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1. INTRODUCTION

The integral inequalities play a fundamental part within the study of the
existence, uniqueness, stability, boundedness, continuability (and other qualita-
tive aspects) of the solutions of differential and integral equations. In [5] there
were established operatorial inequalities of the type Gronwall and Bihari for
increasing and decreasing monotonic operators. In [3] there was established an
inequality in the case of an increasing operator. This result is based on Theorem 2
from [5], which is reminded further down:

Let X be a Banach space, and let X be a semiordered cone; x 2 y means
x—yek.

Consider the inequation # < Au + f where 4 is a monotonically decreasing
positive operator. Suppose that the following conditions are fulfilled:

(i) Equation y=Ay + /" has the unique solution y*, the limit of the sequence
(y,) defined by y,,, =4y, +f. ‘

(ii) There exists an element 1, € X which verifies the inequalities uy < Auy+ f=u,,
Uy < Aul S f o

Then uy < y* .
Remark. If the nonnegative function u(7), verifies the inequality

!

(1) up(1) < c+ j (sl ())ds = w(£), 1 €[a,b]
O H
14
@) o (1) < ¢ + [ als)¥iluy(s))ds

0
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where V() is nonnegative, monotonically decreasing, and locally Lipschitzian,
a(s) nonnegative and continuous, then u (1) verifies the inequalitiy

3) (1) < FOF() + B ()], 1 €[0,b],

where F is the primitive of the function 1/V,(y), F7l(y) isits inverse, while F(z)

is the primitive of a(s).

In [3]-[4] there was established a Riccati-type inequality in the case of an
increasing operator. We shall establish an analogous result in the case of a decreas-
ing operator. Of course, the result will be obtained under supplementary condi-
tions.

2. INEQUALITIES FOR DECREASING OPERATORS

THEOREM 1. Let u,(t) € C[0,b], a(t) e-C[0,b], a(t) =0 forany t € [0,b]
and p,g,r € R, (2 < 4pr). If

@ g €+ J[pa(S)ug(s) + qa(s Yo (s) + ra(s))ds = (1)
¢

(%) uy(1) <+ [ [pa(s)af (s) + ga(s)uy(s) + ra(s)]ds

0

where c>0, and if y, is a particular solution of the equation
(6) y''= pa(n)y* + qa(t)y + ra(t),

then u,(1) verifies the inequality uy(1) < v* (1), where

0

Vi) = exp[j (2pa(s)y,(s) + qa(s))ds} X

0
Pl s

. -
x[c 5 JZPa(s) exp(J. (2pa(z)y(z) + qa(z))dzjds .
0 0
Proof. Define the operator 4 by

(8) Au =_J a(sV (u(s)ds, +€[0,b]

0
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where
V(u(t)) = pu(2) + qu(t) +r.

If y*(#) is solution of the equation
§

©) (0) = ¢ + [ [pa(s)y*(s) + qals)p(s) + ra(s)lds, ¢ >0
0

then we have

» () = exp[j Q2pa(s)y(s) + qa(s))ds] x
0
(10) : : i
x| [ 2pats) em{ | @ran(@ +.qa<z)>dszs
0 0

where y, verifies equation (6). Therefore it results

(11) ' u () < y* ().

THEOREM 2. Let v,w, € C[R2,R,] and c>0. If the function wo(x,)
verifies the inequalities

Xy
(12) we(x,y)<c+ f J. v(s, Dwy (s, )dsds = wy(x,y), x 2 x5, ¥y 2 y,

X0 Yo

Xy
(13) wo(x,y) < c+ J‘ jv(s, tyw (s, t)dsde

X0 Yo

-

xy
while operator Awy(x, y) = J J.V(S, Hwy (s, t)dsde, x 2 xy,y 2 yg, is monotoni-

cally decreasing, then e

(14) ' wo (%, y) < ' (x, )
where u' (x, y) is solution of the equation
¥

(15) u,(x,y) = jv(x, 0)dt |u(x, ).
Yo
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Proof. By (12) we easily obtain

X
wy(x, ) =C+ _[ J v(s, )wy (s, 1) dsdr and wy(x, ) < w(x,p) then

Xo Vo
¥y y
Wy, = J‘V(x,t)wo(x,t)dt < j v(x, O)wi (x, £)dt
Yo Yo
or
] |
(16) w < | [ v(x,0de bw(x, )
Yo

From the comparison theorem [1]'it results wlfx, y) < (%, y), from which we

obviously have wq(x, ¥) < u*(x, ), too.

XAy \ 4
Since #"(x,y) = ¢ exp IIV(S, t)dsdz |, it results Wendorff’s inequality
XY

[2], hence

Xy ’
(17) wo(x,y) < c exp j Jv(s, 1) ds dt

Xo Vo

THEOREM 3. Let the functions v,wy,h € C[R2,R.]; if

(1) wy(x, y) verifies the inequalities

xy 5
(18)  wo(x,y) < h(x,y) + JIV(S, Dwy(s,t)dsdt = wi(x,y), x 2 xg, ¥ 2 )
Xo Yo

1

xy
(19) wo(x, ) < h(x, y) + j jv(s, £ywy (s, 7) dsdt

%o Yo

Xy
(ii) operator Awy(x,y) = J.Jv(s, Dwq (s, ) dsdr, x 2 Xg, ¥ 2 Yo,
Xo Yo

is monotonically decreasing, then

(20) » W (x,‘y) <u'(x,y)
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where u'(x,y) is solution of the equation

Yy y
u, (x,y) = j v(x, 1)dt [u(x, y) + jv(x, Dh(x, 1)dt.
Yo Yo

Proof. One proceeds as in Theorem 2, using also the comparison theorem
[1]. In this case " (x,y) is

o)) xy -
u'(x,y) = hx,p) + [ [ v(s,0h(s ) exp| [ [ v(E, mdkdn |ds do.
*o Yo st

Wendorff’s inequality [2] is obtained in this case, too.
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