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1.INTRODUCTION

In [5] we have described an algorithm for numerical solution of nonlinear
Volterra integral equation of the second kind:

(1.1 We) = f) + [K(ts,y(s)ds, tel=[0T],

0
in the space of polynomial spline functions of degree m+d and continuity of class
d, S (Zy) (m=21,d2-1).
Using the notation and the definitions given in [5], the exact collocation
equation (2.3) from [5] can be written:

(1 28,) u(tn,j) = f(tn,j) + hnd)sl{’)'[u"] v F;’(t”,j)’
where

n-1
2w iltns) + = 21t lu]

denotes the lag term and ¢{)[w], i=1n denote the following integrals
(see [1], [3])

} (,,j,t+‘5h, u,(t+‘th,)) if 0<i<n-1
(13) 0] - =1¢

J Kty 1 tn + Thay thn(ty +thy))dr, if i=n (j=1...,m)
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From [7], we have that an element u € Sr(ndz (Zy) is well defined when we
know the coefficients {an,r}r=f’; forall n=0,1, ..., N-1 (see (2.1) from [5]).
Equation (1.2) represents, for eachn=0,1, ..., N-1 a recursive system which will

give these coefficients.
In the case in which integrals (1.3) can be evaluated analytically the problem

of determining the approximative solution u € S,(;? ,(Zy) and the conver-
gence and local superconvergence properties of this solution had already

been studied in [5]. il .
In this paper we will study the case in which integrals (1.3) occurring in the
exact collocation equations cannot be evaluated analytically.

2. THE DISCRETIZED COLLOCATION EQUATION

Tn most applications integrals (1.3) occurring in the exact collocation equatigns
(1.2) cannot be evaluated analytically, and one is forced to resort to employmg
suitable quadrature formulas for their approximation. In the following we
suppose that these integrals are approximated by quadrature formulas of the

form (see [1], [2], [3], [4]):
ot
(2.1a) $w] - = ZWIK(tn,j’ t; + dihy, (1, +dlhi))’
i=1
and
e Ko
(2.1b) ¢’$1{;)1[un] WS zwj,lK(tn,j, Iy + dj,lhna ui(tn it dj,lhn)),
=1

where pgand p, are two given positive integers. These quadrature form'ulas. are
usually interpolatory ones, with the parameters {d,;} and {dj,l} satisfying,
respectively: ;

OS.dl <..< dul <1 and 0<d;;<..< dj,uo <¢j (j= 1,...,m).

The quadrature weights are then given by:

1y
w = [[[(s=d,)/(d = d)ds, 1=1ooosbty

0 r=1

r#l
and &
wyyi= [T1(s-d,,) /(@) =dj s 1=hsboy j = hewesm.
077

and the corresponding error terms are defined by:
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(2.2) E,(,’J;-)[u,-] = ¢$,{?[u,-] - (T)f,f,)[u,] , j=L..,m (i=0,..,n),

with $$2[;] and §$/)[«] given by (1.3) and (2.1).

We now use the quadrature formulas to obtain the fully discretized version
of the exact collocation equations (1.2). Since the quadrature error terms will be
disregarded, we generate an approximation # € S,(f_z d(Z N) which has for all n=0,
1, ..., N-1and forall ¢ eo, the following form:

)

en i) =2, = YLy S o),
r=0 \ r=1
with A
i) = yN0), r=041,....4,

and which is defined by:
(2'4a) ﬁn(tn,j) = f(th,j) + }%&’g{z[ﬁn] + ﬁn(tn,j),
where

n-1 ;
(2.4b) Byt ) =3 mb$i]

i=0

denotes the approximation to the lag term.

One can observe that the approximation # e S’(,:Q (Zx), given by the fully
discretized collocation equations (2.4) will, in general, be different from the
approximation u € S(‘? (Zy) given by the exact collocation equations (1.2).
Denote by &) = y( -u/, k=0,---,m+d the approximation error of the
solution y and of its derivates up to 4-th order by the approximate solution # and .
respectively by its derivates. Also denote by ég") to the restriction of &%) to the
subinterval o, forall n=0,1,..., N-1; é,(,k) [ RED é(;‘)(t}“EU . The order of &%) |
k=0,1, ..., m+d will depend on the choice of quadrature formﬁlas (2.1), as described
in the following theorem:

