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Let us consider the operational equation:
(1) f(x)=06

where f:X — X; Xand Y are normed linear spaces and 0 is the null element of
the space Y.

Newton-Kantorovich’s iterative method for the approximation of the solution
of equation (1) consists of a sequence (x,,),y < X, beginning with an arbitrary
element xy € X, based on the relation of recurrence:

@) Xpar = %y =[] f(5,) , n €N,

It is known that this iterative method has the order 2, which means that in
certain conditions imposed to xy we have the inequality:

€) . L Gen)li< CILL oI

with p=2 and C constant.
If in the relation of recurrence (2) we add an adequate term of correction we
will obtain Chebyshev’s iterative method, method for which the relation of

recurrence is:

(4) Xngl = Xy _[f’(xn)]_lf(x") = %[f,(x’l)]_lf"(xﬂ )h3 )
where
o = [ Ga)] G-

Chebyshev’s method is faster convergent than Newton’s, relation (3) being
satisfied for p=3 (but the conditions on the initial element x will be, in this case,

stronger).
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Obviously, in relations (2) and (4) /' and /" represent the Fréchet derivatives
of order 1 and 2 respectively, of nonlinear mapping f. We will suppose now the
existence of these derivatives.

If we denote by (X,Y) * the set of the linear and continuous mappings defined
on X with values in Y, there results that for every n € IN, [ f'(x, )]_1 e(X,Y)
and thus the application of methods (2) and (4) requires for every n e N the
inversion of a linear operator, that is the resolution of a linear equation.

This drawback can be eliminated by the introduction of a second sequence
(4)nev < (Y, X)* and the approximation by this sequence, simultaneously with
the solution ¥, of the mapping [ /()] .

Like in the papers [1],*[2], [3], [4], [5] let p g]N and let mapPing
Spi1: (XYY X (T, X)" — (¥,X)" be defined for 4 € (X,Y)" and 4y € (¥, X) by:

P
Spa1(d, do) = do (I - Adp)F,
k=0
where [ is the identical mapping of the space Y. .If A1 e'(Y , X ) exists, Sp41(4, 4p)
will be called the p+1 approximent of 4~ with the aid of 4. ,

The sequence (4n)nen defined by 4, = Sp4+1(4, 4,) verifies the inequality:

I~ ;)< |1 - s+

from where we infer the fact that if ||/ — 44g||<1, there results the existence of
the mapping A" which is obtained as a limit of the sequence (4,),en the speed
of convergence having the order p +1.

Combining method (2) with the simultaneous approximation of the mapping

[ f ’(35)]_1 we obtain the method defined by the following relations:
(5) Xpgl = Xy = Sp+1(f’(xn )’ An)f(xn)
Apy1 = Sq+1(f’(xn+l),An) E >

P,q €N, x; € Xand 4, € (Y, X)* being the arbitrary elements. This method was
studied in detail in papers [2], [3], [4].

Letus apply the same proceeding to method (4). We will obtain the following
variant of the Chebyshev method:

D, = Sp+l(fl(xn )’An)
© %0t = 50 = Daf (i) = 5 Da i) (Do 5}
Api1 = Sq+l(f’(xn+l)a‘4n)
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Here, too, p, ¢ €N, xp € Xand 4y € (Y, X )*. The convergence of method
(6) constitutes the subject of the present paper. .

Denoting by B(xg, R) the ball with the centre in x and having the radius R
we have the following: s A .

THEOREM 1.Jf p21, ¢ 22, X, and Y areBanachspaces xg €X, 4y (¥, X)
and R > 0and the following conditions are fulfilled:

i) f admits the Fréchet derivatives up to the third order, the third order
included, the application f'(x) being inversable on every point of the ball
B(xp, R), existing L, M >0 so that: '

@ r@lsLlrelsnlrels o] s m
for every x € B (xy,R); .
o demal Llooh - o)<t
R> 2B(p;|-1)u1_d2 \

where C; and C, verify the system:

(vet +uct™) <1

(8) ; ’
(G, +wC)T <G,
and
u=1+2(p+1)2PM?
o %LM(p+ 13 +42MA (p+ DA (u+1),
w= 4LM2(1) +1);
then:

