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A THIRD ORDER AVERAGING THEOREM FOR KBM FIELDS
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(Bucharest)

The averaging theory is one of the most powerful tools in approaching
problems governed by differential equations. The goal of this note is to present a
theoretical extension of the averaging method (based on important works in this
domain: [1-3]), materialized into a third order averaging theorem for differential
systems having fields with the Krylov-B ogolyubov-Mitropolskij (KBM) property.

The theoretical results we shall present here were developed as a consequence
of the practical necessities following from problems belonging mainly to celestial
mechanics (and space dynamics), but not only. Our theorem and its corollary (for
the case of periodic fields) describe constructive methods for obtaining approximate
solutions for the considered differential systems; this recommends them for
numerical applications. Their domain of applicability is very large, transcending
considerably the celestial mechanics,

DEFINITION 1. Let z be a small positive real parameter, let ¢ €[0,0) be a

time-type variable, and let x € D ¢ R” be an n-dimensional (spatial-type) vector.

Let a:[0,00) x D —> R" be a KBM function of average a®. Then we define the

operator

1) A@(zt,2)= 2 [a,(5,0) - ()]s
and denote

) |A(@],:=  sup  |A(a)(z,t,x)|.

0<Lzt<l xeD
DEFINITION 2. Let a be the function considered in Definition 1, consider

b:[0,00) x D —> R", and suppose that @ and b admit spatial derivatives (i.e. with
respect to the components of x). Then we define the operator

3) B(a,b)(t,x):= Va(t,x)- b(t,x) - Vb(t,x) - a®(x).
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Letnow f,g,h:{0,00) x D — R” be continuous functions with respect to all

variables and having the properties: fadmits a uniformly Lipschitzian spatial second
order derivative, g admits a uniformly Lipschitzian spatial first order derivative,
and /4 is uniformly Lipschitzian with respect to its spatial variables. Consider the

initial value problem
dx / dt = zf (¢, x) + 2°g(t, x) + 2°h(t, ),
*) %(0) = x,.
Let u(2) be the solution of the initial value problem
() du/dt = zf°(u) + 22" (u) + 2°h° () + zd, (2) £ (u) +
+ 2d,(2)dy (2) £ (W) + 2°d, (2) f**(u) +
+2%d)(2)g" () + 2d{ (2) [ (w),
U(O) = x())
where we have written

(6) S, x):= B(f, e )2, x), i =13,
g'(1,x):= B(g, ul)(t,x),

S (e )t %ul(t, x)- VVF(t,x) - ul(t,x) - Vil (z, x)- £10(x),
and considered that the functions f; g, A, and those defined by (6) are KBM functions
ofaverages f°, g%, h°, 1%, 1%, 1*°, 0 respectively. We also wrote
) G 2= ANGL), A=A,
dy (2 (1, x):= A(f ")z 1,%), dy(2):=l|A(M,,

ay BER)= AL, =l AL,

(8) dy(2):= “A(gI the f2e Iy f4)”z.

Under these conditions the following theorem holds:

THEOREM 1 (general third order averaging theorem): If the solution u(t) of
problem (5) belongs to the interior of the domain D on a time scale of order z-1,
then the solution of problem (4) can be written as

%) (1) = u(t) + dy(2)u (¢, u(1)) + dy (2)dy (2)® (1, u(2)) +
+ zdy (2)u3 (1, u(t)) + O[(dl (2)d(2) +dy(2) + 2) +

+ 2d3(2))(\[dg 2) +dy(2) + 2) + 22,/d4(z)]

on a time scale of order z™1.
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Proof. Consider the following change of variable

(10) x = y+d(2)u (1, ) + dy(2)dy (20 (1, ) + 2dy (23 (1, y).

Differentiating (10) with respect to z, and taking into account (4), (6), and (7), a
straightforward calculation yields the following approximation of the system whose
solution is y:

)  dv/de=2"(y)+2°g° () + 2d,(2) 1) + 2N (1, ) +
+2%d(2)g' (¢, y) + zd,(2)d, (2) (¢, y) +
+2°dy(2) /* (6, y) + 2d}(2) 142, y) +
+0[2(z + dy(2))(d (2)(dy (2) + dy(2) + 2) + zdy(2))],
»(0) = x,.
Consider the associated problem _
dv/de = 2f°(v) + 228%(v) + 2d,(2) f1O(v) + 22y (2, V) 4
+ 22d,(2)gh(t,v) + 2dy(2)dy (2) f7 (2, v) +
+2A@ V) + 2B @YY,

V(O) = Xg. i
where subscript T marks the following type of averagingi:: o

(12)

(13) ar V)= (s, v)as

Using the well-known estimate [3] =

(14) a0 v = [L (s, 255+ 0,

and Gronwall’s lemma, and observing the hypothesis according to which the fields
is Lipschitzian, we get an approximation of the difference between the solutions of
systems (11) and (12): -

A5)  y@)-v@) = 0[(z + di (2))(d1 (2)(dy(2) + dy (2) + 2) + ,z}z;(fz))# 7
+ 2(dy (2)(dy (2) + dy(2) + 2) + 2d, =) + 22)r]
By virtue of the known estimate [3]

(16) 4r(5,v(5)) = ¢°(v()) + O[l| A(@)II, /(=T
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and applying again Gronwall’s lemma (under the same hypothesis about the
field), the difference between the solutions of problems (12) and (5) can be
approximated as

(A7) v(t) - u(t) = O|dy (2N (2N (2) + dy(2) + 2) + 2 (2) +22)/ (1)

Lastly, choosing T such that (T)*=d,(z), and applying the triangle inequality,
(15) and (17) lead to

18) (0 -ult) = (4 ENA() +dy(2) +2) + 2y (D) VA (o) +
+dy(2)+2)+ 224, @)

If u(f) belongs to the interior of the domain D on a time scale of order 71,
' then from (10) and (18) one obtains (9) and the theorem is proved.

Now, consider again problem (4), all conditions of Theorérm 1 being fulfilled,
and in addition £ g, A, are periodic in #. Let u(#) be the solution of the problem

(19) du/dt = zf0u) + 22 £ 0 (w) + 2 P (w),
u(O) = X5
where
20) S, x):= g(t, %) + B(f,u!)(t, %),
f2(t,x):= h(t,x) + B(f,u?)(t,x) + B(g, u ), x) +
+ %ul(t,x) SVVS(t,x) - 12, x) ~ Vil (t, x) - f10x),
and
(21) zul(t, x):= A(f)(z,t,x), |

2 (t,x):= A(f! + g)(z,, %),
while f°, ', f 2 stand for the averages of the respective fields over one period.
Under these conditions, the following result holds:
COROLLARY 1 (periodic case). If the solution u(t) of problem (19) belongs to
the interior of the domain D on a time scale of order z'1, then the solunon of
problem (&), in which f; g, h are periodic in t, can be written as

(22) x(t) = u(t) + zud' (¢, u(t)) + 242 (4, u(2)) + O(2°) .

on a time scale of order z-1
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The proof'is entirely analogue to that of Theorem 1, in which the supple-
mentary hypothesis of periodicity of the field is used.
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