THEOREM 2.1. If the nonlinear Volterra integral equation of the second kind
11) fe cmtd+l (I)and K eC m+d+1 (9xIR) and if the quadrature formulas (2.1)
and (2.2) szitisﬁz: i
: ; ]
@5) . [olt +h)de = wolt +dih) = O(K'),i=0,.,n-],
0 I=1
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and
€ Ho
(2.6) I¢(tn + th,) dr ‘Z Wj,I(P(tn + dj,lh,,) = O(h,‘,v") ,j=12...,m,
I=1

0
whenever the integrand is a sufficiently smooth function, then for any choice of the
collocation parameters {cj} P with 0<c,<...<c, <1 and for all quasi-uniform
meshes with sufficiently small h>0, we have:

Q.7

withs:=min {m+d+1, 59+, s1} and Cyare finite constants independent of h.

Proof. We shall prove it by induction using the same technique as in the
proof of Theorem 2.2 from [5].

First, we develop the exact solution y in o = [O, to] in Taylor series in the
neighborhood of the origin, and we obtain for all t€[0,1], that:

é(k)“ <Gk k=01...5
o0

2.8) Jalg) = 'gd y(r)( 0) ,

r=0

TH + Ry(t) - A,

where
(m+d+l)(

£o)

m+d+1
L , 0< ;
(m+d+1)! v S0 <l

Ry(7): =

So, by (2.3) with n=0, we have for all T1[0,1]

(2.9a) é(-;l;()) = )’(Tho) - i?o('l:ho) h()m+d+1ljz,_;) e RO(T):I’
r=1
where

(29b) hm+1B 0r —[y(d'”")(o)

W - AO,r} hy, r =12,...,m

Since y is the exact solution of integral equation (1.1), then forall j=1,2,..
it fulfills the equation

Aeito) = flejho) + hoF[¥], J =12,...m,
which together with (2.1b) and (2.2) (n=0) gives
(2.10)  Hemo) = flesho) + mbdSY] + oESy)

By (2.4), (2.9) and (2.10) we obtain the system:
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5
2.11) (v- hoDo)Bo = do — Ro + K" *no,
where i
BO ‘= (BO,")"‘:l’—m’
Ry:= (Ro(cj)) =
i (C§+r)j,r 1,m
R p-O oK d+l’ .
Do =| 2wy (eshondyiho Zdito)517 |
I=1 o Jor=Lm
with Z(2) e[y(t),ﬁ(t)] , for all t eoy,
o= (A0),
o - = (do, j)j=1’m,
with

o : = hoz (CJhO d; iho, 2( JIhO)) (4))

By (2.11) and (2.5) it follow> that (see [5]) there exist the finite constants O,
and P such that:

m
4 ~ A . —d+
(2.12) ”Bo”l P Z|Bo,11 < Qo+ RhTTET,
I=1
the estimation which together with (2.9a) prove that:

(2.13) sup {|é(t)| te 0'0} <'Coh:
The estimations

B (e
(2.8), (2.9a).
Suppose now that if for all /=0,1,...,n-1

< Coph®™* (k=0,1,...,5) easily follow by (2.13),

*(")(t)‘<c W tes ) k=0,

2.14)

hold we shall prove that (2.14) holds for j=n. Therefore we develop the exact
solution y in the interval o, in Taylor series

Al
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m 7(1,) d+1
(2.15) Wty + thy) =Z-—|"—~:’ B+ KPR (7),
r!
r=1
where
Rn(T J' m+d+1 t +Shn)(T—S)m+ddS,
"o )
for all e (0,1].
So, by (2.3) and (2.15) we have
(2.16a) ,(t, +1thy) =
£ r f‘(r)(t)- 41 < d
Z n 1\*n ,th,r;_l_ m+d+ ZBH,;'IH_ +R"(‘C) ;
r=0 : r=1
where
m+1R y(dh.) 2 r
(216b) hn Bn,r - (d-{-F‘)T Ty hn‘

Taking into account that y satisfies integral equation (1.1) and using the
quadrature formulas (2.1) and (2.2) we have that:

@.17) Wonj) = Flom )ng )]+ ZhEn,

+h1'$nj,n[)’] + hnEn{n[y]a Jj=12,...,n

From (2.4), (2.16) and (2.17) we obtain the following system:

n-1 m+d+1 & 3.4 .
(218) (V-h Dy B = 2 (ﬂ] By + i B B |+
i=0 hn hn .