) ;hesequences (%, yem S X and (4,),en < (Y, X)* generated by relations
(6) are convergent, ¥ = lim x, € B(xy,R) is the solution of equation (1), and
n—o
A=[r®]" = lim 4,
1 n—»00
jj) the following evaluations of the error of approximation holds:

st = %a] < 2M(p + DuCid®’,

37]

% - x| < 2M(p + uCy v
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e NE (ad3" )q+_1

|41 = 4| < 20 a=C, +w(,

- 4%
oM ) d3:m (ad3" )q+1
”A - A"” < 1~ lf 2T 1= g2erE | "%E IN.

Proof. We will prove that for every n € IN the following propositions are true:
a) x, € B(xg, R),

b) p = |/ ()| < Cid® and 8, = |1 - f7(x,) 4, < Cod®"
c) [|4,] < 2B.

Evidently, the propositions a) - ¢) are true for n = 0, using for this the
hypothesis ii). In case the proposition c), because:

ol [ o) |1+ 1 - £ ro) o) < M1+ Cp),

we infer from system (8) the fact:

Civ+1 S-l-
U

and as u>i we deduce C; <1, so "Ao” <2M.

Let us suppose that the relations a) - ¢) are true for every n < m and we have
to prove that they are true for n=m+1.

In relations (6) there appears the aiding sequence (D,)yen < (¥, X ).

For every n < m we have:

p p
|42l - reaal <l4l y chak
k=0 k=0

p4 . X
= AMZ(I_fI(xn)An)
k=0

As C; <1, d <1, ||4,||< 2M; we infer the fact that: ||D,||< 2M(p +1).
Thus:

[ Xn41 = xall=

{I+ f"(xn)( D, f(x,),D )}f(xn) <

<[l G-

I +%f”(xn YD, f (%), D,
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< el(1+ 2 B D)<

< 2M(p + D1+ 22M*(p + 12| f (x,)] <
<2M(p+ )1+ 2PM2(p+ 12]Cd™ = 2M(p + 1)Cpud™;
So:

m- m q
"xm+i - x0|| < Z ||x,-+1 - x,-“ <2M(p+ l)CluZ d3'
i=0 i=0

From the fact that 3 —1=(3- 1)1+ 3 +...+3* 1) > 2kand d <1 we have:

6 iafl Caeatp L LIy o
Yd¥ =d)y d*t<a) (a?) <
i=0 i=0 i=0

_ L d
SO ||x,41 — Xoll< 2Mu(p + l)i 7 < R, so thatx,,,; € B(xp, R).

Then it is obvious that:

[FEERY/ES

< f(xm+l) — f(xm) o f’(xm )(xm+i — Xy (xm+l =~ Xm )2 +

S (xp)
(10) )= 31

+ f(xm ) + fl(x"_')('tmﬂ T xm) i e f"( M) ( m+1 m)2 '

We denote by 4, and B,, the two terms from the second member of inequality
(10). First, using Taylor’s formula we have the following:

An = “f(xmﬂ) = f(xm) = [ )(xm-_l-l A X))~ f"( ') (xm+l Xm )2
(11 B -31—' ?p "f’"(xm + (X1 = X ))" j HJC,,,.,.] ~m "3 .

4LM (p+l) u I

[2M(P+1)u] ||f(xm)|l = Ien's

Then:
f'(xm)(xm-é-l = xm) = _f’(xm )Dm[f(xm) + %f”(xm )(Dmf(xm ))2]
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So that: ) 7
f(xm) + f’(xm)(xm-i-l - xm) = f(xm)+5f”(xm)(Dmf(xm ))2 -

L PP = S D] 750) 3 D 507 | =

= (1 - f’(xm )Dm )|:f(xm) + %f”(xm )(Dm.f(xm ))] _ _;'f”(xm )(Dmf(xm ))2 .

