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APPROXIMATION AND NUMERICAL RESULTS
FOR PHASE FIELD SYSTEM BY A FRACTIONAL STEP
SCHEME
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(lasi)

. INTRODUCTION

We consider the phase field system

(1.1) up,=§2A<p+2—1(<p-<p3)+2u, in Or =(0,T)xQ,
a

(1.2) [u+é(p) =kAu, in Qr,
t
subject to the Dirichlet boundary conditions and initial conditions
(1.3) ¢l =4 =0, in T=(0,T)x0Q,
(1.4) ®(0,%) = @o(x), u0,x)=us(x), on o2,

where Q is a bounded domain in R” with smooth boundary 6Q, and ¢, u, T, & land
kare asin [9], [11].

Setting
(1.5) y=u+%¢,
system (1.1)—(1.4) takes the form
(1.6) y,—kAy+%A(p=0,
g2 1 1 1], 4 §2
(1.7) @ ——Ap+—|l-—|jp+—¢° —=y=0,
T T 2a 2at T

(1.8) A =alz=0,
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(1.9) (0,5) = 70(2) = ta(x) + 5 9ol). 0(0.%) = ).

Let X = I2(Q)x L*(€2). Then X is a real Banach space with respect to the

H

Define the operator 4:D(4)c X — X by

norm H“ defined by

=310 Il

l
(’y) —kAy ar k'EA(p
A |7 ez 1 1 :
P ——A(p+—(l———}p
T T a
2 H{QNH*(Q)
H@NEAQ)

and the operator B:D(B)c X — X :

o) -2

D(B) = {(J’) e X;(2a1) " 9? - % ye Lﬁ(Q)}

¢

Thus, system (1.6)—(1.7) can be rewritten in the form

6 CHER

For others settings into the abstract framework of the phase-field equations
(1.1)-(1.4) see, e.g., [6], [14].

The idea behind the Lie-Trotter scheme (known as the method of fractional
step in numerical approximation of PDE’s) is to decompose the original problem

into several simpler problems.
Here we associate to system (S) the following approximating scheme

1.10) y”(t)}r (y*’(t)Jz in Jie, (i + e
@N>A%m ol R
(1.11) o, (i) = z,((i+ De), i=OL..., M -1,
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(1.12) 25 (1) + B[f(:))j =0, in [ia, (i+ 1)8],
(1.13) 2 (ie) =t (ie), i=0,L., M-1,

where 0<& <...< Me =T is a partition of the time-interval [O,T], @i (ie) is the
right limit of _ at ie. We assume the following convention: ¢F(0)= g, ¥,(0)=y,.

Recall that J: X — X* is the duality mapping of the space X (see, for
instance, [2]) and that A< X x X 1is:

accretive, if for every pair [, 01)s [¥2,72] €4, there exist w e J(x; - x,)

such that

Q) <y =y,w>20,

or, equivalently,

|S”x1*x2+?»(y1—J’2), (V)k>0, [x,-,y,-]eA, g gl

(”) ”xl — X3

m-accretive, if it is accretive and R(I+4)=X,

w-accretive, if A + o1 is accretive, where ® €IR,

o-m-accretive, if A + ol is m-accretive,
where <:,-> is the pairing between X and X * (the dual space of X), Iis the identity
operator in X, R(A) is the range of 4.

Another convenient way to define the accretiveness is obtained using [, ] -
the directional derivative of the norm

| MWl —
[x,y]s=§fani+—i-M, xyeX, g
i.e., (il) can be equivalently written as
(ii") [xl—xQ,‘yl—yz]SZO, (V) [0 €4, 1i=12.

(seealso [2], [15], [16]). Recall thatif Xisa real Hilbert space then [x,y]S =<x,y>

Vx, y € X (see [16], Remark 1.4.1).
It is well known that, under certain hypotheses on 4, the Cauchy problem

{V’(t)+ AV(t) 30,t=20

V(O) =V
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has a generalized solution v eC ([O.w),X ) given by the exponential formula

v(t)= lim(] +LA) " (V)r >0,

t—oe n

for every vy € D(A4) (a classical result of Crandall-Ligget, sec, .2, 2]).
This is the sense in which we will treat the problems (1.6)-(1.9) and
(1.10)—(1.13).

