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SELECTIONS ASSOCIATED TO THE METRIC PROJECTION
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Let X be a normed space, M a subspace of X and r an element of X. The
distance frorn r to Mis defined by

(l) d(x, A[):= inf{ll.r - yll: y e M} .

An element y e M veriffing the equality ll¡- yll= d(x,M) is called an

element of besÍ approximation for x by elements inM. The set of all elements of
best approximation for x is denoted by Pr(x) ,i.e.
(z) P¡a(x):= {y e M: llx - yll= d(x,M)} ,

If Pr(x) + Ø (respectively Pr(x) is a singleton) for all .rc e X ,thenMis
called a proximinal (respectively a Chebyshevian) subspace ofX.

The set-valued applicatiotr P¡r: X -+ ZM is calledthe metric projection of X
onMand afiinction p:X -+ M stchthat p(x) e Pr(x), forall x e X ,is called

a selecfion for the metric projection Prn . Observe that the existence of a selection

for P* inlplies P*(r) + Ø,for all .r' e X , i.e. the subspace M is necessarily
proximinal.

The set

(3) Ker P¡4:= {x e X:0 e P¡¡(x)},
is called the kernel of the metric projection P", .

In many situations for a given subspace M of X the problenl of best
approximation is not considered for the q'hole space Xbut rather for a subset Kof
X. This is the case which u,e consider in tliis paper and to this end we need some
definitions and notation.

IfKis a subset ofthe normed space X and Pr(r) # Ø (respectively PuoQ)
is a singleton) for all ,r e K, then the subspace Mis called K-proximinal (respectively
K-Chebyshevian). The restriction of the rnetric proiection Pnnto K is denoted by
P*ty arrrd its kemel by Ker Pr4*:
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(4) Ker p¡o¡*:= {x e K:O e p¡ae)}.

Fortwononvoid subsets u,vof xdenoteby (J +v:= {u+v:u e (J,v €v}
tlreir algebraic sum. If every x eu +v can be uniquery written in trre fonnx =u+ v with u euand,v ev, thenu +v iscared lherrtrectargebraicsuntof
the sets u and v and is denoted by urv. rf K=(Jiv andthe appricatio'
(u,v) -+ Lt+v, u e (J, 

-v 
ev, is a toporogicar Ìrcttteontorprtisnt betN,ee, Lr xv(endowed lvith the product toporogy) ãnd K trren K is caneá üte crít.ecÍ. toporogicar

sum of tlte sets Uand Z, denotecl by K = U @ r/.
F' Deutsch [2]proved thatif Misaproxirninal subspace ofxthen tlle urehicprojection Pr admits a continuous and linear selection if and only if the subspaceMis complemented inxby a closed subspace of Kerp, ([2], Theore m2.2).In [4], one of the autho¡s of th

for a closed convex cone K in Xand
P¡r,x to admit a continuous, positivel
following sufficient coudition fo¡ flre

If there exist two closed convex cones C c Ker p* and (J c M, such that
P*,, admits a continuouù-, positively
Theorem A).

and prove that if p,rrlr admits a contin
selection, satisSzing some suplernent
decornpositions K= C@ U, with C
co'es (Theorern B). Although the conditions in trreoreurs A,and B are very croseto be necessary and sufficient for trre existe'ce of a 

"orrtinuous, positivelyIromogeneous anti additive selection for pr,*, we weren,t abie to fi1d such

;"",'i.Ïïïf;.1;""å]"tio's 
rvliich mav occur a¡e illust¡ared by some exarnpres

By a convex cone in x we understand a no'void subset K ofxsuch that:
a).ri + x, e K, forall x1,t2 Ç K, ar-td

b) À ...r- e K, for all -r e K, andÀ > 0.
A car.cfull exarnination of the statem e proof of Theorern A in [4]yields the following more detailed refo
THEOREM t\,. Let M be a closed of a ttot.ntecl spaceX ancl Ka closed conver cone ín X. If o closerJ convex cot.tesC cKerPr,* and (J c: M sìuch rhat K = C@ (J, tlrcrt the a¡tplicatto, ,;U _; ;:
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defnedby p(x) = z, for x = | + z e K, y ec, z e(J, isa continuous,posifivery
homogeneous and additive selection of the ntetric projection poo,* . The subspace
Mis K-proximinaland C = p-,(0), U = p(K).

The following theorem shows that, in some cases, the existence of a
continuous, positively homogeneous and additive selection for p*r* implies the
deconrposability of K in the form K = C @ U, with C and [/closed convex cones,

THEOREM B. Let x be a normed space, M a crosed subspace ofx and K a
cTosed convex cone ín x. suppose that the metric projection p*r* admíts a
contínuous, positívely homogeneous and addítíve selection p suclt that:

a) p(K) is closed and contained in K, and
b) x- p(x) eK, for all x e K.
Then p-l (0) and p(K) are close J convex cones contained in Ker pr,* and

M respectively, and K = p](0)@ p(K).
tf p(K) is a closed subspace of K or M c K then the conclitions a) and b)

ar e auto ntatic al ly fulfi ll ed.

