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Let X bea nonvoid set of I, where by I we denote the set of integer numbers,
let f'= (15 fp):X = 17 andlet 51X — BOF= 0 PV 1S

In the following, we denote by v-min (f; X) the vectorial optimization problem
which possesses the constraint set X and the objective functions fj, J €{l,..., p}.

DeriNiTION 1. 4 point % e X is said to be a min-efficient solution
for v-min (f; X) if there is no x € X such that:

(1) f;(x) < f;(°) for each j e {l, ..., p}
with at least one strict inequality.

Remark 1, Because s(X) < I,apoint x € X isamin-efficient solution for
problem v-min (f: X) if and only if there isno y € X such that

(2) f;(») £ f;(x), foreach j e {4, ..., p}
and
(3) s(y) £ s(x) - 1.

Let min-EF (f; X) be the set of min-efficient solutions for problem v-min
(f; X). In the set min-EF (f; X) we introduce the following equivalence relation : if
x, y are in min-EF (f; X), we say that x is equivalent with y if

4) S&x) = 7).

Ifr=(4,..,t,) € R, then we agree that we denote by |¢| the real number
definedby |f|= 1 +...+ 1.
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Let (P) be the following parametric programming problem:

s(x) — min
(P) fix) <, jefl..,p}
xelX

with 1 € R? . If 1% € RP, then
i) by P(z = 1°) we denote the problem

s(x) > min
fix) 45, jefl...,p}.
xe X

ii) by S4 (¢ = ) we denote the set of admissible solutions for P(z.= 1%),

(5) SA(t = °) = {x e X: f;(x) < 1}, j efl,..., p}},
iii) by SO(z = 1°) we denote the set of optimal solutions for P(t = 1%).
Let T, = {{%e I?7:50(¢ = 1°) = &}.

THEOREM 1. If X is bounded, then a point u € X is a min-efficient solution
for problem v-min (f; X) if and only if there is a. € Ty such that

(6) u € P(t = o) and s(u) =|a.

Proof. Necessity. Let u € X be a min-efficient solution for problem
v-min (f; X). Taking

() o = (f1(),.... (W) €17,

itis obvious that u € SA(z = o). Because Xis a bounded set, it is also a finite set.
Then SA(t = a) # & implies that SO(t = o) # &. Hence o €7,. If
u ¢ SO(t = o), then there is v € X such that

fitv)sa; < fi(w) for all jell,..,p},
and

(8) s(v) < s(u).

Since s(u) €1, s(v) €1, (8) is equivalent with

s(v) < s(u) -1
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In view of remark 1, u is not an efficient solution for v-min (f; X); that
contradicts the assumption, Therefore u is an optimal solution for problem P(z = o)
and, from (7), we get

su) = L) +...+ (W) =0+ + 0, =la.
Hence the condition is necessary.

Sufficiency. Let u € X having the property that there is § € T such that

u € SO(! B) and s(u) =|B|. If we suppose that  is not an efficient solution
for v-min (f; X), then, in view of remark 1, there exists v € X such that

9) fi(vy < fi), jell...,p}
and
(10) s(v) £ s(u) - 1.

But, because u is an optimal solution for P(¢ = ), we have
an . fiw) 2By, jedl. ., p}.

Since v e X, /from (9) and (11) it results that v.€ SA(z = B) :/Then (10)
implies u ¢ SO(t = B); that contradicts the assumption u € SO(z = B). Hence
u is a min-efficient solution for problem v-min (f; X)..

Because X is a finite set and f(X) < I?, thereare a = (al,...,ap) elI?

and b = (b;,...,b,) € I? such that

(12) a; = min{f;(x): x € X}, by = max{f;(x): x € X}

forall j €{L,..., p}.

LetT—X[J,]]

LEMMA 2. If o« € IP \ T, then one and only one of following assertions
is true:

() SA(t = a) = &

(i) SO = a) # @, and for each x"eSO(t = o) we have s(x") #|al.

Proof. We can be in one and only one of the two cases.
i) There is k € {1,..., p} such that

(13) G,k <ak.
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Then by (12) we get that there is none x € X such that f;(x) < aj . Therefore
SAt = a) = &

ii) a; < o foreach j e{l,..., p}, and thereis k € {1,..., p} such that
(14) bk < 0.