2. CONVERGENCE OF THE APPROXIMATE SCHEME

Let us recall the following result due to Barbu and Iannelli ([5]).
THEOREM 2.1. Let Y be a real Banach space, let C be a closed subset of Y
and K =CN D(A) be a convex subset of Y such that

(H1) 4 is o-accretive and R(1 + A) o D(4), (V) e(0.20);

(H2) B is a continuous © -accretive operator on C such that

R(I+ AB)>C, (W) e(0,%¢);

GB)RU+xu+B»:K,U+n@”KcK;U+xm”KcK;

(H4) For every [x,y] e A, there exists {x;} c Y such that

=0

—]11‘(1'-11 3 e—Ahxh) =

limx, =x, lm
h—0 h—0

Then, for every y,eK, we have
lim y, (1) = ¥(2), (W)=0,
s—0

and the limit is uniform on bounded tintervals.
Here, by (f), we have denoted the generalized solution to the Cauchy problem:

(1) + Ay(t)+ By(1)>0, 1€(0.T)
#(0) = v
and by y,(7) the solution of the corresponding approximative scheme.

This result is not applicable to the problem (1.10)—(1.13) because we cannot
find a subset C as in (H2) and such that the operator B be continuous on C.

5 Fractional Step Scheme 141

Therefore, we will replace the operator B with another one having all the

properties required by Theorem 2.1 and we will show that the approximate solu-

, Ve
tion : . X" . :
oL corresponding to this new operator is in fact an approximate solution

corresponding to B (see Remark 3.1, below). Namely, we consider the operator B
defined by (see also Figure 1) ;

Fig. 1

where

Substituting in (S) and in (2.12) B

[yg

Pe

S~
o\ o 0}

(1) Ye(t) _
(f)] by B"[(PE(I)J we obtain:

-

2.1 z', (z)+B,.[yE([)]=O, in [z, (i + 1)e].

0q (1)
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We associate to system (S') the approximating scheme (1.10), (1.11), (2.1)

and (1.13).
Now we prove

PROPOSITION 2.1. If kI? <16E% /t and 1>1/2a then, the operators A, B,

and Y = C = K = I}(Q) x I*(Q) satisfy all the hypotheses of Theorem 2.1.

We shall prove first the following lemma.

LEMMA 2.1. If kI? <1682 /1 and 1>1/2a then 4 is o-accretive and satis-
fies the range condition
2.2) R(I+24)> D(4), (V)he(0,M).

Proof. Using the definition (ii') we must show that, for every (y) eX,(is
¢

linear and .J is univalued, i.e., J (y) = (y) =w)
P P

A('V), (y) —>_ O.
e/\P) s

Using Green formula and Cauchy-Schwarz’s inequality, we get (X is real
Hilbert space)

Kl

2 [ {;2 2 1 1 2
E k”Vy Q) 7<Vy, V(p>L2(Q) s T”V(p”y(g) i - I- 2 Il(p“Lz(Q) =

ki
2 K|V —
2 k|vy >

2 2 2 2 1 l
HLZ(Q) T |Vy”y(g) ' ||V(P”L2(Q) g T”V‘P”y(g) e ;(l ~ 5) ”‘P”;(Q) :

Since kI? <1652/t then k2I> /4 —4kE?/1<0and then

2 ki g2
k”Vy”LZ(Q) T} 7“VyI|L7(Q) '”V(PHZ(Q) i T”V(PHZ(Q) z 0.

Thus, because />1/2«,
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y 1 1 2 1 1 :
<A(<J’ > > 20 Lol ey 2 (1= ) ey ol )
/A(y}i(l_i)m, >o

\A\p) T 2a \ ¢

Hence 4 is w-accretive, with o = l(l —i)
T 2a

Other results with respect to the operator A4, put into other abstract frame-
work , can be found in [14].

i.e.