-1 )
1 2 A . 1 &
¥ hm+d+l [ (h"F"," L W)E” Tt hm+d+1 hnl‘n’,, 5 hinl,i 4
n n i=0
where iy
_{.rt
V= (),
Jr=1m

W:.= (05) ol

jir=lm

7 Nonlinear Volterra Integral Equations 81
(
(Y- i)
Ej Zim h!?' y ( l)' -1 L (l — 0’1, ,n),
r! o
\ r=0

20K P : .
zgy-(t,,,j, t, +dihy, Z,(1; +d,h,.))d, ,if 0<isn-1,

Jr=Lm

f)n,i - = T
{ (Z aéf(tn J» L, + d Ihm Zn(tn +dj,1h"))d-¢,1jr] Cifi=n,

Juelm

with Z;(2) €[ #,(2)}, forallz e;and i=0,1,...,N-1,
1y
( aK n_]’ |+d11", Z(ll +dlh,))dr . if OSZ'SI'I—l,
F.:= i e
e ﬁ uo aK ¥ S .
I‘l]’ tn +d lh"’ Zn(tn +d],1hn))dj,l 5 lf U= n’
J<lm, r=0d

ﬁi: (ﬁxr —"(l—Ol’ )

r=Lm

~

@ (q"’-’ ) —1 m
with

qn,j ‘= ( )+ hllzwjl (Il_)’ tn +d1 lhm n(t T dj,lhn))Riz(dj,l)""

n—1 mtd+l p
+Z}IIL%J ng)(nj’ +dlhvz(t +dlhl))Rl( )
i=0 n

=1

and
Vi ( (j)[y])J — i=0l1...,n

By (2.5), (2.6), (2.14) and (2.18) it follows that (see [5]) there exist the finite
constants M, i=1,2,...,5 such that: -

(2.19) éhMlgllﬁiul +(M2hs L, M3hso+l +M4hs1)/hm+d+l + M.
i=0

B,
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~

Ba

This represents a discrete Gronwall inequality for ;

R o
(2.20) g Met Ms, n=0,..,N -1,

hm+d +1

B

i

n-1
< hM.
=0 li;)

where M : = M,, + My bS5 + M, kS, Thus, by Corollary 1.52 from [3] it follows
that there exist finite constants 0, and P, such that:

2.21)

B
for all n=0,1,...,N-1 with Nh <yT and #>0 sufficiently small.
Now by (2.21), (2.16) and (2.14) we obtain that:

SO+ BT

(2.22) [6(tn + Thy)| < Cu’,

for all © €(0,1], where (:’,, are the positive constants.
Deriving relations (2.3) and (2.15) & times (k=1,2,...,5) and using (2.14) and
(2.21) we easily obtain that:

(2.23) oty + )| < Coph ™

for all T €(0,1] with CA',,,k the positive constants.

'COROLARRY 2.2. Let the assumptions of Theorem 2.1 hold. If the quadrature
formulas (2.1) are of interpolatory type, with u, = W, =m+d+1, then the

approximation 4 € S,(;? d(Zn) defined by the discretized collocation equation (2.4)

leads to an error é(t) satisfying

(2.24) lel., = o(r™*+4+1), (as N0 and Nk <vT)

for every choice of the collocation parameters {cj} with 0<¢;<..<c,<1.
Proof. 1t is know that an m+d+1- point interpolatory quadrature formula is

characterized, in the terminology of Theorem 2.1, by min (s, s;) 2 m+d+1. Hence,

we have s = m+d+1.
Now, we consider the approximation u € S,(n‘? d(Zn) defined by the exact
collocation equation (1.5) and denote by € : =u—u the difference between the

approximation » and the approximation # € S’(ndz J(Zn) defined by the discretized
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collocation equation (2.4), if the assumptions of Theorem 2.1 hold, then one can
easily prove that the order of this difference is s = min (m+d+1, syt1, 5;), thus:

lel, : = el < Ju =yl +ly—l, < CH™* T+ Ch° < OF,

where we used the results of Theorem 2.1 and Theorem 2.2 from [5]. But we can
prove that the order of € will depend only on the choice of the quadrature formulas
(2.1), as described in the following theorem. ‘

THEOREM 2.3. Let the assumptions of Theorem 2.1 hold, then there exists a
finite constant Q such that € : = u—u satisfies

(2.25) ], < 0, with s'= min(so + 1 s),

for all quasi-uniform meshes with sufficiently small h > 0.