If SA(r = ) = @, then the assertion (i) is true. If SA(t = a) = &, then,
because X is a nonempty flnltc set, it follows that SO(t = o) # . Let
x° e SO(t = o). We have

(13) £6%) 00, () € flap
Then from (12), (14) and (15) we get that

£G6%) <oy, (V) joe{l., py\{k} and f;, (x°) < ay.

P j 1 P
That implies that s(x*) =Y f;(x%)+ f(x°) < D a; =|ol. Hence
j=1 j=1
s(x0) #|a| -« U=k
In the following, we join for each a.'e T the set V(o) defined by

)4
(16) V) = x [0,

Obvious we have:

LEMMA3.Ifa €T, B €T and a < B3, then SA(r = o) ¢ SA( = B).
This lemma has two important consequences.

COROLLARY 4. If B € T and SA(t = B) = D, then SA(t = o) = D for
each a. € V(B).
Let B € Tand x € SA(¢r = B). We denote by U(f(x), ) the set

an U(f(x),B) = j,, 1,0,8,1.

COROLLARY 5. If B e T and x° & SO(t = B), then x° & SO(t = &) for
each o € U(f(xo)a [3)

Proof. Let a € U(f(xo), B). Then we get o < B and applying lemma 3 it
follows SA(t = o) < SA(t = B). That implies that

S
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(18) min{f(x):x € SA( = a)} = min{f(x):x € SA(r = B)} = s(x°).
Because o € U(f(x°), ), we have
[1G%)'s ay, (W) Gl sy
Hence
(19) x° € SA(1 = o).
From (18) and (19) it results that X €S0t =),
Let o € T. We denote
P
TO(t = a’) v ]i [u'_]a ]]
p
D, a =0,
3
T.(t=a)= Jxl[aj’ bilxlap opl, @y <t
2K Er:ni1%e
and, if p>2,
i-1 2
e A [j, j]x[a 1% j=>’§+l[aj,bj] a; <oy

fori e{2,...,p—1}.

20)

LEMMA 6. If o € T | then

~
I
s
At

Il
(=1

Proof. Because T;(t = o) < T foreach j €{0,1,...

, P}, we get
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(21) el

Tt

i=0

Let 1 € T'. Two cases are possible.

i) For each j €{l,...,p}we have %; 2 0; Then #; €[a;b;],
(V) je{l,..,p}. Itfollowsthatt € T,(t = a).

ii) Thereis j € {l,..., p} suchthat £; < ;. Let

(22) k =max{j e{l...,p}: t; <a,}.

We shall prove that ¢ € 7, .
Foreach j €{l,..., p} we can be in one and only one of the three cases:
a) j €{l,...,k -1} and then evidently ¢; € [a;,);] ;
b)j=kandthen # € [a;,a,;];

c) j €{k +1..., p} and then, from (22) it follows that 7, = o ;
Hence ¢ € T, (1 = o). Because ¢ is arbitrary choosen in T, we get that

P
(23) T c |G = o).
i=0

From (21) and (23) it follows (20).,
Using the conclusion of lemma 6 we give an algorithm for finding all
equivalence classes for a vector optimization problem with integer variables.

DESCRIPTION OF THE ALGORITHM

Step 0'Putii =11, hi=1,i=0,T;:'=T.

Step 1. Foreach k € {1,..., p} put

we = min{f:t = (1,...,2,) € [}},v, = max{y:t = (tl,...,tp) e T;}
and take 7' = (V5.5 V).

Step 2. If SA(t = t') = &, then go to step 5.

If SA(r=t") # @, then choose x €SO(t=17) and put
o = ()., (1),

Step 3. Increase j with 1, put 3/ = »' andk:=1.
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Step 4, 1f o > ug, thenput T 1= T, (1 = ), increase i with 1 and go to
step 5. If o, = w, , then go to step 5.
Step 5. Ifk=p , then go to step 6. Ifk#p, thenput k := k+ 1 and return to step

4. .
Step 6. 1f i < h ,thenput iz =i + 1 and return to step 1. If i = A, then the

algorithm stops.
LEMMA 7. If X is a bounded set and j> 0, then the points y, forre{l, ..}
are min-efficient solutions for problem v-min (f’; X).

