euclidean norm, $M = \{(x_1, x_2, 0): x_1, x_2 \in R\}$ and $K = \{(0, x_2, x_3): x_2 \in R, x_3 \ge 0\}$. Then $p(K) = \{(0, x_2, 0): x_2 \in R\} \ne M$ and Ker $P_{M|K} = \{(0, x_3, 0): x_3 \ge 0\}$. The equality $K = C \oplus p(K)$ holds with $C = \operatorname{Ker} P_{M|K}$.

49

Example 3. Let X = C[a, b] be the Banach space of all continuous realvalued functions on the interval [a, b] with the sup-norm. The set

 $M := \{ f \in C[a, b] : f(a) = f(b) = 0 \}$ is a closed subspace of C[a, b], C[a, b]

 $K := \{ f \in C[a,b] : f(a) = f(b) \ge 0 \},\$

is a closed convex cone in C[a, b] and $M \subset K$.

First show that the subspace M is K-proximinal. For $f \in K$, the function g defined by g(x) := f(x) - f(a), $x \in [a, b]$, is an element of best approximation for f in K. Indeed, we have ||f-g|| = f(a) and $||f-h|| \ge |f(a)-h(a)|$, for all $h \in M$. It follows that d(f, M) = f(a) and $g \in P_{M|K}(f)$.

The kernel of the restricted metric projection is

Ker
$$P_{M|K} = \{ f \in K: 0 \in P_{M|K}(f) \} =$$

$$= \{ f \in K: -f(a) \le f(x) \le f(a), \text{ for all } x \in [a, b] \}.$$

It follows $p(f) \in P_{M|K}(f)$ and the inequalities

为你的发展,我们能在这个年代的资源的关系。 $\|p(f_1) - p(f_2)\| \le \|f_1 - f_2\| + |f_1(a) - f_2(a)| \le 2 \cdot \|f_1 - f_2\|,$ for $f_1 f_2 \in K$, imply the continuity of the application p.

Obviously that p is positively homogeneous and additive on K. Since $M \subset K$, Theorem B can be applied to obtain the equality $K = p^{-1}(0) \oplus p(K)$. In this case $p^{-1}(0) = \{g \in K : \exists c \ge 0, g(x) = c, \text{ for all } x \in [a, b]\} \text{ and } f(x) = f(a) + (f(x))$ -f(a) is the unique decomposition of $f \in K$ in the form f = g + h with $g \in p^{-1}(0)$ and $h \in p(K)$ (g(x) = f(a) and h(x) = f(x) - f(a) for all $x \in [a, b]$

In Examples 1d) and e), the subspace M is K-Chebyshevian and $K = \operatorname{Ker} P_{M|K} \oplus p(K)$. The following corollary shows that this is a general property of K-Chebyshevian subspaces.

COROLLARY 1. Let K be a closed convex cone in the normed space X and M a K-Chebyshevian subspace of X. If there exist two closed convex cones

 $C \subset \text{Ker } P_{M|K}$ and $U \subset M$ such that $K = C \oplus U$, then $C = \text{Ker } P_{M|K}$ and U = p(K)where $p: K \to M$ is the only selection associated to the metric projection $P_{M|K}$.

Proof. Since $C \subset \text{Ker } P_{M|K}$ it remains to show that $\text{Ker } P_{M|K} \subset C$. Let $x \in \text{Ker } P_{M|K}$ and let $y \in C$, $z \in U$ be such that x = y + z. By Theorem A' the selection p is given by p(x) = z and by the additivity of p.

$$0 = p(x) = p(y) + p(z) = 0 + z = z,$$

implying $x = y \in C$. The equality U = p(K) follows also from Theorem A'. A partial converse of Corollary 1 is also true:

COROLLARY 2. Let M be a closed subspace of the normed space X and K a closed convex cone in X. If $K = \text{Ker } P_{M|K} \oplus M$ then the subspace M is K-Chebyshevian and the only selection associated to the metric projection is continuous, positively homogeneous and additive on K.