It is clear that for every (f

g) e LZ(;Z) X Lz(Q) = B@ the system

y—kkAyzj—%Acp e [}(Q),
N 1 2
1=l l—-— o= Ap=g eI?
( T( 2aD‘P S A0as (@),

has a unique solution (i) € D(A) for A small (see [1], [4], [7]; Q is supposed to

be, as in Theorem 4.1, pp. 131, [4]). Thus (2.2) is true.

The proof of Proposition 2.1. By Proposition 3.9 pp. 110 ([2]), we have that
A+B, is m-accretive and surjective. Taking into account Lemma 2.1 and because 4
is single valued and the semigroup e is differentiable on D(4) (see [3]), we
remark that all the hypotheses of Theorem 2.1 are fulfilled and therefore the proof

of Proposition 2.1 is complete.

¢s(x)

o(1 t
B(y () =B yS()
g (1) (1)
and the solution of the approximat: problem (S')+(2.1 ) is in fact the solution of the
approximate problem (S)'+(1.12).

Remark 2.1. If we can choose r such that | (@) <r, ae. xeQ) then

r
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3. NUMERICAL RESULTS

We consider n=1and Q=[0, c] cR,. For the space interval we use the grid
with equidistant nodes

0<xy <X <.<Xpy_ <Xy =C.

Yi,j

1.

y
] the approximated matrix for { J , where
' ¢
"J

Denote by [

VE€; i

’!

fig;

As well, we denote by [
i,J

y "
J the approximative matrix for [ e) where
P

Yeij = ye(ti’xj) ’ i=1 S = 15_1\75

gg; ; = (pg(t,-,xj), LI vl i

Using a standard implicit scheme, (1.6)—(1.7) are discretized as

3.1) Qiyy,; —Pi,j ﬁ Qi1 11— 2@?;1,‘; t Piv1,j-1 i
€ T h
1 14 2 ; )
+?(1__2—;?)(Pi+l,j\+§;(pifl,j TP T 0, i=0M-1, j=LN=1,
(3.2) Yier,j ~Yij _ k- Vil j1 = 2Vir1,j  Yinr o1 o
€ W
+£l @igr ji1 — 29iz1,j + Pivr j1

2 o

and
Pio =N = 05 Yio = Vini= 0, i=1,
Qo,; = <Po(x_,') y Yo, = yo(xj) =0, j=LN,

where & =X; X
Setting
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c;=k%/th?, cy=e/2at—Ilg/2-2e-¢c; -], c5=€-¢ ,
cs=2¢8/1, cs=ke/h* i cg=-2-c5—1,

cy =—kle /217, cg=~cy12,¢9 =—c4/ 4a,

(3.1) and (3.2) can be rewritten for the level of time #,7=1,M —1, in matrix forin

(3.3) (f]l flz)[¢i,j.]+(diag (09-,([,1.3,1.) 0. P;j —d
Ay Ay )\ Vij . 0 0)\ Vi

with 4y, 4y, Ay;, Ay, of (N =1)x (N =1) dimension, given by

cy o 7 ; 0 (c4 0 § 0
il I < S <} 0 hic 0 Cy! 0
All = Al?. ]
4!
0 C3 Cz \. 0 ! . 3 C4
g G 0 cg  Cs 0
c
pundl 7 . . 7 = C5
A= Ay = :
Cq Cs
0 3 ] Cy 0 Cs Ce

and d = (dy;dy) = (=i 1s = Pigors— Puneti = Vids = Vi reeor— YiN-1):
Let w=(f;,») denote the vector-solution for level of time i, i.e. il
w = ((Py_',l’ Piase s P N-1Vi1>Vi2 "--’yi,N.—l)-
System (3.3) takes the form