Proof, Letr €{l, ...,j}. From step 3 we get that there exists i € {1, o /1..} such
that y” = x. But x' is an optimal solution for problem P(r = t"). Then, in view of
corollary 2, x' is a min-efficent solution for problem v-min (f; X). It follows that y”
is also a min-efficient solution for problem v-min (f; X).,

LEMMA 8. If X is a bounded set and j = 0, then the problem v-min (f; X) has
not min-efficient solutions.

Proof. If SA(1 = 1") # @, then, because Xis a finite set, the problem P(z = 11)
has also optimal solutions. In view of steps 2 and 3 it follows that j > 0. Therefore
itis not possible that we have SA(1 = N 2@, IfSA(t= )=, then, in view (_)f step
2 we go to step 5. Because h=1i= 1, the algorithm is stopped. Hence, we havej=01if
and only if the problem P(1 = 1) has not feasible solution, that is the system

hx) s =h
(24)

fp(x) < t;, = bp
xelX

is inconsistent. From (12) we get that if xe X, then

~ filx) £ by, foreach k €{l,..., p}.

That implies that the system (24) is inconsistent because X =@. Therefore,
min-EF(f; X) = D.,

THEOREM 9. If z is an efficient solution for v-min(f; X), then thereisi e {1,
..., h} such that z € [x'].

Proof Because for cach i € {1, ..., h} we have te T,c T, we get that SA(1
= #}) = @ if and only if X = &. Hence, in the case X' # &, the stop of the algorithm
implies a = a.

Let z be an efficient solution for v-min(/ X). In this case, in view of lemma
6, we get that j # 0. In view of theorem 1 thereis p & T, such that z is optimal solution
for P(t= ) and s(z) = |B|. From lemma 6 it results that thereis r € {1, ..., h} such that
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pe TL,andp & TL foreachr e {1, ..., h} with s >r. Letx"be the optimal solution

for the problem P(1 = ') taking in the step 2. From corollary 5, the set U(f{x"), 1)
has the property that x" is also an optimal solution for problem
P(t=r) forall 1 € U(f(x"), 7). Because

T, = U(T",x")U[ LhJ{z cT,te 7}.}]

p=r+l

and B ¢ T, for each s > r, it follows that B e U (A ), #).

Since z is an optimal solution for problem P(z =p) and s(z)=|p|, we get that

(25) fj(z) =B, foreach j € {l,..., p}.

From x" € SO(t = 1) forsome 1 e U(z", x"), we have

(26) i .fj(zr) B B]a.] G{l,..l.,p}
and
@7 s(x") = s(z) =Bl
From (26) and (27) it results
(28) fi(z) = f;(x"), foreachj € {a,..., p}.

Hence z e [x"]

THEOREM 10. If X is a bounded set, then the number of equivalence classes
is finite. -

Proof, If X is a bounded set, then SZ = XN1" is a finite set. Because for
some efficient solutions x for v-min(f; X) we have x €X, it is evident that the
number of equivalence classes is finite.,

NUMERICAL EXAMPLE

To illustrate the algorithm we consider the following vectorial optimization
problem:
v —min f{x,xy) = (=2x + 3x3, 3x7 — 2%,)
0< X <1
29
( ) 0< X <1

(x,%9) € G
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We have T = [-2,3] x [-2,3]. The corresponding parametric programming
problem is

min s(xg, %) = axl+ 3x% — 2% — 2%,
—2x + Bx% <1
3x12 —-2x, Xty

(30) 0<x; <1

OSX2$1

(v, %) € 1°

witht e T.

Step 0. Puti=1,h=1,j=0,T;=[-2,3] % [-2,3}.

Step 1. We have u=-2, W, T =280V 316, VA 3. We take 7, =(3,3).

Step 2. An optimal solution for the problem P(¢=(3,3)) is x' = (0,0). We take
a = (0,0).

Step 3. We take j =1, y' = (0,0) and k= 1.

Step 4. Because o, =0 <=2 = u;, we put 7,=[-2,1]x [0,3], increase /2 with 1
and go to step 5. '

Step 5. Because k=1 <2, increase k with 1 and retumn to step 4.