We also have:

1 . | 2
——f ;)!Cm) (Em+1 = xm)2 3 f—({cm—){Dmf(xm) + % Dy, [ G XD f (X, ))2} 7

= fl,v(;’lt)( mf( m)) f”(xm)( mf(xrﬁ)’ Dmf’,(xm)(Dmf(xiii ))2)+

" 2
+f_(8x"_1_) (Dmf"(x'm N Do f G ))2) :
Thus:
fll

PG oot~ ) 10,

_(1 f (xm) )I:f(xm)"' f"(xm)(Dmf(xm)) ]

LG 102, X G L B 7 XD )

Because:

. P
1= f'(xp)Dy =1 = ["(xp)4m Z (I i f'(xm)Am)k = (I"“ S ) Ay )p+1’
k=0

we will have:

By <1 = £GP 11 S 2 ,,,)||(1+
.. 3 )

/" (x ’”)”HDmH 1| f(x m)”)

" 2
LG b i eI+ € 1 G <

<1~ £ G 1S G (1 2M2 L (0 + D7) +

(12) 822 (p + 1 + 82 (o + D° 11 G
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From (10), (11) and (12) we obtain:

ey B LM3 (p+ D2 G +
13)  +dl = £ )P f(xm |+ 820 (p+ )14 ML (p 4172

L Gendl = S Gl + ol = £ Gend i UG
We also have:
A= [ s A = L= f '(xm+1)Ameq;)(1 = [ 1) A =
= (I~ f' s 4n)™H,
it is obvious that:
e S CZ B PR H M E

“1 f (xm)Am"+ sup "f"(xm +t(xm+1 xm))ll "xm+l xm” "Am“<
(14)
<|r- f (x,,, )A

17 = £/ G At < ([ = S Com) | + W £ Gl

g+1

Taking into consideration the significances of p,, and 8,, inequalities (13) and
(14) will be written:

(15) | Pm+1 S me + qu5p+l
. 1
81 < (8 +wpy, )q+ 2

But py; < C1d3 and 6,, < C2d " where C, and C, are the solutions of system (8).
As p>1 we obtain:

d m+1 m m
et SVCIA® +uCCPHIg3 T

3m+l

4 cl[vc% +uCP g " ]d3'"” <Cd*

and

St S (Cod” +wC1d3"') = (Cy + wC)THd@ < Cpdas?,
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m+l
But ¢ > 2 so that (g +1)3" 2 3™+ and i1 S C2d3

So the propositions b) are true for n=m+ 1.
The propositon c) results identically with the case n=0.
So, based on the principle of mathematical induction the relations a) - ¢) are

true for every n € IN.
We will prove now that the sequence (X, ),eN is a Cauchy sequence.

nt+m-1 atm-1 .
”xn+m - xn" s Z ”xi+1 - xi” <2M(p+ l)Clu z d3 =
(16) it P i=n gm
= 2M(p + )Cpud® Z a3 oM+ 1)Cp _
Jj=0 : 1- d2'3

But d<1 so that lim||x,,,,, — x,||= 0, hence the sequence (x,),enN is convergent
o s : n—>00 -
being in the Banach space X.
If x = lim x,, then from (16) we will obtain:

11— d3
”x - xn" <2M(p + HuCy |
1-d2%

from where if n=0 we deduce ||X — xp||< R, so X € B(xgp, R).

Refering to the sequence (4, )yem S (¥, X)* we have:

q
[t = 4l < |4 DN = £ @) ] <
k 1
q
< 232 (8, +wpp)* < ZBZ[(Cz +wCp)d? ]
k=1 k=1
As o = Cy + wCy we deduce that:

2 \g+1
r::taf3n —(Otd3 )

441 — 4,] < 2B ; and so:
1-oad
q+1
3 3
n+m—1 n+m-1od’ — (ad )
<

[nom = 4l < 2o dosr = 4] <28 3 7
(17) F "n+m 1 iy "1 1 Lo
n+m
[ Z 23 et Z ( d(q+1)3')J
1-aa’3"

g+l
2B ad® (“d ! J

1—ad? |1-0a?¥ 12 g¥@tD3”

