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1. INTRODUCTION

Consider the nonlinear Volterra integral equation of the second kind:

(L) y©) = fO+ [ K570, 1 L= 10,7,

where the given functions fand K, defined on 7, resp. S xR, (S:={(z,5):0 <
s <t <T}), are supposed to be sufficiently smooth for the integral equation (1. I)

to have a unique solution y € C*(J), witha € IN (see [2], [5]).

The problem of determining an approximate solution for the integral equation
(1.1) using the collocation method has been studied a lot (see [2] and the bibliography

cited therein).
The method described in the following uses as approximating space the space

of polynomial spline functions.
Let Hy:0=1¢ <..<ty =T (with ¢, = t“(N), N <1) be a mesh for /, andﬂ
we shall use the following notation (see [1]):
hy=t,,—t,n=01... N-1,
h=max{h;:n=0,1,. ,N-1};
60:=to, ), ©,:= (s by = 12,...,N — 1;
Zy={t;n=212,...N -1}

and Zy:=ZyU{T}.

Fora fixed N 21 and for all m,d € Z withm > 1and d > -1 the space of
polynomial spline functions of degree m+d and continuity class d, possessing the
knots Z,;is, by definition, the set:
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R {u:u(t)‘ =u(t)eP,;n=0,..,N-1

tec,

uf,{)l(t,,) = u,(,j)(tn) for j=0,L...,d and?, € Z, },

whose elements, on each subinterval ©,, are polynomials of degree not greater
than m+d, and which in the knots Z); are of continuity class d. If d=-1, then the
clements of S&) (Z,) may have jump discontinuities at the knots Z,;.

m—1
In the extreme cases, when m = 1 andd=-1,i.ein SED (Z), the problem of

approximating the exact solution of (1.1) has been solved by H. Brunner and
P.J. van der Houwen (sce [2]), and when d € Nandm =1, i.e. in S (Zy), an
approximate solution has been constructed by M. Micula and G. Micula in [6],
whose convergence to the exact solution has been proved by Malina Lubor in {4].
In this paper we shall construct an approximate solution for the exact solution
of integral equation (1.1) in the space of polynomial spline functions S,(,;Qd Zy),
with m = land d = —1 and we shall prove its convergence to the exact solution.
Moreover, we shall study the conditions under which we can obtain local
superconvergence results. In the end some numerical examples are presented.

2. THE EXACT COLLOCATION EQUATIONIN s, (Zy)

We shall assume in the following that the mesh sequence (1 )Nzl is
quasiuniform, that is, there exists a finite constant y independent of N such that

max,, f, / mingy A, <y <o, forallN € IN.

In [6], M. Micula and G. Micula proved that an element u € S (Z,) has
foralln=0, 1,..., N-1 and for all ¢ € o, the following form:

. d (r) ¢ ] m ]
(2.1) u(t) = u,(t) = i“;—('L)(t DN+ zan',(z — )"
r=0 - r=1
where
dr
M (Y= —u_ (¢ -=0,1,...,d;
un—l( n) [dlr n—l( )]‘_r s 7 > L y Uy
and
, d’ .
W)= | =y =¥ r=0L..d
d¢ e

From (2.1) we have that an element u € S (Zy) is well defined when

we know the coefficients {an_r} i foralln=0,1,...,N —1 Inordertocompute
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these coefficients we consider the set of collocation parameters {c j} ., where
J=1m

0 <¢ <...<c, <1 and the set of collection points is defined by:

N-1

(2.22) xX(N):=|Jx,,
where r

(2.2b) X, :={t,,’}. =t +Gh :1,2,...,m}, n=01...,N-1
So, the approximate solution u € S,(,::)  (Zy) will be determined imposing
the condition that u satisfy the integral equation (1.1) on the finite set X(V),

!
(2.3) u(t) = f()+ [ K(t,s,u(s))ds,  forallte X(N).
Equation (2.3) is called the exact collocation equation for the integral
equation (1.1).
Using (2.2), equation (2.3) tan be written:
(2.4a) z,z(x,,’j):f(tmj) +h"'|':" K(t”’j,z,, +th,, u, (2, + 'ch")) dt + F(tn,j)
for j=1,2,...,mand n=0,1,...,.N-1,

where

n-1 ] [
(2.4b) E(1):= Zh,.J.OK(t, t, +th, u(t, +th))de, forall £ € X, ,
Ci=0

denotes the lag term:
If we replace u in (2.4) using (2.1) we obtain for all n =0,1,..., N-1
d u("_) t j m
(2.5a) A 1 ”)c;.h; +cih Y a, cih = -
r=1