Step 4. Because a,,= 0> -2, we put T,=[-2,3]x [-2,-1], increase A with 1
and go to step 5.

Step 5. Since k= 2, we go to step 6.

Step 6. Because i # h, we increase I with 1 and we go to step 1.

Step'l. We take uy= =2, uy;=0,v,=-1, v,= 3, and 2= (-1,3).

Step 2. An optimal solution for the problem P(r = #?) is x2=(1,0). We
take o = (-2,3).

Step 3. We take j=2,*=(1,0), k= 1.

Step 4. Because o, = -2 = u;, We go to step 5 J it

Step 5. Since k=1<2, we take k=2 and we go to step 4.

Step 4. Because o, = 3 > ), W€ talee\T, = [<2,-1] x [0,2], h =4 and we go to
step 5.

Step 5. Since k=2, we go to step 6.

Step 6. Because i =2 < 4 = 1, we increase I with 1 and return to step 1.

Step 1. We take u; =2, u, = -2,v,=3,v,=-1 and 1;= (3, -1).

Step 2. x3= (0,1) is an optimal solution for problem P(t = £*). We
take o = (3, -2).

Step 3. We take j =3, = (0,1) and k= 1.

Step 4. Because o, > u;, we put T,=[-2,2] x [-2,~1]and A =5.

Step 5. We increase k with 1 and return to step 4.

Step 4. We increase k with 1.

Step 5. Because k=2, we go to step 6.
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Step 5.Since i =3 <h=35, we put i =4 and we retum to step 1.

Step 1. We take w; =2, u,=0, v;=2, v,=2and 1,= (-1, 2).

Step 2. Because SA(t = 1*) =&, we go to step 6.

Step 5. Since i =4 < h =5, we increase { with 1 and we return to step 1.
Step 1. We take u) =2, u,= -2, v,=2, v,=-1 and £= (2, -1).

Step 2. Since SA(t = 1°) = &, we go to step 5.

Step 5. Because i =5 = h, the algorithm stops.

The equivalence classes of efficient solutions for vectorial problem (29) are:

'] =10, 0], 1) = [(1,00], b = [0, 1)].

REFERENCES

* 1. Dyer 1.8, Sarin R.K., Multicriteria decision making. Mathematical Programming for Operations
Researches and Computer Scientists. Industrial engineering. vol VI, New York and Basel:
Marcel Dekker, Inc., 123-148. ]

2. Lupsa L., Duca E., Duca D.L, On the siructure of the set of points dominated and nondominated
in an optimization problem. Revue d’Anal. num, et la théorie de I’approximation, 22 (1993),
2,193-199,

3. Lupsal., Duca D.I, Duca E., On the Balanced and Nonbalanced Vector Optimization Problems.
Revue d’Anal. num. et la théorie de I'approximation, 25 (1995) 1.

4. Podinovskey V.V., Nogin V.D., Pareto-Optimal Solution of Multicriteria Problems (in Russian).
Nauka, Moscow, 1982.

5. Salukvadze M.E. and Topchishvili A.L., Insoluble Multicriteria Linear Programming Problems.
Journal of Optimization Theory and Applications, 61(1989), 3, 487491,

6. Salukvadze M.E. and Topchishvili A.L., Weakly-Efficient Solutions of Limiting Multicriteria
Optimization Problems. Joumal of Optimization Theory and Applications, 77(1993), 2, 373—
386.

7. Sawaragi Y., Nakayama H., Tanino T., Theory of Multiobjective Optimization. Academic Press,
San Diego — New York — London - Toronto — Montreal — Tokyo, 1985.

8. Steuer R.E., Multiple-Criteria Optimization: Theory, Computation, and Applications, John Wiley
and Sons, New York, 1986.

Dorel I. Duca
“Babeg~Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Informatics
3400 Cluj-Napoca, Romania

Eugenia Duca
Technical University
Department of Mathematics
3400 Cluj-Napoca , Romania

Liapa Lupsa
“Babes—Bolyai” University of Cluj-Napoca
Faculty of Mathematics and Informatics
3400 Cluj-Napoca, Romania



