REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

 Tome 25, N^{05} 1-2, 1996, pp. 101-103
A CHARACTERIZATION OF REFLEXIVITY

SEVER S. DRAGOMIR

(Timişoara)

Let $(X,\|\cdot\|)$ be a real normed space and consider the norm derivatives:

$$
(x, y)_{i(s)}:=\lim _{t \rightarrow 0-(+)}\left(\|y+t x\|^{2}-\|y\|^{2}\right) / 2 t
$$

Note that these mappings are well defined on $X \times X$ and the following properties are valid (see also [1] or [2]):

$$
\begin{equation*}
(x, y)_{i}=-(-x, y)_{s} \text { if } x, y \text { are in } X \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
(x, x)_{p}=\|x\|^{2} \text { for all } x \text { in } X \tag{ii}
\end{equation*}
$$

(iii) $(\alpha x, \beta y)_{p}=\alpha \beta(x, y)_{p}$ for all x, y in X and $\alpha \beta \geq 0$;
(iv) $(\alpha x+y, x)_{p}=\alpha\|x\|^{2}+(y, x)_{p}$ for all x, y in X and $\alpha \in \mathbb{R}$;
(v) $\quad(x+y, z)_{p}=\|x\|\|z\|+(y, z)_{p}$ for all x, y, z in X;
(vi) the element x in X is Birkhoff orthogonal over y in X (we denote $x \perp y$), i.,e., $\|x+t y\| \geq\|x\|$ for all t in \mathbb{R} iff $(y, x)_{i} \leq 0 \leq(y, x)_{s}$;
(vii) the space X is smooth iff $(y, x)_{i}=(y, x)_{s}$ for all x, y, in X or iff $(,)_{p}$ is linear in the first variable;
where $p=s$ or $p=i$.
We will use the following well-known result due to R. C. James [3].

THEOREM. The Banach space X is reflexive iff for any closed hyperplane H in X containing the null vector, there exists an element $u \in X \backslash\{0\}$ so that $u \perp H$.

The following characterization of reflexivity in terms of convex functions also holds:

THEOREM 1. Let X be a real Banach space. The following statements are equivalent:
(i) X is reflexive;
(ii) For every $F: X \rightarrow \mathbb{R}$ a convex and continuous mapping on X and for any $x_{0} \in X$, there exists an element $u_{F, x_{0}} \in X$ so that the estimation

$$
\begin{equation*}
F(x) \geq F\left(x_{0}\right)+\left(x-x_{0}, u_{F, x_{0}}\right)_{i} \text { for all } x \in X \tag{1}
\end{equation*}
$$

holds.
Proof. "(i) \Rightarrow (ii)" Let F be a convex and continuous mapping on X. Then F is subdifferentiable on X, i.e., for every $x_{0} \in X$ there exists a continuous linear functional $f_{x_{0}}$ so that

$$
\begin{equation*}
F(x)-F\left(x_{0}\right) \geq f_{x_{0}}\left(x-x_{0}\right) \text { for all } x \text { in } X \tag{2}
\end{equation*}
$$

Since X is assumed to be reflexive, hence, by James' theorem, there is an element $w_{F, x_{0}} \in X \backslash\{0\}$ so that $w_{F, x_{0}} \perp \operatorname{Ker}\left(f_{x_{0}}\right)$.

Because a simple calculation shows that

$$
f_{x_{0}}(x) w_{F, x_{0}}-f\left(w_{F, x_{0}}\right) x \in \operatorname{Ker}\left(f_{x_{0}}\right)
$$

for all x in X, hence, by the property (vi), we get that

$$
0 \leq\left(f_{x_{0}}(x) w_{F, x_{0}}-f_{x_{0}}\left(w_{F, x_{0}}\right) x, w_{F, x_{0}}\right)_{s} \text { for all } x \in X
$$

which is equivalent, by the above properties of the norm derivatives $(,)_{p}$, with

$$
\left(x, u_{F, x_{0}}\right)_{i} \leq f_{x_{0}}(x) \text { for all } x \text { in } X
$$

where

$$
u_{F, x_{0}}:=f_{x_{0}}\left(w_{F, x_{0}}\right) w_{F, x_{0}} /\left\|w_{F, x_{0}}\right\|^{2}
$$

Now, by (2) we obtain the estimation (1).
"(ii) \Rightarrow (i)". Let H be a closed hyperplane in X containing the null vector and $f \in X^{*} \backslash\{0\}$ with $\operatorname{Ker}(f)=H$. Then, by (ii), for $F=f$ and $x_{0}=0$, we can find an element u_{f} in X so that

3

$$
f(x) \geq\left(x, u_{f}\right)_{i} \text { for all } x \text { in } X
$$

Substituting x by $(-x)$ we also have

$$
f(x) \leq\left(x, u_{f}\right)_{s} \text { for all } x \text { in } X
$$

Now, we observe that $u_{f} \neq 0$ (because $f \neq 0$) and then

$$
\left(x, u_{f}\right)_{i} \leq 0 \leq\left(x, u_{f}\right)_{s} \text { for all } x \text { in } H
$$

i.e., $u_{f} \perp H$ and by James' theorem we deduce that X is reflexive.

The folowing consequences are interesting too.
COROLLARY1.1. Let X be a real Banach space. Then X is reflexive iff for every $p: X \rightarrow \mathbb{R}$ a continuous sublinear functional on X there exists an element u_{p} in X so that

$$
p(x) \geq\left(x, u_{f}\right)_{i} \text { for all } x \text { in } X
$$

COROLLARY. 1.2. (see [2]) Let X be a real Banach space. Then X is reflexive iff for every $f \in X^{*}$ there is an element u_{f} in X so that

$$
\left(x, u_{f}\right)_{i} \leq f(x) \leq\left(x, u_{f}\right) \text { for all } x \text { in } X
$$

COROLLARY. 1.3. (see [2]) Let X be a real Banach space. Then X is smooth and reflexive iff for all $f \in X^{*}$ there exists an element $u_{f} \in X$ so that

$$
f(x)=\left(x, u_{f}\right)_{p} \text { for all } x \text { in } X
$$

where $p=s$ or $p=i$.
For other details in connection with the above results, see the recent papers [1] and [2] where further references are given.

REFERENCES

1. Dragomir S. S., On continuous sublinear functionals in reflexive Banach spaces and applications, Riv. Mat. Univ. Panna, 16 (1990), 239-250.
2. Dragomir S. S, Approximation of continuous linear functionals in real normed spaces. Rend. di Mat., Serie VII, Roma 12 (1992), 357-364.
3. James R. C., Reflexivity and the supremum of linear functionals, Israel J. Math., 13 (1972), 298-300.

Received 10.03. 1994

[^0]
[^0]: Department of Mathematic
 Timisoara University 1900-Timisoara, Romania