]
Al

_ d
¢j u, (¢
=f(tn,j)+]’njo k{tn’j,tnﬂthn, ‘ n ,11( n)rrh;+
=0 )
m

d+r pd ;
+Z a,,t +rh"‘“")d'c +Fn(tn'j), for j=12,...,m,
r=1

where

(2 5b) F ([): S}IIJ‘IK(I t, +1h, i——u’g{(t") 'l +ia Td+rhd+r)dT
) n . ~ 5 s bj s 1 7 s ir ;i

r=0
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One can observe that equation (2.5) represents, for each n = 0,1,..., N-1, a

recursive system which will give the unknowns {a, ,} —. Since this solution has
Tdr=lm

been found, the values of w.and its derivatives «/,...,4” on o, are determined by

formula (2.1).
Remark 2.1. One can prove, using the Banach fixed point principle, that
for 4 small enough system (2.5) has a unique solution and so the polynomial

spline function « € S,(n‘?d (Zy), obtained from the above algorithm is uniquely

determined (see [2], [5]). :

Suppose now that the given functions fand K are of class m+d+1 on their
domain of definition. This assumption implies the fact that the integral equation
(1.1) has a unique solution y, which is also of class m+d+1. We denote
e®) = y® _ B k=0, 1, ..., m+d the approximation error of the exact solution ¥
and of its derivatives up to k" order by the approximate solution u and,
respectively, by its derivatives. We will denote by e'*) the restriction of e
to the subinterval o, forall n=0,1,..,N-1andk=0,1, ..., m+d, and we shall use

the following notation:
(2.6) ”e(k_)uw:: sup{'e,’,‘(z)l:t €o,,n=0,1..., N - 1}

forall k=0,1,...,m+d.

Conceming the convergence of the method described above we give the
following theorem:

THEOREM 2.2 If f € C"*™!(I) and K € C"* (S x R) in the nonlinear
Volterra integral equation of the second kind (1.1), then:

(i) there exists h > 0 such that foreach h € ((), h ) system (2.5) has a unique

solution that determines a unique element u € S, (Zy):

(i1) for every choise of the collocation parameters {Cﬂj:m with 0 < ¢, <.

<«¢,, <1 and for all quasi-uniform mesh sequences we have:
.7) ”e(k)“ < Ckhm+a'+1~k, k=00 m+d
where Cy, k =0,1,...,m+d denote some finite constants independent of h (but

depending on the {c;}).

Proof. (i) It follows from Remark 2.1.
(ii) We shall prove it by induction.
First, we develop the exact solution y in o, = [0,,] in Taylor series in the

neighborhood of the origin, and we obtain forall © € [0, 1], that:
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m+d y(r) (O) .
(28) y(ThO) = ZT T"h(; + RO(T) _h‘;n+d-rl’
r=0 ;
where

(m+d+1)
Yy (EJO) m+d+1
T)i= ———222
() (m+d+1)! f
So, by (2.1) with n = 0, we have for all 1 ¢ [0,1]

» 0<&, < 1h,

(2.92) e(thy) = y(thy) — uy(thy) = h(’)”“’”l:i Bo, T + Ro(r)],_

where

@+ (g
(2.9b) ]’6”+1B0,r o (V(Tr()l)_ ao,rJ hy, r=1,2,.,m.

