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A CHARACTERIZATION OF SOME SETS OF THE REAL
LINE BY THE FIXED POINT PROPERTY

BELA FINTA
(Téargu Mures)

In this paper we will characterize the simplest compact sets of the real line,
the bounded and closed intervals, using the fixed point property of the continuous
functions class. We will introduce the notion of the nearly compact set and we will
show that these sets are characterized by the fixed point property of the monotone
increasing functions class. In particular we will obtain the fixed point property of
the compact sets on the real line.

In this paper we suppose that M = &, M C R. We recall the next:

DEFINITION 1. The set M has the weak fixed point property if every continu-
ous function f: M — M has a fixed point, Le. there exists x € M such that f(x) = x.

THEOREM 1. The set M has the form [a, b}, where a, b € R,a<bif and only
if M has the weak fixed point property.

Proof: If we suppose that M= [a, D], where g, beR,a<bandf [a b]—[a D]
is an arbitrary continuous function then the function g: [a, b] = R, g(x) = f{x) —x
is also continuous. Because g(a) = fla) — a=0, g(b) =fb) —b <0 and g has the
Darboux property, it takes the value 0 € [g(b), g(a)], so there exists x €[a; h]
such that g(x) =0, i.e. f{x) = x.

Conversely, let us suppose that M has the weak fixed point property. First we
show that M is a connected set, If this is not true then there exists y,eR, x ¢ M
such that (—oo,x,)\M =& and (xg,40)\M =D Let us choose the values
x; €(=00,x)(\M and x, €(xq,+0)(1M and define the function /1M — M,
f(x) = X if x e(—00,x)M and f(x) = x,if x € (xg,+o0) 1M . Butx,<x; <x,
so the function f is continuous and has not the weak fixed point property. This
contradiction shows that A is a connected set, 1. . M is an interval.

If M is an unbounded interval on right or on left then the following formulas
fM—M, fix) = x+1 or flx) = x~1 defines continuous functions which have not
fixed points. It follows that Mis a bounded interval.

Now, if we suppose that M has the form (a, b) or (a, b], where a, b € R,
a<b then for an arbitrary fixed number a.e(0,1) the formulas f_:(a, b)—>(a, b) and
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fi(a, bl—=(a, b), £ ' (x)= axt+(1-a)a defines continuous functions which
have not fixed points. Similarly, if M has the form [a, b) then the function

e, b) — [a,b), a<b, fg(x)=o.x+(1- ). b is continuous but hasn’t
fixed points. Consequently it follows that M = [a, b], where a<bq. e. d.

DEFINITION 2. The set M is compact if it is bounded and closed. The set M is
nearly compact if either is a bounded, closed interval, i.e. has the form [a, D],
where a, b e R, a < b or we can obtain it from [a, b} by taking out at most count-
able, in pairs disjoint intervals of the form (a, B), (o, Bl, [, B), where
o, B e R, a <, such that the endpoints a, b remain in M.

Observation. If we take from [, b] in pairs disjoint intervals of the form (a., p),
(«, B], [e, B), where o, Be R, o < B, such that the endpoints g, b remain, then these
intervals are at most countable, because in every taked interval we can choose a
rational number, and we realise a one to one correspondence between the set of
taken intervals and a subset of the rational numbers.

Examples. Every compact set is nearly compact. Indeed, after (1) every com-
pact set looks either like a segment, i. ¢. is a bounded, closed interval, or we can
obtain it from a segment by taking out at most countable, in pairs disjoint intervals
of the form (o, ). Every finite set is compact, so it is nearly compact. The set

1 *
M ={0}U ’_7|”- eN } is compact, so it is nearly compact. The classical Cantor set
obtained from the [0,1] interval is closed and perfect, so it is compact and nearly

compact, too.
1 1 ; g
The set M = {0} ——,———— || isn’t compact but it is nearly com-
J U;121 2n 2n-1 P i ]
pact, because we take out from the segment [0,1], for n=1 the intervals

1 v
(2 7 e Similarly with the construction of the Cantor sets, we can build

not only compact sets, but more, nearly compact sets like in the following: from the

1 2 1 2 1522
segment [0,1] we take out one of the intervals: (5 ) 5) or (5 ) gj' or [g ; E) . There

1
remain the intervals [Q 5) or {0, 5}, from which we take out one of the fol-

owing 1ntervals: 9’9 9°79 or 9°9 , and the intervals 3’

or | — 1i|, respectively from which we take out one of the following intervals:

>
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(g ) 5) or (; ) '9‘] or {5 ) 5} etc. The remaining intervals are again divided into
three parts, and the middle part is taken out in the form (e, 3) or [at, [3) or (o, B], and so on.
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LEMMA. The set MR is a complete lattice if and only if M is nearly compact.

