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1. INTRODUCTION

Let (X,d) be a compact metric space, let C(X) denote the Banach lattice of all
real-valued continuous functions on X and let L: C(X) — C(X) be a positive linear
operator.

Estimates of the errors IL( =)= f (x)| (or Hl( N-r “) involving among

others the usual modulus of continuity defined by

o(f:8)=sup{|f(x) - f(¥) s %y €X, d(x,y) <8},

are studied in several papers [13-21], [11], [6]. For X=[a, b], a,b €R, such
problems can be found for example, in [4].

The case of approximation of continuously differentiable functions on [a,b]
is also well-known (see e.g. [3-4], [6-8]).

When [a,b] is replaced by X - a compact subset in a locally convex Hausdorff
space, for functions /'€ C(X) having the so-called Mean Value Property (briefly
MVP), extensions of this last case were obtained in [13], thus covering some
results in [3].

However, the result in [13] do not cover the pointwise estimates in [4], [6-9],
as for example the following easily obtained by combining Corolarry 2.2 and
Theorem 2.3 in [9].

THEOREM 1.1 Let L : C[a,b] = Cla,b] be a positive linear operator satisfying
Lie)(x) = e,(x), where e (x) =1, ¥ x € [a,b]. For each [ € C'[a, b] we have

|20)) = 1) < - e = )0+ 2+ Ll = x{)x):
10) [f';L(‘t - x|2)(x) / L(ll - xD(x)}, VY xe [a, b] .
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where L(t—x)(x),L(|t—xl)(x) and L(]t—x|2)(x) mean that L is applied to 1-x,

= x| and - x|2 considered as function of 1.

The main purpose of this paper is to extend Theorem 1.1 to the case when
[a,b] is replaced by X — a compact convex subset of a linear normed space, for
functions having continuous Géteaux derivative on X. In case when X = [4,b], our
results are even refinements of Theorem 1.1.

On the other hand, since in general for Gateaux derivable functionals in an
abstract normed space, the MVP cannot be obtained in the form in [13], our results
will be more general than those in [13].

Applications to Bemstein-Lototsky-Schnabl operator are given.

2. PRELIMINARIES

Let (E, -|1),(F, ||2) be two real normed spaces, X < E be a compact con-

vex subset of £ and let /1 X — F.

DEFINITION 2.1. The modulus of continuity of f on X with step § >0 is
defined by

O)(f;S):sup{“f(x)—f(y)”2 ; X,y X,

vy, <8}.8 e[0.a(x)],

where d(X ) = sup{”x = y”];x, yeX } < +o0 is the diameter of the compact set X.

Also, the least concave majorant of o(f;8) is defined bya(/f;8) =
n n " 4
i=1 =1 i=1

a(f38) = o(f;d(X)), if &> d(X)

(see e.g. [6] in the case when F is the real axis).

LEMMA 2.2. (i) For all §,,8, €[0,d(X)] with 8,+8, €[0,d(X)] we have

o(f;8;+8,)<0(f;8,)+a(f:5,).
(ii) For all § 20 we have
o(f;8)=06(/8)<20(/8).
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Proof. (i) We will reason as in the case of real functions. Let x, y be such
that |x— ], £8,+8, and write z=ox+(1-a)yeX, where a=38,/(8,+8,).
We have:

-], =(1-a)x- ), = (1-a) -y, <(1-0)(8, +8,) =5,
K e
Hence we obtain

)= s, <l )= @, + 1) = s s o (Sl = 2h) +

+co(f;”z— y”l)s m(f;61)+co(f;62) |

and passing to supremum with x,y € X we get
o(f;8,+8,) < o(f;8,)+o(/f:8,)-
(ii) An immediate consequence of (i) is

(1) m(f;?»&)é(1+7»)-0)(f;6), v A,8 = 0.