Now we shall prove that the coefficients {Bo, },_ are bounded. Since yis
the exact solution of integral equation (1.1) and u verifies collocation equations
(2.3) for © e{¢,, CyyesCptsthen forall j =12 the following relations hold:

¢
e(cjho)=hoj0 [K(cjho,‘tho,y(r/lo))—K(cjh(,,'tho,uo('rho))]dr=
(2.10) =hofOCjZ—];(cjho,‘rho,z(rho))-e('tho)d'c,

where z(thy) € [y(thy), uy(thy)] for all 7 & [0,c;].
From (2.9a) and (2.10) we obtain that

m

T [} e -

@.11) ¢ 0K
=k ; a(cjh(),1:ho,z(thﬂ))RO(t)d'c—Ro(cj).

holds, forall 7 =1,2,...,m.
Using the following notation:

BOZZ (ﬁ(},l?ﬁO,Z"'WBO,n)T,
Roi= (Ro(r) Bo(ea) s Rofc)'

Vi=(cf %) ireim’
Dys= [focj%(tho,Tho,Z(Tho))Td+rdT) =

Jr=lm

90-= (%,1, 90,2>+++> QO,m)T,
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Where
¢; 0K
d0,5:= o, o (6t ¥, 2(5ho)) o ()
System (2.11) can be written
(2.12) (V' =hDy)By = g0 — Ry,

Since, detV # 0 and < K, forall (t,s,y) € S x {y eR:|y|< b},

oK
—(Z, 5,
5 (t,5,¥)

K being a positive constant, it follows that there exists B, > 0 such that the matrix
V - h,D, possesses a uniformly bounded inverse for all 4, € (0, Fo). So, by (2.12)
it follows that
-1

(2.13) Bo = (V = hoDo) (90 — Ry).

Since R,(t) is bounded for all T €[0,1] we have that there exists M, > 0
such that | R,(t)|< M, forall © €[0,1] and

m
IR ()= 251 Roer)I< my = Mg

I=1
and

lqols:= ZICIO1|< mhoKoMo =:0p.
/=1

Using these estimations in (2.13) we obtain the following evaluation
-1 [ : =
214) IBol= [ - Do) (045 + 00) =
which together with (2.9a) proves that:
(2.15) sup{|e(?)|:t e oo} < Coly™ ™! < Coh ™,

To prove that |e®(¢)|< Co l" ' * forallk =12,...,m+dandallt o,
instead of (2.8) we shall use the Taylor series with the rest in the integral form:

mtd () why ytdD m+
}"(‘tho)—z) FO) Thy + J‘hoy(ng?)(Tho—%) “de.

Now, from (2. 1) and (2.9a) we obtain
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[e® ko) = [ (ehy) ~ k)2 <

for each £ =1,

foreach k =d+1,d+2,...,

161+d+1 -k [Z

219

k~-d

& (r+d)!
(r+d-k)!

,d, where §; € (0,4,) and

' (k)(‘tho)) < ptd+l- k[rz

e Bl

" m+d +1- k)

m+d and for all T €0, 1.

g :‘

(r(-: . d)k NI il ) J
)M (m+d+1-k)!

Since |Py,| is bounded for all » =1,2,..., m and 'y(’”””)(&o)’ is bounded

too, we have that:

(e(k)(t)' < Co’kh[;”‘”d”"‘ S CH™ N, forallt e Oy

(2.16)

S0, (2.15) and (2.16) prove that the theorem is valid for the subinterval o,
Suppose now that the following estimations hold for all Jj<n-1

(2.17)
and

(2.18)

We shall prove that (2.17) and (2.18) hold for j

the exact solution y in the interval o, in Taylor series

(2.19)

where

R"(‘C):—

e @l ety + il Cpmrin, s o < c0],

@] =t o k=12, m.

forall T €[0,1].

m+d

= n. Therefore we develop

t+Th)—Zy (;,) r/’lr+hm+d+1R7(T),

(m+d)'

In order to obtain the error estimation on the subinterval o
and (2.1). It follows that:

e" (tll + Th") = y (tn + Tl]”)

(2.20a)

where

32

=0

(r)

("n) “ —1 (tn)

h’rl' +/1,’,"+d+l[

uy(t, fish )=

m

4
D Bt
r=1

+RII (T)}’

jy(rn+d+])(t +sh )(T_'_S)m-rdds’

ns WEuse (219)



66 Joan Danciu 8
(d+r) .
m+1 o 1) Y 3\ hr
(220b) hn Bn,r - ((d + r)' an,rJ n -

Taking account that y satisfies integral equation (1.1) and u satisfies the
collocation equation (2.3) for all 1 €{¢,c,,...,c,},, we have that for all

j=1...,m
t +c J;) ,,j,tn +1h,,z, (t, +‘rh,,))e,,(tn + th,)dt +
n~-1

(2.21) Zhl." (nj’ 0 +Thv l(t +Thl)) i(ti +Thi)d1

where the functions z;, { = 0, 1,...,n have the property that z;(¢) € [¥(2), 14(z)], for

all ¢t eo;.
From (2.20a) and (2.21) we obtain the following system:

X / m+d+1 1
(V_h'a nn)pn _Zhl:[ ) HIB +WF;II.EI' +

(2.22) " ],—"Em(/%ﬂ,n “W)E, + 4,
. zﬂ
where:
_{ r+d i
V= (Cf )j reim’
W.= (c;)j,r:m ;
Y - u
E,.::(/;;' balld ), 4”*—!(’1)J = 0,1,..n;
g iy
Ulg{—(tn j,t, + 1,z (t; + Thy )) d+"d'c) ) if0<i<n-1
13 g ay Jr=lm
me -
U ’%(r sty +Thy, 2,2, +‘th7,))’td+rd’r) , if i=n;
0 oy SIS
Ula_K(t”j,tl +1h, 2 (t + tly))rrdt) , if0<i<n-1
N 0 oy j=l,m, r=0,d
nit ¢, 0K J
T, ity + Th,, 2, (8, + Th,) )t dT , if i=n;
(J‘O 6y(nj n n n( )) 1T
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with

G = —R,(c,) +h, j (t 5210 + 7y, 2, (1, + T, )R, (£)dx +

+Zh{%)jo‘zy<(t ol + TRy 2,8 + Th))R(t)dr.

=0 n

Since, detV # 0 and < Kg forall (t,5,y) € S x {y e R:|y|< b}

oK
—— (L8,
ay(sy)

it follows that there exists /4, > 0 such that for all h, € (O, h,) the matrix ¥ — h,D,

nmn

possesses a uniformly bounded inverse (V h.D ) . We also note that the

matrices F,;, i = 0,7 are bounded, so there exists a positive constant F such that
(2.23) |4, F,,, ~ W< F.
Now, from (2.17) and (2.18) we get
1

d . 3
S KD ) - u@) |
/1,’,"+d+1 '1‘ hm+d+1 rl .

(224) r ,Ym+d+1:= EW®) !

For the estimation of vector ¢, we use the fact |R,(1)|< M, (M, being a
positive constant) for all T € (0,1] and we obtain

m
"q" ”1 ZZZan,jIS ’n(Mn +hnK0Mn +(N— 1)'Y m+d+]KOMnh,~ ) = Q
=)
From (2.22), (2.23), (2.24) and from the above considerations it follows that:

-1
18, 43001, S ] - 1,0,
i=1

2.25 15
(2.23) {th E, | E, + FE® +Q},

which represents a discrete Gronwall inequality for the / 1-norms of the vector §,,
i=0,1,...,n Inthisrelation we have denoted D;:=|| D, illy » which s a finite norm.

Inequality (2.25) proves that [|B,,]l; is bounded, i.e. there exists a positive number
B, such that [|B,]; < B,. Now, from (2.20a) it results
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(2.26) |en(tl_ + 1h. )l (E(n) +B +M )hm+d+l C hm+d+1

forall T € (0,1].
To prove (2.18) for j = n, we derive relations (2.1) and (2.19)  times, !

k=1.. m+d and we obtain the following error estimations:

d
r)l(fu) r—k

)
| (k)(t,,+th,,)} Zy (r,; —-k)I_ B

J’ Iy(m+d+1) (t,+ sh,,)( T_S)m+d—k,dSJ

md+1-k (r+d)! Lk +______
v [Z GraemP I e

for all ©€(0,1] and k=1.2,..,d, respectively, the inequality

(k) m+d+1-k _(r+d) rd-k
'en (tn +Thll)‘ghll [ Z ( +d k)' H r T V +

Wk—)lj‘ ' (7n+d+1)(r +5h )(‘E S)m+d k‘ :l

for all 1€(0,1] and k=d+1,d+2,..,m+d.

Since ||B,I, <8, y("’“’”)(tjsM forallt ec, and together with (2.24) it

follows that there exists the constants C, ,,k=12,.,m+d such that:

(2.27) [P} <G, gimdt, teo,
So, evaluations (2.26) and (2.27) end the proof of the theorem.