Proof. We consider the restriction to M of the naturally ordering relation of
the real line. In correspondence with this M is a lattice, because every pair of real
numbers from M has trivially their minimum and maximum in M. M becomes a
complete lattice, if every subset of elements of M has infimum and supremum in M.

Let us suppose that M is a complete lattice. If M is an unbounded set, then for
the subset formed by a sequence with terms in M and with limit —o or +oo, there do
not exist the infimum and the supremum in M, respectively. This means that M is
bounded. Now, we consider @ € R the infimumand b € R the supremum of the set
M on the real axis. Here we mention the trivial fact, that for every bounded subset
of elements from M their usual infimum and supremum exists on the real axis but
we must take the infimum and the supremum in correspondence with the elements

- of the set M. The numbers @ and b are the infimum and the supremum of the whole

set M, so they belong to M. Now we must show that we can’t take out from the
segment determined by the infimum and the supremum endpoints of the set M a
closed interval, Let us suppose the contrary. If x is a number between the infimum
and supremum of the set M such that does not belong to M then we take out from
M the biggest closed interval which contains x, denoted [a, B] with o <x <,
o, B € R. Then o is an upper, B is a below accumulation point for the set
MN(~o,00)and M (\(B,+o0) respectively, because [, B] is the greatest, disjoint
interval with M. But we find that the set (—co,0t){1 M has no supremum point in M,
and the set (B,+%) M has no infimum point in M which means a contradiction.

Vice versa, let us suppose that M is a nearly compact set. For every subset of
M, we denote by i the infimum on the real axis, which is a finite real number.
Ifi € M theniis the infimum of the set (i,+%)(1 M in correspondence with the set
M. 1fi ¢ M then we consider the greatest, disjoint interval with M, which contains
i The form of this interval is (a, i], because M is nearly compact. Theno € M
and will be the infimum point for the subset (o,+0)VM = (i,+o0)(1M relatively
to the set M. Similarly for the supremum point of every subset of M.

Now we give the following:

DEFINITION 3. The set M has the strong fixed point property if every mono-
tone increasing function f: M — M has a fixed point.

THEOREM 2. The set M is nearly compact if and only if M has the strong

fixed point property.

First proof. After [2] we will use the Tarski theorem: “a lattice M is com-
plete if and only if every order-preserving map f of M to itself has a fixed point”.
After the previous lemma M is a complete lattice if and only if M is a nearly
compact set. The role of the isotone functions on the lattice M is played by the

monotone increasing functions,

Second proof. If M has the strong fixed point prbperty, then we will show
that it is nearly compact. First we will demonstrate that M is bounded. If the set M
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is unbounded on the right, then by the definition for every n € N there exists x € M
such that x > n. Because M # @, let x, € M. We define the function f: M — M such

that for every x € (=00, x )Y M, f(x) = Xy But M is an upper unbounded set 50

there exists x, € M such that x, > [xl]+1. Now we define for every
x €[xp, %)M, f(x) = x, andso on. Inductively for the value x € M there

exists the pointx"”eMsuch that x,,,1 > [x,,]+1 and for every x e[x,,,.x,,+1)ﬂM

we define f(x) = x,,,. In this way we build the monotone increasing function /
which has no fixed points. This contradiction assures us that M 1s upper bounded,
In a similar way we can conclude that the set M is below bounded so M is a
bounded set. This means that there exists @ € R, the infimum and b € R, the
supremum of the set M on the real line. Itis true that a, b € M and they will be
the infimum and the supremum, respectively, of the whole set M. For example

ifa ¢ M then there exists a strictly decreasing sequence {X,}, oyt & M , such that
lim x =a. We construct the following function: if x € (xp,+ o)\ M then we define
fX)=x,, .., if x e(x,,+1,x,,]ﬂM then we put f(x) = X,41,.-.. [t 1s casy to see that
fis monotone increasing and has not fixed points.