Proof. By the additivity, positive homogeneity ofp and the fact rhat K is a
convex cone, it follows irunediately thaf p(IÇ is a convex cone contain edin M. By
hypothesis a) it is also closed.

By the continuity ofp the set p-r(0) c Ker poo,* isclosed. If y e pt(0)
and l" > 0 thenp(I . !) = ?". p(y) = 0, showing that X. y .p-1(0). Similarly,
yy yz ep-1(0) and tlie additivity of p imply p(yt + yz) = pbù + p(y) = 0,

showing that p-t(0) is a closed convex cone contained in Ker pr,*.
Now we prove that K = p-' (0) + p(K). rf x e K then by condition ó),..

y:= x- p(x) e K. By Condition a), p(x) eK irnplying ;r= y+p(:u) with
y, p(x) e K. Using the additivify of the functionp and the fact that p(p(x)) = p(r,)
(irfactp(tn): mforùl m e M)we obtain p(x) = p(y) + p(p(x)) = p(y) + p(x),
It follows p(y) = 0, i.e. y e p-'(0) and K c p-t(g) + p(K).Since p-'(0) ¿n¿

p(K) are contained in K and K is a convex cone, it follows that
p'(0)+ p(K) c Kand K = p-1(0)+ p(K).

To show that this is a direct algebraic sunl suppose tlut ari element x e K adnrits

two representations: x = | * p(x) and x = !, + 2,, witlty, !, e p-l e) ancl

z' e p(K) c. M. It follows p(z') = z' and, by the additivify of
p, p(x)= p(y')+ p(z')=0+z'= z',irnplyrng !,= t- p(x) =yand z,= p(x),

It remains to sliotv tlrirt the eonmpondence (y,z) -+ y + z, y e p-' (0), z e p(K), is

a homeomorphism between p-t(0) x p(K), equipped with the product topology,
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and K. To this end consider a sequence (y,,2,,) e p_r(O)x p(K), tt e N,
converging to (y,z) e p-l(o)x p(K),it follows y, -> yan{l2,, -+ z, implying
(yn,z,,) ) ! r z, which proves the continuity of the application (y, z) _+ y + z .To prove the continuity of trre inverse apprication .r Þ (_y, z), wrrere
x= ))*2, ! ep.(0), z ep(K), takeagainasequeuce .Én= !,+zn e K, !,, ep1(0),z,,ep(K), converging to x=y+ze K, where yep_r(,) ard
z e p(K)' it follows z, = p(x,,), n e N, z = p(.\), and, by the cortinuify of the
application p, 2,, = p(x,,) -+ p(¡,,,) = z, But then y,, = xtt_ zn + x _ z = )),
proving that the sequence ((!,,,r,,7),,.* colìverges ta (y,z) rvith respect to tho
product topology or p-r1o¡ x p(K), This shows that the applicafion x r_> (y, z),
x = l* z e ¡t-lço)+ p(K), is continuous too and, conseque'fl¡ the applicatio'
(y, 

") r-+ y + z is a homeomorphism between p-, e) x p(K) anrl K.rf p(K) is a closed subspace of K then condition a) holds a,d, forx e K' p(x) and -p(x) arcin ¡:(K)c K so trrat .r - p(x)e K, srrowi'g thatCondif ion ó) holds too. If M c. K thett M = p(I[) c p(K) and, sincep(K) c M' itfolrows that p(K) = M isa closed subspace of'. Theo¡e'r B isconrpletely proved.
Remarlc' conditions a) andó) are fulfillecl by the selectio'p give' in TheorcmA', Irdeed, K = f (0)@ p(K) implies that p(K) is a close<l convex collecontainedinK, Since every reK canbewritteninthefomr x =!*z witltp(y)=0 and z = p(x), itfollows that x_ p(x)= x_z = y €Kfo¡all x eK.Irr the following examples, trrere arways exists a continuous, positiveryho'rogeneous and additive serection of the metric projections bu! the eq'arityX = pa (O) @ p(K) is not true in all these cases.