Remark 2.3, (i) If we take d=-1and m>1, the theorem is reduced to the
convergence theorem given by H. Brunner and P. J. van der Houwen in [2].

(ii) If we take d=n,neIN and m=1, the above algorithm is identical with the

algorithm presented by M. Micula and G. Micula in [5] and Theorem 2.2 is
equivalent with the theorem obtained by M. Lubor in [4].

3.LOCAL SUPERCONVERGENCE

The notion of local superconvergence is used when on a set of interior points

Z, (or Z) the approximate solution has a convergence order greater than the
global convergence order. Since in many practical problems we are interesed
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only in the approximation of the solution on these points, it is very important to
obtain results concerning local superconvergence.

In the following, to obtain some simpler proofs we shall consider instead of
the nonlinear Volterra integral equation of the second kind (1.1) a linear integral
equation of the following form:

G.1) YO = SO+ [ K5, 1 €[0,T]=

in which the given functions fand K, defined on /, respectively on S, are supposed
to be sufficiently smooth. The local supetconvergence results obtained for equation
(3.1) are also valid for the integral equation (1.1) (see [2]).

From Theorem 2.2 we notice that the only conditions imposed on the
collocation parameters are that they must be distinct and they must belong to (0,1].

The local superconvergence on Z, is closely connected with the choice of the

-~ (see [1], [2], [3]) and with the relation between

j=im

collocation parameters {c '}

their number and the number of the coefficients of the approximate solution
determined from the smooth conditions.
We will give the following theorem concemning the aspects presented above:

THEOREM3.1.lfm=2d+2 and ue S,(,I_Bd(ZN) is the approximate solufion
defined by (2.1) and (2.5), the collocation parameters {c; } - with 0<q<.<c,=1

are chosen such that:

211

(3.2) o) el j kH(s ¢,)ds=0, for k=0,1,.., p-1

Jp, #0, where d+1< p<m,

and if f and K have continuous derivatives of order m+p, then the following
estimation hold.

(3.3) . 1tn€z‘1zx| y(t,)—u(t,)|=0(H"?), for h—>0 and Nh < 4T,
where y is the solution of linear Volterra integral equation (3.1).

Remark 3.2, Itis known that the orthogonality conditions (3.2) imply that the

m-point interpolator quadrature formula based on the abscissas {c;} has degree

7 j=tm
of precision m+p. Since this degree of precision cannot exceed the value 2m -1,

we always have pézn—l.

“
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Proof. The collocation equation for u €S (Z,), which holds only on the
collocation points X(%), can be written in the form

! ! :
(34) ut)=f e+ | K(t.8)u(s)ds=5(2), rel,
where & denotes a suitable function, subsequently called the defect function,
vanishing on X(V). This function is smooth on each subinterval ©,,, with the degree
of smoothness given by that of f and K. Moreover, due to the global convergence

of u, 8(¢) tends to zero, uniformly on 1, as A—>0.
Relations (3.4) and (3.1) yield to a second-kind integral equation for the
error function

(3.5) e(t)=8(t)+'[:K(t,s)e(s)ds, tel,
whose solution is given by:
(3.6) e(1)=8(0)+ [ R(,)5()ds, tel,

where R(t,s) denotes the resolvent kernel for K(¢,s). Substituting z=¢, in (3.6),
n=12,.,N it follows

G.7) e(t,)=5(2,)+ [ R(t, )5 (s)ds=

n-1 1
=5(z, )+§h,. jOR(t,,,t,. +1R)5 (4, +7h )dr.
If each integral equation from equation (3.7) is approximation with an

intepolator m-point quadrature formula based on the abscissas {ti 1hi=1m forall

i=0,1..,n—1 we are led to:

n—-1 m ! n-1
(3.8) e(t,)=8@)+ Z,III[ZVVIR(tn’ti,I)é(ti,I) i En,f) = hE,

i=0 \I=1 i=0
where E, ;, represents the error of the interpolator quadrature formula used, and

W,,1=12,..,m are the weight of these formulas:
By hypothesis (3.2) we get
(3.9) Byl Gl 0 =0, N =
and taking into account (3.8) and (3.9) it follows the estimation which proves the
theorem

|e(t,)|< Nhsup{|E, [0<i<n-1<N - 1} =C-hm,
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COROLLARY 3.3. (i) If the collocation parameters {cj}j=m are the zeros of
P_,(2s-1)-P,(2s-1) (i.e., the Radau Il points for (0,1]), then in Theorem 3.1 we
have p=m- 1 and

- 2m—1 <
(3.10) trnneaz)’gle(tn)l O(h*™")  (as ANO, Nh <4T).