Proof. Letg,(¢) denote the restriction of €(¢) to the subinterval G, Subtracting
(2.4) from (1.2) and using (2.2) we obtain the following recurrence relation:

Ho :
(2.26) . _en(t,,, ) =m Wi %Iyi(t,,, ot g, Za(t +d j,,h,,))an(tn +dj )+
. 1=1

n-1 ! My
i oK
+hnEr(z,Jr? (] + D B> Wy 'B;(tn, i +dihy, Zi(t + dlhi))ai(ti +dihy;) +
i=0 I=1 :
n-1

+ Y KEDw)y j=1.m,

i=0
where Z (f) € [u,(9), i,(0), forallt €o, (n=0,1,...,N-1).
By (2.1) from [5] and (2.3) we have that for all T €(0,1]

cd (r)

m

2.27) &, (1, + Thy) = Zfﬂ:‘t—”)(rhn)’ 3 (@ = gy o), m= 0,0 N L

!
r=0 Y r=1

3 ] . ~ d+
If we denoteby M, : = (nn,l, N, 255 nn,m) with n,,:= (an,r ~ )hn g

using the notation from the proof of Theorem 2.1 then by (2.26) and (2.27) we

obtain the following relation: i
AL

(2.28) (V ~ by Dy = 2, hi[ﬁn,ini +F, ;- éf] +

i=
n-1

+(hnﬁ;1,n 1l W)gh + hnrn,n i Z hirn,i,

i=0
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where
D (e
& = {Sl—l(tl)hl ] y i= 0,1,___,)1.

This equation is analogue to (2.18). Now using the same technique as in the
proof of Theorem 2.1 or of Theorem 2.2 from [5] one can prove that

”nn”l = O(hs') and | &, ”1 = O(hs') and thus by (2.27) it follows that there exists
le]., < Or*', with s' = min{sg +1,s}.

a finite constant Q such that:
Remark 2.4. (i) Theorem 2.3 and Theorem 2.2 from [5] imply Theorem 2.1,

because we can write &, = [y — ], <[« - o + =, = -l + el

(ii) If we take d = -1 and m 2 1 the above theorem and corollary are reduced
to the theorems given by H. Brunner and P.J. van der Houwen in [3], pp. 260-262.

In the numerical applications it is very important that the convergence order
of the methods used to be the highest possible. From Theorem 2.1 it follows that
the highest convergence order, in the exact collocation method for m and 4 fixed,
is s = m+d+1, which is obtained when the quadrature formulas used are such that
sot+1and s, are greater than m+d+1. Also, to reduce the volume of computations it is
useful to employ the simplest possible quadrature formulas and which have highest
degree of precision. For instance, if we consider p = py =, and d;; =d;-d; then:

() if 2p > m+d+1, {dl} 1<In are the Gauss points for (0,1) and quadrature
formulas (2.1) are of the Gauss quadrature formulas, then we have s= m+d+1;

() if2p>m+d+2, {d;} =i e the Radau Il points for (0,1] and quadrature
formulas (2.1) are of the Radan ‘quadrature formulas, then we have s = m+d+1.

In many papers (see [1], [2], [3], [4]) the quadrature formulas used have
o =Ky =m, dj =cand d;; = cc (,l = 1m). The possibility of employing some
quadrature formulas of this type in our method would lead us to some
simplifications. These simplifications are useful when they do not spoil the
convergence order given by Theorem 1.1, namely s=m+d+1 in Theorem 2.1. An

answer to this problem is given in the following corollary.

COROLLARY 2.5. If in nonlinear Volterra integral equation of the second
kind (1.1), fe C"*9*1(I) and K e C"* 9*1(SxR) and if m 2 d+1, then there

exists the set of collocation parameters {c;} 1, such that for the approximation
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u eS,(nd_zd(ZN) given by the discrete collocation equations (2.4) in which

By = By =M, dj=cj and a'J = ¢ we have

(2.29) lel, : = y-4, = O(h””d*l).