Proof. First we prove that $P_{M|K}(y) = \{0\}$ for every $y \in \text{Ker } P_{M|K}$. Indeed, $y \in \operatorname{Ker} P_{M|K}$ is equivalent to $0 \in \operatorname{Ker} P_{M|K}(y)$. If $z \in \operatorname{Ker} P_{M|K}(y)$ then, taking into account the fact that M is a subspace of X and $z \in M$, we obtain

$$||y - z|| = \inf\{||y - m|| : m \in M\} =$$

= inf{||y - z - m'|| : m' \in M} = d(y - z, M),

showing that $0 \in P_{M|K}(y-z)$ or, equivalently, $y-z \in \text{Ker } P_{M|K}$. But then y admits two representations y = y + 0 and y = (y - z) + z, with $y, y - z \in \text{Ker } P_{M|K}$ and $0, z \in M$. The unicity of this representation implies z = 0.

Now, writing an arbitrary element $x \in K$ in the form x = y + z, with $y \in \operatorname{Ker} P_{M|K}$ and $z \in M$, we obtain

$$P_{M|K}(x) = P_{M|K}(y+z) = z + P_{M|K}(y) = z + 0 = z,$$

showing that z is the only element of best approximation for x in M, i.e. the subspace M is K-Chebyshevian.

We conclude the paper by an example of a non-Chebyshevian subspace of \mathbf{R}^2 for which the decomposition $K = C \oplus M$ is true. *Example* 4. Let $X = R^2$ with the sup-norm

 $\|(x_1, x_2)\| = \max\{|x_1|, |x_2|\}, (x_1, x_2) \in \mathbb{R}^2,$

and

$$M := \{(x_1, 0) : x_1 \in R\},\$$

$$K := \{(x_1, x_2) : x_1 \in R, x_2 \ge 0\}.$$

It is easily seen that

$$P_{M|K}((x_1, x_2)) = \{(m, 0): x_1 - x_2 \le m \le x_1 + x_2\}, \text{ for } (x_1, x_2) \in K.$$

Indeed, $x_1 - x_2 \le m \le x_1 + x_2$ is equivalent to $|x_1 - m| \le x_2$, implying

$$\|(x_1, x_2) - (m, 0)\| = \|x_1 - m, x_2\| = x_2.$$

(m',0) is an arbitrary element of *M* then

If (m',0) is an arbitrary element of M then

$$\|(x_1, x_2) - (m', 0)\| = \max\{|x_1 - m'|, x_2\} \ge x_2,$$

showing that $d((x_1, x_2), M) = x_2$ and $(m, 0) \in P_{M|K}((x_1, x_2))$ if and only if $m \in R$ verifies the inequality $|x_1 - m| \le x_2$.

The kernel of
$$P_{M|K}$$
 is
Ker $P_{M|K} = \{(x_1, x_2) \in \mathbb{R}^2 : |x_1| \le x_2, x_2 \ge 0\},\$

and $K = C \oplus M$, where $C = \{(0, x_2): x_2 \ge 0\}$ is a closed convex cone strictly the matter well in contained in Ker $P_{M|K}$. Cr.P. But then yadmitu

REFERENCES

- 1. E. W. Cheney and D. E. Wulbert, The Existence and Unicity of Best Approximations, Math. Scand.
- 2. F. Deutsch, Linear Selections for the Metric Projection, J. Funct. Anal. 49(1983), 269-292.

A. Obelly spin and a March as a fair of the part of the spin of t

- 3. F. Deutsch, Wu Li, Sung-Ho Park. Characterizations of Continuous and Lipschitz Continuous
- Metric Selections in Normed Linear Spaces, J.A.T. 58(1989), 297-314. 4. C. Mustăța, On the Selections Associated to the Metric Projections, Revue d'Analyse Numérique
 - et de Theorie l'Approximation 23 (1) (1994), 89-93. Received 3 VIII 1994

Academia Românã Institutul de Calcul "Tiberiu Popoviciu" P.O. Box 68 3400 Cluj-Napoca I România