Now, the inequality o(f;8) < o(f; 8) is obvious by definition. Also, by (1) we
obtain

n

ixi -o(f38) = ixi co(f;(8;/8)8) < > M (1+8;/8)- o(f;8) =
i=1 i=1

i=1

=) [iki +i7»i6i /6)-0)(f;6) =2-0(f;8).
i=1 i=1 ) :
Passing now to supremum, we immediately get &(f;8)<2-0(f;3).
It is known
DEFINITION 2.3. Let [: E->R be a functional, XcE and xeX We say that f

is Gateaux derivable at x if for all hekE, there exists the limit

lim[ flx+1th)-f (x)1 Jt=f (h)and [ is linear and continuous as function
t—0

ofhie f, € E".
Also, f is called Gateaux derivable on Xif [ € E" forall xeX and in this

case we can define /': X—E" by f'(x)=/. | ,
The proofs of our main results also require the following known Jessen’s

inequality.
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THEOREM 2.4 (see e.g. [2], [10]). Let (X, d) be a compact metric space,
GeC[m, M] a concave function on the interval [m, M] and let A:C(X)—>R be a

positive linear functional satisfying

Aly)=1 and [ =0 implies A(f)=0.
For any continuous function g:X—[m, M]we have A(G(g)) < G(A(g)).

3. MAIN RESULTS

Let (E,
subset. Write

: ) be a real normed'space and let XcF be a compact convex

DY(E)={f:E — R;f is Gteaux derivable on X and f':X — E"

is continuous on X },
and
(X) = {/]x: 1 € D¥(E)},
where [ ‘ y means the restriction of / on X.
Remark. If f e C(X) thenby e.g. [5,p. 341] we get that fis Fréchet differen-
tiable on.X; which implies (see e.g. [5,p. 340]) that / e C(X), i.e. CY(X) < C(X).
We say that L: C(X) — C(X) is a Markov operator on C(X) ifit is positive,

linear and satisfies L(1y) =1y .
The first main result of this paper is

THEOREM 3.1. Let X be a compact convex subset of E and let L:C(X)— C(X)
be a Markov operator on C(X). For each f e C}(X) we have
@) L)) = S () < Lo (1= 0))e) + 2 Ll = )
o] 71l =)/ Ll - ) )], forattx e x.

where /' e E* and E” is endowed with the usual norm

llx"l= supﬂx*(x)'; =] = l}, vx" e E*,
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Proof. By the mean value theorem (see e.g. [5,p. 323]) we have
SO = f&) = [t =2+ Sl (- 0) = i(t=2), xteX,

where 1 exists and belongs to (0,1).
Applying L we immediately get

L) = 1= L = [ oy 3 =) o)
<l - ol [ o= Jo =] o sl G-+
L Y sy =5 W=V [ (1= )]+
L= oo (e + 1(r=x)= o )Joo) |2 7 (2=2)]0)] + 2]l o @ (=] ()

where L isapplied to /%, (- x) andto [t — & - o (/"] -

tions of 7, with fixed x.
Therefore we can write

@) |LUE) = £ < |H s = 0]+ Ll - 5] S - )] )

x ), considered as func-

For xe X we have two possibilities:
@) f(x) = L(f)x) 5 (iD)f(x) = L(/)(*) .
In the case (i), obviously (2) holds. In the case (ii) we have L(”r - x")(x) >0.

Indeed, let us suppose that in this case L(“t - x”)(x) = (. By the mean value theo-

rem we obtain

() = £ < S )

where M = sup{|| fi|l;x € X } < 400, since f"is continuous on the compact set X,

Applying L we get

L) = S @) = L () = S (0))(x) < b+ e = x])(x) = 0,
which implies the contradiction L(f)(x)=/(x).
Now, for xeX with f(x) # L(f)(x), let us define

) A:C(X) > R by A(f) = Lt~ x| - 7(1))(x) / L{Je = o))
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g X = [0,d(X)] by g.(1)=]r—x].