Proof. If p = p, =y, =mandm 2 d+1, then it follows that 2p > m+d+1 and
by the above remark that there exist the m Gauss points for (0,1) such that (2.29)
holds. If p = m > d+2 then it follows that 2p > m+d+2 and there exist the m Radau

11 points for (0,1] such that (2.29) holds.
If the kernel K(t,5,y) can be smooth extended to S'xIR, where

S'={(t,5): 0 < s < t+8} N I x I, forsome 8> 0 then the integrals 05[]
in (1.2) may be approximated choosing i, = py, dj,, =d,

; [l
(2.30) ¢$1{r)1[un] ‘= Z"ij,lK(tn,j’tn + dlhn:un(tn + dlhn)),
. =1
with 2 O
W’j,l = JH(S_ dr)/(dl _dr)ds’
073
and the corresponding error terms are defined by: -
(2-31) Er(i,jrz[un] = ¢£zj,r)1[un] . $r(1{ll[un] , J=1...,m.

Using quadrature formula (2.30) in the discretized collocation equation we
have the following equation:

' . n-1 (s
@32 iiltyy)= St D+ h8E) S AE ], = m(r=0,. N 1),
=0

i=
where the approximations ﬁES,(,ﬁzd(Z ~) have forms analogous to (2.3) for all
n=0,1,.,N-1andforallt € o,

If we denote by &:=y—1 the approximation error of the solution y by the
approximate solution % and by T = u — u the difference of the approximation
u by the approximation % , then repeating the above reasoning one can prove the
following theorem:

THEOREM 2.6. Suppose that the given functions f € cmrdtl () and K e Cmt

(S'xIR), then the following assertions are true:

a) if the quadrature formulas (2.12) and (2.3 0) have the convergence order
s, then for any choice of the collocation parameters .{cj} {= mWith0<¢,<...<c, < 1
and for all quasi-uniform meshes with sufficiently small h > 0, we have.
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et =y, =0(r*)
and
€], =l = O(hsl )

withs : = {m+d+1, s;};
b) if the quadrature formulas (2.1a) and (2.30) are of interpolatory type,

with ., = m+d+1, then
e, ==, = o™ ")

¢) if m > d+ 1, then there exists the set of collocation parameters {c J} -
J=lm

such that for the approximation u eS'(n _zd(Z ~) given by the discrete collocation

equations (2.32) in which p; = m, a'j =¢ and d;;= ¢, we have
el : =[5y~ = o™ *"*).

Remark 2.7 (i) The results of the above theorem for d = -1 and m > 1 is
reduced to the results given in [3].

(ii) Other possibilities for discretization of ¢;(1J;2 [un] can be found in {3].

3.LOCAL SUPERCONVERGENCE

We now deal with the question of the attainable order of superconvergence
(on Z,) in approxunatlons ueS( ) (Zy) defined by the fully discretized
collocation equation (2.4) and, respectively, in approximations # e Sr(ndfd(Z ~)

defined by (2.32). As in [5], we state the results for the linear integral equation
¢
(3.1) A =S+ [K(s)s)ds, 1er=[o1],

the modification for the general case being straightforward. It is again assumed

that the underlying mesh sequence is quasi-uniform. We have the following theorem:
THEOREM 3.1. If m> d+2 and #,u eS r(n 4? d( ), denote, respectively, the

collocations approximations determined by (2.4) and (2.32), the collocation

parameters {C ]} 5 with 0 <c¢; <... <c,, = 1 are chosen such that:
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1 m
(3.2) =J.skH(s—cj)ds=O, for k=0,L..., p—1,
0

J=1

Jp#0 , where d+1< p<m,

and iff and K have continuous derivates of sufficiently high order on their respective
domains, then the following estimations hold:

(3.3) tll:ne%); IY(tn)_ it )' = O(ha)
and
(34) tnéz}x | W(t,)- (2, )l = O(ha)

where o : = min (ntp, 5y+1, 5,) and y is the solution of linear Volterra integral
equation (3.1).

Proof. We shall prove that formula (3.3) holds, the proof of (3.4) is analogous.