Exatnpre 1. Take x = R2 witrrtheEucritreannonnand M{(xr,O):x, eR}.
Then P¡a((x1,x2))={(-",,0)}, foraD(x1,x2) uRr, i.e.Misachebyshevian.subspace

of X and the only selection of tlie metric projectiori is p((e.,, ,r)) =(,r:,,0), for
(*,, rr) e R2 . Let fi,= {(r,, xr) e Rz: x, > o, r:, à o}.
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a) Take K = {(xr, xr)'.xr: xr,xr2oi, In this case KerPr,* = {(0,0)} so

that tlre only closed convex cone contained in Ker Pr,* is C = {(0,0)} , The subspace

M contains two nontrivial closed cones U* : {(xr,O):x, > 0} and

g- ={(x1,0):xr I 0} pG)=(J*andK+C@(J* =(J*.

b) Let ,< = {(",, xr) e R2:x, > .x,,:c, > 0}. In this case

Ker Pr,* = {(0, xr):x, > 0} and the only nontrivial closed convex cone contained

in Ker Pr,*is C = Ker Pr,*. Again p(K)= tI* but K + C@ p(K) = rt.
c) Let K = {(r.,,xr):x, < x,,x, 2 0}. In this case Ker Pu,* = {(0,0)}

implying C = {(0,0)}. We have p(K) = U* c. KlMbutK + C@ p(K) = p.

d) K = {(xr,xr):xr) 0, xz > O}. tn tlús case KerPr," = {(0, xr):xr> 0}.

C = p-1(0) = Ker prtx, p(K) = (J* and K = p-1(0)@ p(K).

e) K={(tr,rr)eÀ2:;rr>0}. In this case p(K)= M cK, KerP*,* =

:{(o,rr)t*r> 0} and K = C @ p(K), where C = Ker P*,*.

Remorla. kr Example 1. a) none ofthe Condition a) and ó) from Theorem A is vuifi ed.

In Exarnple Lb) condition ó) is fulfilled but p(K)øK, while in Example

l.c), p(K) c Kbut x - p(x) e K only ¡o¡ ¡' = (0,0).

In Exarnple 1.d) Conditions a) and ó) are both verified but p(K) is not a

subspace of K.

In Exanrple lre) p(K) = l¡4.

Tlre following example shows that p(K) may be a closed subspace of K

with p(K) + M.

Example2.Let X = l?3withtheEuclideannoûn, M ={(rr,xr,O):xr,x, e R}

and K : {(0, x2,4):x, e R,t, > 0}, Then p(K) = {(0, x,,O):xre.R}'. ltt and

Ker Pr,*= {(O,xr,O):x, > 0}, The equality K = C @ p(K) holds with

C = Ker Prt*.
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Exampre 3' Let x = cfa,ó] be the Banach space of a' continuous rear_
valued functions on the interval [a, b] withthe sup_norm.

The set

u:= {f eC[a,tfl:f (a) = f(b) = o]
is aclosedsubspace of C[a,b],

Y2={f ec[a,bl:f (a)=.f (b)>o],
is a closed convex cone in C[a, bl and M c. K.

First show that the subspace M is K-proxrminar. For f e K, the fi.rnction gdefined by g(x):= f (x) _ 
-f (o), x e fa, bl, is an element of best apr._*";;:

forfinK. rndeed, wehave llf _sll=f@) andllf _hl!>lftÒ_nço¡l,forall h e M,
It follows that d(f , M) = f (a) and g e puW(.f).

The kernel of the restricted metric projection is

Ker P¡n,* = {-f eK: 0 e parc(f)} 
=

= {-f e K: - f(a) < -f(x) < f(o), foiall x e[a,b]].
It follows p(-f) e Pr¡*(f) and the inequalities

llpí) - I(DII= ll¡, - f,ll+l¡ç"¡ _ .f,(o)l 
= 

2.ll.n _ f,ll ,

for frf, e K, imply the continuity of the applicationp.
obviouslythatp ispositivelyhomogeneous and additive onK. since M c K,Tlreorem B can be appried to obtain the equarity t< = p-lço¡ @ p(K).In this case

P-tQ) = {g e K:ic> 0,g(*)= c, foÍall x e [o,bl] and f(x): -f(o)+(-f(x)-"f (")) is the unique decomposition of -f e K in the fo'n / = g + rt witlt
s e p-'(0) and h e p(K) (s(x) = f(a) and h(x) = -f(r)_ f.(o) fo¡ allx e[a,b]).

In Examples ld) and e), the subspace M is K-chebyshevia' andy = Ker Pulx @ p(K).The fotowing corolrary shows that this is a general propertyof K-Chebyshevian subspaces.
coRoLLARy r. Let K be a crosed convex cone ín trte normed space x and Ma K-chebyshevían subspace tf x u-;;ere exist rwo crosed convqc cones
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C cKer Prlx and U c M srch that K = C @ (J, thenC : Kerp¡a¡* and U : p(K)

where p: K -+ M is the only selectíon assocíated to the metric projectíon py1r.