Since & is concave, by Theorem 2.4 we get

A4,(8(/"; £4)) = 8/ 4:(82)) 5

that is

(@) ol sl - )] 2 - )0
sapwqw—wxw/mw<wu@

which together with (3) and with Lemma 2.2, (ii), proves the theorem.

Remark. Let E be the real axis and X=[a,b]. Then [, becomes the usual

derivatives f '(x) and f% (¢ — x) becomes f'(x)- (¢ — x). Hence we get

17y (-0 = | (e - o) = o) et =0,
and by Theorem 3.1 we obtain
'L(f)(x) | |f' | |L t—x (l)| + 2 L(|r - .l|)

-m[f', (’r—x‘ /Lr—x‘ ] Vxe

which because of the term |f l ’L - X (x)l is obviously a refinement of
Theorem 1.1.

COROLLARY 3.2. In the conditions of Theorem 3.1.we have

E06)~ 0] < e e s« 2:[afle )]

© [ it ';[L(Ht y x“z)(x)}m:) b ek ]

Proof. Since & (f";8) is concave, by e.g. [12,p. 44], o(/";8) /8 decreases

as function of 8 >0 which immediately give
G(fa8)/(A8) < B (f58)/8, YAzl §>0,

that is
(5) (S(f‘;m)gka(f';éi), vYaxl &>0,
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Now, taking into account that

s [efl- Y] 2l - Ao,

by (4) and (5) we immediately obtain

T ORI o R VAL Sl

which together with (3) and with Lemma 2.2,(ii), proves the corollary.

Remark. By (4) and by (3) we immediately obtain that if f € C'(X) has

o(f";8) concave as function of §, then
L)~ 7 < o )+ 2 - )
o [ 7= 7)) £ £l - x||)(x)].

COROLLARY 3.3. Let (E, <+, >) be a real Hilbert space. In the conditions of

Theorem 3.1 we have
lL(f)(x) - f(x)| < IL(< V., .t >)(x)- <y, ,x >| +2- L|Jr - x])(x)-

of £ 2fle =)o) 20k - xn)(x)] , VrxeX,

where y' e X is such that ||y’x “ =\ f4 land L(< y, ,t >)(x) means that L is
applied to < y), ,t > as function of 1.

Proof. By the well-known Riesz's result, there exists (unique) y\ € X
such that

[y = |7l and £ (2= x) =<y st = x =< ¥y ot> = < Yiox >

Then our corollary is an immediate consequence of Theorem 3.1.

4. APPLICATIONS

We will apply the previous results to the case of Bernstein-Lototsky-
Schnabl operator. Let (E,< -, >) be a real Hilbert space and X < E a com-

pact convex subset.
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Keeping the notation, define as in [16,p. 454-455] the n-th Bernstein-Lototsky-

Schnabl operator with respect to %", p, P and %= {y,; xeX}, by

UV),%)

Bn(f)(x) T BS:P,p T X"f . T[n,P 'dx]SiSnV,g,/.}"i)

and let us consider for % that y =x, forall xe.X.
By Lemma 6,(i), in the same paper [16] we get

B”(< Vit >)<x) =<ipnxl>L iV lve X,

where B, (< y, ,2>)(x) means that B _is applied to gL Fs 9l Mmpte X,

Then by Corollary 3.2 we easily obtain:

COROLLARY 4.1 Forall f e CY(X) we have
'B,, (/) x) - f(x)‘ <2 [B” (”r - x”z)(x)Jl/z o) (f';[B,, (Hi - ,\7“2)(.7«7)}1/2}, xeX.

Remark. Let us suppose that f': X — E* satisfies

1/% 3.5, IHSM'”X—))”OL s V x,yelX, with fixed o 6(0,1],

Then obvioulsy o(f";8) < M - 8% and the previous estimate becomes

’B,, (f)=) - f(l)l <12. [B” (”r - x”z)(x)](aﬂ)/z, V xelX,

Obvioulsly, this estimate cannot be obtained from the estimates in [1,

Corollary 2 and 3].
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