The collocation equation for # eS(n +) (Zy) (equations (2.4)), holds only at

the collocation points X(N). It can be written in the following form:

(3.5) u(t)= f(r) + jK(t,s)u(s) ds—g(t), tel,
0

where & denotes a suitable function, subsequently called the defect function. This
function has the form:

n-1

GO §h,;)=hEDw, +ZhE(J

, for all 7

,,jeX(N)

n,i

Subtraction of (3.5) from (3. 1) ylelds a second-kind integral equation for the ~
error function:

t
(3.7) &()=8(e) + [K(t.5)2(s)ds, tel,
' 0
whose solution is given by:
t
(3.83) &(1)=8(t) + [R(t,)8 (s)ds, rel,
0

where R(z,5) denotes the resolvent kemel for K(#,s). Substituting =¢, in (3.8),
n=12,..,Nit follows:
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(3.9) &(t,)= j R(t,,,5)3 (s)ds

= S(tn) + ZlyIR(tn,ti +thy)8(t; +h; ) dr.

T . : _

If each integral from elquati%n (3.9) is approximated with an interpolator

m-point quadrature formula based on the abscissas {z; ,} i foralli=0,1,...,N-1
we are led to: ]

n-1 m
(3;10) é(’ft_)=S(?n)+§hi[zblR(tmti,l) ( )+Enl

- where E,; represents the error of the interpolator quadrature formula used, and bl,
1=1,2,...m are the welght of these formulas.

By the hypothesis ¢, = 1 and (3.2) we have |En,,-| <C; K"™*P and by (3.6) we

get 8(: )<Qh“0+l+ P (C,, O, P are the positive constants). Using these
estlmatlons in equation (3.9) we obtain that

,é(t,,)l <Ch*, with o = min{m+ p, sy +1,5}.

Remark3.2. Theorem 3.1 can be proved using Theorem 2.3 stated above and

Theorem 3.1 from [5]. -
By Theorem 3.1 one observés that the local superconvergence on Z,, is

closely connected with the choice of collocation parameters {cj} (see [1], [2], [3],
[4]), the relation between their number of the coefficients of the approximate solution
determined from the smooth conditions and with the choice of the quadrature
formulas (2.1), respectively (2.30). If the parameter ¢,,= 1, then the number of p

cannot exceed m-1, and the convergence order cannot exceed the value 2m-1. The

convergence order o = 2m-1 can be obtained when we choose m > d+2, { }]__m -m

Radau II points for (0,1] and the quadrature formulas used are such that s;+1 and

s, are greater than 2m-1 (see [1], [3], [S]).
Ifin the quadrature formulas (2.1) and (2.30) we consider p,=p, =mand d,
=c;, d. 1= ¢, forj,/=1,...,m and then we obtain an algorithm for whlch the local
superconvergence order is given in the following theorem.

THEOREM 3.2. Let the assumption of Theorem 3.1 hold. If in quadrature
Jormulas (2.1) and (2.30) we consider p, = p, = m and a’ S dJ 1= ¢y Jorjl=
1,...,m, then the following estimations hold:
11 max (y(¢,)— iz, )| = O(h™+P
@3.11) tnEaZle(n), (t,) = o(*)
(3.12) max ‘ w(t,) - ﬁ(t")l = 0(h’"+1’) (as BNO, Nh<4T),
N

h

where y is the solution of linear Volterra integral equation (3.1).
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Proof. If py = p; = m and d cic; for j,1 .»m, then by (3. 2)
follows that the convergence ordér for quadra e formulas (2 1) and (2.30) is
5y =51 = mtp, i.e. there exists the positive constants C;, C, such that:

613 (Efu]scn™?,i=0, (57(1]71) [1:])< Cl"'"+pJ,
and
(3.13b) |E,|<Ch™P, i=0,...,n

forallj=1,..,m (n=0,1,..,N-1).
From (3.6) and (3.13) we get lg(t”’f)
equation (3.10) we obtain that:
le(t,)|<cr™P, n=0,,..,N-1

< Ch™*P and using this estimation in

COROLLARY 3.3.Let the assumption of Theorem 3.2 hold, then if the
collocation parameters {cj} = im are the zeros of P, ,(2s-1) - P, (2s-1) (i.e the
Radau II points for (0,1]), then in Theorem 3.2 we have p-= m-1, i.e.:

tnéazx é(t,)| = O(*™1); (as INO, Nk <yT)
e | &(t,)| = 0™ 1), (as BNO, Nh<qT)
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