(ii) Ifthe collocation parameters {c; }j=1_,n1 are chosen such that the firstm - 1 of

them are the zeros of P, ,(2s-1) (i.e., the Gauss points for (0,1)), and c, =1 then
approximating the integrals from equations (3.7) with interpolator m - 1 - point quadrature
formula based on the abscissas 4, 1}, Jor all i=0,1...,n =1 one obtains

= 2m~1 <
(3.11) t"rrgrgle(tn)l O(h™™") (as ANO, Nh < 4T).

Remark 3.4. To obtain the local superconvergence one must necessarily
impose jn Theorem 3.1 the condition that ¢, =1. This condition implies that
t, e X(N) for all n=12,..N and so 8(z, )=0. If ¢, <1, then, in general, 5(¢,)=0; thus,
to determine the order of e(z,) we require more precise information about the order of
the defect function & on the set Z,. In case d=—1,m>1 the best order for the function
8is &(z,+1h,)=0(h™) forall £, +th, X (N) (see[2], pp.256). This result proves the
necessity of the condition ¢, =1 to obtain the local superconvergence results.

4. NUMERICAL EXAMPLES

Consider the Volterra integral equations of the second kind

!
“.1) Wty=¢ ~[ ¢ y(s)ds, 1€[0,1),
which has the exact solution y(f)=1 for all ¢ €[0,1]; and )
(42) W= - [ &= (W)- O, tefo)

which has the exact solution y(f)=In(z+e) for all 1 €[0,1].

The exact solutions of these equations will be approximated by the exact
collocation method. The integrals occurring in the collocation equation (2.5)
are evaluated analytically if the method is used for solving integral equation
(4.1). In the second case, when the method is used for solving integral equation
{4.2; the integrals occurring in the collocation equation (2.5) are evaluated
using the extended type precision from Pascal. The resulting nonlinear algebraic
systems were solved by the Newton method.
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We choose m = 3 and d € {-1,0,1}; the collocation parameters are,
respectively, the Radau II points (cl = (4 - JE)/1o,c2 = (4 + \/g)/lo,c3 = 1), and

the Gauss points (Cl =(3—w/§) / 6,c, =(3+\/§) / 6) together with ¢, =1,
Table 1 contains the values of:

lell,:=sup{le, ()| : t o, n=0,1,.,N-1}

Table 1
Collocation at the Radau II points
a N el
Eq. 4.1 Eq.4.2
-1 10 (0.1) 243 x 107 6.21x 1072
50 (0.02) 8.15x 104 1.37x 104
100 (0.01) 3.72x 10 4.62x 10
0 10 (0.1) 3.64x 1072 7.32x 107
50 (0.02) 724 x 10+ 2.81x 107
100 (0.01) 545x 10 6.53x 10°*
1 10 (0.1) 551x1072 8.06 x 102
50 (0.02) 9.27x 104 443x10°
100 (0.01) 2.03x%x 10" 8412 x 10+
Table 2
Collocation at the Gauss points
d HeY lel..
Eq.4.1 Eq.4.2
-1 10 (0.1) 1.84x 102 3.12x 10?2
50 (0.02) 528x10°%3 1.89x 103
100 (0.01) 2.53x 104 524x10"
0 10 (0.1) 4.71x107? 742 % 102
50 (0.02) 7.63x 1073 578 x 10
100 (0.01) 327 x 104 8.37x 10"
1 10 (0.1) 6.32x 1072 1.03 x 10
50 (0.02) 9.18x 10° 241x 107
100 (0.01) 1.67x 107 1.83x 103

obtained by employing collocation at the Radau I point. These values are computed
for every integral equation above. The results given in Table 2 are those obtained

for the Gauss points.
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