<
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From (17) we deduce that lim || 4,,,, — 4,||= 0, so the sequence (4, )neN
n—o
is a Cauchy sequence in the Banach space ¥, x )* so itis convergent in this space.
If A= lim A,, then from (17) we deduce:

n—®
3 g+1
2B ad® (ad )

1-ad® [1-ad®¥ 1= g¥@ )3

[1-4]<

So the theorem is proved.
To simplify the method it is good to consider for p, ¢ € IN the smallest possible
values, whichare p =1 and g = 2. Then in the method the following will appear:

Sy(f'(xn), 4n) = 4n(21 = f'(x)4,) and
Sy Gonet) An) = o[ 31 =31 ps1) Ay + (£ i) )" |

In this case the iterative proceeding (6) becomes:

[Dn = An(ZI - fl'(xn)A ) >
(18) L = 3 = Dy (5) = 2 D "G Duf G
Ay = 4,30 =37 i)y + ()4,
. nelN
The constants u, v, w will become:
u=1+82M> ;
_ 32LM°

(19) (1+ 8L2M2)3 +1280M*(1+42M%),

w=8LM>(1+ 82 M?) ,
and the radius of the ball on which the conditions over the application f are imposéd
is given by the inequality:
R2>4Mu

1= 4%

The constant C; and C, will be solutions of the system:
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s {vcf +uCl <1

(C, +wC)’ <C,

Let us examine the determination of a convenient solution of system (20).
In the first inequality from (20) we suppose to be satisfied the equality and

we will deduce:
’ 2
Ci = 1 = uC2
3
) < Cz.

Letus putin (21) C, = x* €]0,1[ and we will obtain:

- 6
’1—ux
X3+ W <x
v

so for C, we will obtain:

5 \4

. 2

@1 [C2+w dzuks
v

inequality which is equivalent to:
(v+ uw‘S)Jc6 ~ 2wt +w? —w? > 0,

If now we put here x? = y we obtain:

(22) 0() = (v +un?)y’ 20 +vy - w? 20

If we calculate the d.erivatives of the order 1 and 2 of the function ¢ we obtain:
o'(y)=3(v+ uwz)y2 —4vy +v and

@"(y) = 6(v + uw?)y? ~ dv.
It is obvious that: .

@(0) = —w? <0, ()= (u-w? >0,
@'(1) = uw? >0, @"(1) = 2(v +3uw?) > 0.

So the equation ¢(y) = 0 has at least one solution in the interval [0,1] and the first

Newton approximation relative at the function ¢ and the point y=1 is superior to
the largest of these solutions. So, this approximation will represent a convenient
solution of the inequality (22) and this will be:
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o) _,_ (u-Dw’ _1
Bl ey et
?'(1) uw u
3 1 1 [u? -1
As Cp = y? itresults that C, = —= and accordingly Cy = =,|%———
uvu u \'4

n=1

So, we have the foliowing:

COROLLARY 2. If X'and Y are Banach spaces, xo€X, 4 e, X), R>0
and the following conditions are fulfilled:

i)f qdmits Fréchet derivatives up to the third order, the third order included,
the mapping f'(x) being inversable on every point of the ball B(xy, R), existing L, M
so that inequalities (7) are fulfilled for every xeB(x,, R),

il) u, v, w being the real numbers given by relation (19); x4, A, are solutions
of the inequalities:

2
u -1

1oy <2 j
. U \'4

, L
I - £ (o) 40 < "

and. . .

R>4Mu

K

1- 4
where:

d= max{i‘ﬂ'zlﬂ;@ﬂ,u«/ﬁul — f(x0 )AOH} <1
W -

then the conclusion j) of theorem 1 holds and we have the JSollowing estimates:

2 -1 n
”xn+1 . xn“ s 4MV . v i d3 >
2 3"
||f_x,,||s4M‘/“ nlp do,
% 1_d2-3"

n n+l
ad® — i !
”An+l a An“ =) 2M———-——3-’;——-,
1-d
M ad3" a3d3n+l

”;Z = An" < 1- d3" 1- d2'3" & e d2_3n+1 ’
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1 w u2 -1
where; o, = +—1/ ;
uw/; u 14
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