Let us consider an arbitrary, maximal length interval of the form fa, Bl,
where a < B, o, p € R, in the complementary set of the set M. Then o 'is an upper
accumulation point for the set M, so there exists a strictly increasing sequence
e © M with lim x =a, and P is a below accumulation point for the set
M, so there exists a strictly decreasing sequence {X;}, . ' © M withlim x’ =J,
Now we are ready to construct the function f£ M — M in the following way:
for every x e(—o0,x) M, f(x)=X, and forx e (x],+0)(1M, f(x)= X1, and
inductively for every n € N" when x € [x,,,x”;,])ﬂ M, f(x) = x,,,, and for
x e(x,’,+1,.x,’,]ﬂ M, f(x)= X, respectively. The function fis monotone increas-
ing but hasn’t fixed points. This means that our supposition is false, so we can not
take out from the set M intervals of the form [a, B].

Conversely, let us suppose that M is a nearly compact set and we take the
monotone increasing function /2 M — M. It is easy to see that M is a union of in
pairs disjoint intervals with arbitrary form, at most continuum cardinality. It may
happen that in the union there appear points which we can interpret like a closed
interval [a, o], Using the axiom of choice we can choose from every interval a
fixed number which forms the index set I. This is a bounded, ordered set, too. Let
us consider the family of intervals with the property: in every interval there exists
a number x such that f{x) = x. This family is nonvoid because in the left interval
there exists a number, exactly = inf M'such that f(a) = a. Letus denote by J < M
the index set of this family of intervals with the previous property. The fact that
max / € J means that there exists x € M in the interval of max /, such that f{x) 2 x.
But f{b) < b, so the Knaster theorem for the function fjjx pi: [x, b] — [x, D] assures
us the existence of a fixed point. So there remains the case max [ & J,
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If there exists max J € J < max I, we consider the interval corresponding to
this value. Let x be the value in this interval for f{x) = x, and o the greatest real
aumber such that we have the intervals of the form [x, a] or [x, o). In the first case,
if flo) < o then we apply the theorem of Knaster for fijxq: [X, o] = [x,o]. If
Ala) > o, then fla) & (x, al, fla) € M s in an interval whose index is greater then
max J. The maximum condition is in contradiction with f{f{a)) = flee). In the
second case, because M is a nearly compact set, we take out from the segment [a, b]
the interval of the form [, B), so e M. The maximum condition for Jimplies that
fIB) <B. Butx<f,s0 x < f(x) £ f(B) <o <P because f(B) € M. Weuse

the monotony of f; so f(x) < f(f(x)), f(SPB) £ f(B),and the Knaster's theo-
rem for fon [f(x), f(B)] assures us the existence of a fixed point.

If max J does not exist then there exists the supremum of the set Jin corre-
spondence with the real line and we denote it by sup J. But the definition of
supremum J assures us the existence of the strictly increasing sequence
{t,}, e ©J C I o M, with lim 7 = sup J, and for every ¢, the existence of in
pairs disjoint intervals. There are two possibilities: either sup J € M or sup Je M.
In the first case M contains an interval like [sup J, &) or [sup J, o). Because sup J & J,
J contains no element of these intervals. This means that for every x € [sup J, o) or
x e[sup J, o], flx) <xin particular f (sup J) <sup J. In the second case we take out
from the segment [a, b] the interval [sup J. ). The supremum condition for J
implies that f{ot) < e, Inboth cases we obtain by the definition of the supremum of
J, for enough great n that f{sup J) <1, <1 ,<sup Jand fla) <1<t <o, respec-
tively. But in the interval corresponding to 7, there exists v such that f{v) =2 v. So
Av) =z v>1 > flsup J) and fv)zv>t>flo) respectively, with v <sup J, v<a.
These are contrary to the fact that fis monotone increasing function.

Consequences:

1. If M is a compact set then every monotone increasing function f:M —M
has a fixed point.
2. If M = [a, b] c R, a < b then every monotone increasing function
f:[a,b] > [a,b] has a ixed point (theorem of Knaster). We mention, that the
first proof of theorem 2 does not use Knaster’s theorem.
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