(3.4 : {Z“(p + ijy + g((p) =d,;
AZI(P + A22y = d2

where g((P) = diag(cg '(p?,j Lm‘

Thus we have to solve the nonlinear system
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F(w)=0.
Using the Newton iterative method to solve it, we have
(3.5) TACAZ I 6 ) F(w(j)>/ F'(w(j)),
where

le(P“‘ ZIZ.V + g((pi) T dl)
Ay + Aypy—d,

F(vv):(
A, +diag(3-co 02, 4

F'(w) = ! g( ? (P”-’)i=l,N—1 12 1
4y A

Using an implicit scheme and the Newton iterative method, we obtain from (2.1)

(3.6) zgj +1)((i + 1)8) = z,gj )((i + 1)8) = G(zgj ) ((z <7 1)8)) / G'(zgj)((i =4 1)8)) )
2+ D) = 9 Ge),

where

G(z)= -22—1&-(2) +z- @i(is)- %ys(ia)-

Using the very same way of discretization and implicit scheme, the approximative
version of (1.10) is given by

3.7 (f“ iy J(“’e"’szds
Ay Ay J\ VR

and

PEio = @iy =0, y80 = )8y =0, i= LM,

| : |
9e0,5 = 2(0) = @£(0) = @o(x;). ye0,; = wofx;) + 9805, J=ON,

with de = (_(Psi,l’ — Q89,0 — PE1 N1 — VEi1s ~ VEi2sesT yg’.’N_l) i
For fixed i (i 20), the computation of the approximate solution by fractional
step method can be illustrated as in Figure 2
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. (\)é((.(,'rf)é))
' " A }95(((_'44) E)
i ﬂ“/ Zeltir1)e) o)

200 (ir0E)= =V e B (2)

CE

Fig. 2

and, the numerical algorithm to calculate it, can be obtained by the following
sequence

0 .
Zz§+)1,j =Qg;;, J= LN -1,

J
for k=1 step 1 by 1 until itmax do

() () G(Z,(ﬂ,j)/ G (252,;) j = LN Ly

4i+l,j i+1, ]
!
1
212
if [29’:‘11(2&:}) - zl(ﬂ j) } <'eps and k < itmax W) L STOP
1 (true) [
Zi41,j zl(ffj) ,j=1LN-1, goto sol,
next k :
: sol: d
PE ;= Ziv1,j» Jj=LN - L,
d
Solve the linear system (3.7)
!
y8i+1,j ,j=1..N_1,
(P81'+1,j
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where itmax is the number of iterations, prescribed, eps is the accuracy desired and

\ ; K/
7(3 . (respectively z;,, ;) denote the approximated solution for z£ )((l + l)s)
“itl,y T

(respectively z; ((i+ l)e) WV, = LN-1.
For the numerical tests we consider:

|
T=15., c=100, &=5 a=E4, =3, k=9, 1=10"2-£2.

(kl2 < 16E_,2 /t and /> Za).

The initial value @ (x) is chosen such that (see Figure 3 for i=0)

1 fiey

L L R LT T TR T P
aw "y
LLTTRE T

e — — —— 10.‘

..{'__.._...._..—_..._._.._.._\\1..

Xg Xq Xg Xg Xin*n X2 X3%q, X5 g € %

Fig. 3
9o(x9) =0,  @q(xy)=0,
9o(x;)==055+(j=1)/10, j=1[N/2],

9ofx;) =11, j=[N/2J+ LN -1

and the initial value u(x) is the solution of stationary equation ¢ = Ag=0, i.e. the
solution of the following equation (see Figure 4 for i=0)
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T

X6 X7 X8X9

T T L L § L L

X90%X1 X2 %344 X5 %16 © X

Fig. 4

(2a) (¢ -?)+2u=0,
(see also [10] or [12]).

We observe that max j‘(po(x. j )} = L1 and thereby if we choose r=max ,-|(p0()g ,-)’+2

toen ) 7~ O Vi B,‘[yO(xf)]:B[y‘)(*’f)].