Proof. Since C cKerP*,* it remains to show that Ker prt cC. Let

x eKer Pr,¡ ând let y e C, z eLl be such that x - y + z, By Theorem A' the

selectionp is given by p(*) = z and by the additivity ofp.

0 = p(x) = p(y) + p(z) = 0 + z = z,

inrplying x = / e c. The equality u = p(K) follows also fro'r Theorem A'.
Apartial converse of Corollary I is also true:
coRotLaRy 2, Let M be a closed subspace of the nornted space x ancJ K a

closed convex cone in x. If K = Ker P¡rlx @ M tlten the subspace M is K-
Chebyshevian and the only selection assocíated to the meîric projection is
continuous, positívely homogeneous and addítive on K.

Proof. First we prove that Pr,"(y) = {0} for every y e Kerpr,". indeed,

y e Ker Pr,* is equivalent to 0 e Ker Pr,"(y). If z eKer poo,*(y) then, taki'g
into account the fact thatMis a subspace ofXand z e M, we ob.øin

lly - "ll= inf{lly - mll:m e M} =
= inf{lly - " - m'll:nt' e M) = d(y - z,M),

slrowing that 0 e P*l*(y - z) or,equivalently, y - z eKer pr,*, But thenyadrnits

tworepresentations y = y+0 and y=(y-z)+2, tvith y, y- z eIàrpr,* a,,d

0, z e M. The unicity of this representation implies z = 0,

Now, writing an arbitrary element x e K in the form x = y-t z, with
y eKer Pr,* and z e M, we obtain

Pr*Q) = P*t*(y * z) = z + pr*(y) = z * 0 = z,

slrowing thatzis the onlyelement ofbestapproximationfor xinM,i.e. thesubspace
Mis K-Chebyshevian.

we conclude the paper by an example of a non-chebyshevian subspace of
R2 for which the decomposition K = C @ M is true.

Exatnple 4.Let X = R2 with the sup-norm

ll('',"r)ll= -a*{l-r1l,l¿l}, çx1,x2) e R2,
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luí:= {(xr,0):rq € R},

K,= {(t, xr):x, e4 ,, > 0},
It is easily seen that

P*¡*((rr,*r)): {@t,0):xt - xz 1 nr 4 ¡, + x2}, for (xr,xr) e K.
Indeed, xt _ xz < rn 1 x1+ x2 is equivalentto l.r, _ nl<;rr, irnplying

If (m',0) is an arbitrary element of Mthen

ll(r,, rr) - (nr ,o)!l= rnax{l;r, - ,t l, xr} > xr,
slrowing that d((x,,:r2),M)= x2and(nt,,) e pu6(e1,*r)) if ard only if m eR
verifìes the inequality lrq _ ntl< x2.

TLe kemel of prr," is

Ker pr,* = {(rr, ,r) e R2: 
| ;, j < xr, x, > 0},

and K = C@ M, where t = {(0, xr):xr> O} is a closed convex cone strìctl¡,
contained in Ker pro,".
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A THIRD ORDER AVERAGING THEOREM FOR KBM FIELDS

CÁTÃLIN CUCU-DUMITRESCU ANd CRISTINA STOICA

(Bucharest)

The averaging theory is one of the most powerfrrl tools in approaching
problems governed by differential equations, The goal of this note is to present a
theoretical exteusiou of the averaging method (based on important rvorks in this
domain: [1-3]), materialized into a tlúrd order averaging theorem for differential
systems having fields with the Krylov-Bogolyrbov-Mitropolskij (KBM)properfy,

The theoretical results we shall present here were developed as a consequence

of the practical necessities following from problems belonging mainly to celestial
mechanics (and space dynamics), but not only. Our theorem and its corollary (for
the case ofperiodic fields) describe constructive methods for obtaining approximate
solutions for the considered differential systems; this recommends them for
nunrerical applications, Their domain of applicabilify is very large, transcending
considerably the celestial mechanics,

DernqntoN 1, Let zbe a small positive real parameter, let Í. e[0,co) be"a

tirne-type variable, and let x e D c R" be an ¡l-dirnensional (spatial-type) vector,

Let a:[O,co) x D -) R" be a KBM function of average a0. Then we define the

operator

(t) A^(a)(2,t,*¡,= 
"ltolo,(",r) - o01r¡]a",

and denote

(2) llÃ(a)ll":= sup ltr(a)(z,t,x)l,
0<ztcl,xeD

DerlNltloN 2. Let ¿ be the firnction considered in Definition 1, consider

á:[0,co) x D -+ R', and suppose that ¿ and å adrnit spatial derivatives (r.e. with

respect to the components of.x), Then we define the operator

(3) B(a,b)(t,x):=Ya(t,x).b(t,x)-Yb(t,x).a0@),

8

li

ri
i

i

ìii