(Po(xj) (Po(xj)
In Table 1 there are given some numerical tests executed on a PC 386SX
computer with math coprocessor. :

Table ] -
" The CPU-time spent by fractional ' The CPU-time spent by iterative 1\/.1.““N
step method Newton method (3.5)
1 83 hund 1" 10 hund 17 17
2 | 5" 11 hund 7" 42 hund 17037 |
3 r 8" 89 hund _ 11" 26 hund 27 37
4| 11" 37 hund 15" 92 hund 37 37
51 14" 94 hund ! 20" 05 hund 47 37
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. Ve .
For M=N=17, Figures 3 and 4 show the approximate solution ™| ‘while

. Yij Peij
Figures 5 and 6 show the approxiniate solution h
i!j
[r
= Qf—
j=2 ff=—
=11 ———
i'—' 17 ________ Q"“'....................._._-...
f{-;o—‘—'—o—.—-:::a'.‘

Pal

I'-"l""-:é. A L 1 [ 1 1 x&.e\ i

WTRTIGNT, X5 X X7 %8 X9 X0 X12X13 X4 1576 €

Fig. 5

4T :—.--"F‘-=;-\
-

X

Fig. 6
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Remark 3.1. i) Because max,‘j‘q)s,».j|<r, then is the approxi-

mate solution for the operator 5.

ii) Let us point out that that the choosing of the value r is limited only by the
arithmetic of the computer (the epsilon-machine).

REFERENCES

1. Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary Jor solutions of elliptic
pamal differential equations satisfying general boundary conditions, Comm. Pure Appl. Math.
12 (1959), 623-727.

2. Barbu, V., Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, 1993.

3. Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Edit. Academiei,
Nordhoff, Leyden, 1976.

4. Barbu, V., Probleme la limitd pentru ecuatii cu derivate parfiale, Editura Academiei Romane,
Bucuresti, 1993.

5. Barbu, V. and lannelli, M., Approximating some non-linear equations by a Fractional step Schenie,
Differential and Integral Equations 1 (1993), 15-26.

6. Bates, P. W. and Zheng Songmu, Inertial manifolds and inertial sets for the phase-field cquanons,
in vol. Dynamical Systems, Plenum, (1992), 375-398.

7. Brézis, H.. Analyse Fonctionnelle. Théorie et Applications, Masson. Paris, 1983.

8. Brézis, H., Problémes unilatéraux, J. Math. Pures. Appl. 51 (1972), 1-168.

9. Caginalp, G. An analysis of a phase field model of a fice boundary, Arch. Rat. Mech. Anal., 92
(1986), 205-245.

10. Caginalp, G. and Nishiura, Y., The existence of travelling waves for phases field equations and
convergence to sharp wtelface models in the singular limit, Quaterly Appl. Math. XLIX
1(1991), 147-162.

11. Elliott, C. M. and Zheng, S., Global existence and \rabxln‘v of solutions to the phase field equa-
tions, in: Free Boum]arerioblenm K-H. Hotfinan and I. Sprekels, eds.. Int. Ser. of Numeri-
cal Math. Vol.95, Birkhiuser Verlag, Basel (1990),

12. Fife, C. P., Models for phase separation and their mathematics, nonlinear par. diff eqns. and
appl., M Mimura & T. Nishida, eds., (to appear).

13. Morosanu, G., Nonlinear Evolution Equations and Applications. Reidel, Dordrecht, 1988,

14. Moroganu, G., et al. Controlul optimal al suprafefei de solidificare in procesele de turnare continuag
a orelulm Contract nr. 590/115, Etapa 11/1993, Capitolul I.

15. Pavel, N. H., Differential Equations. Flow Invariance and Applications, Research Notes in Math-
ematics, 113, Pitman Advanced Publishing Program (1984).

16, Vrabie, ., Compactness Methods for Nonlinear Evolutions. Longman Scientitic and Technical,
London 1987.

Received '15.09.1995
Department of Mathematics

University of lagi
6600 lasi
Romania



