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L. INTRODUCTION

The aim of the present paper is to establish two existence theorems based on
fixed point techniques and a Filippov type theorem for the mild solutions of quasi-
linear differential inclusion

s dx(’i(rf) & A(t, x(1))x(1) + F(s, x(1)), ae rel=|0, L), F0,
x(O) =q

Here A(z,w) is a linear operator in a Banach space X and it depends on 7 € [ and
w e X, [28]. %

Other results on quasi-linear differential inclusions are proved in [20-23].

A deep motivation of the usefulness cf the differential inclusions in the study
of control problems may be found in [10], [2], [11].

If operator 4 depends on # and w, the differential inclusion in (CP)is said to -
be quasi-linear, if 4 depeids only on 7, the differential inclusion is said to be semi-
linear, and if A depends neither on  nor on w, the differential inclusion is said to be
linear, (4], [28], [34].

In [11] Frankowska proves, among other results, a set-valued Gronwall lemma
(Filippov type theorem), when the differential inclusion is linear, 4 being the in-
finitesimal generator of a strongly continuous semigroup S(7) € L(X; X), >0, of
bounded linear operators from X to X and £ is a set-valued map from 7 x X into the
closed nonempty subsets of X,

Tolstonogov, in [37], mainly in [38], studies similar problems to those in (11},
when A4 1s the infinitesimal generator of a C-semigroup or an m-dissipative operator.

The existence theorems which will be introduced here have been obtained
by the first author in [20].
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Interesting results are introduced by Qi Ji Zhu in his recent paper [30] in
connection with the case where the differential inclusion has the form
dx(t)/d(r)e F(t, x(£)). This approach goes back to Filippov’s papers [8], [9]. When mul-
tifunction F satisfies a Kamke condition similar results may be found in [37], [29].

In [28] Pazy studies also the existence of a mild solution of the following
homogeneous Cauchy problem

du(t
(P # + A(z,‘ u(t)) =0, tel,
u(O) =a

He shows, using the contraction mapping principle, that under certain conditions
inspired by the “hyperbolic” case the initial value problem (CP ) has a mild solu-

tion on an interval [0,T'], 0 < T'< T
Sanekata, in [34], proves several results in connection with the following
non-homogeneous quasi-linear initial value problem

(CP) dz(,t) + At u(r) = f(Lu?)), tel,

u(O) =a

using two nonreflexive Banach spaces Y and X, ¥ being continuously and densely
embedded in X. The method used in [34] to establish the main results concerning
the existence of mild or strong solutions is based on a difference approximation
technique of (CP,).

In [17] Kobayashi and Sanekata prove similar results to those in [34], but in
order to establish the main result the contraction mapping principle is used.

Anguraj and Balachandran, in [1], are concerned with the existence of a
solution of (CP), but in case when X = R". To get the desired result they used the
Bohnenblust-Karlin fixed-point theorem, [33] or [36].

Let Z be a linear topological space. We will use the following notation:
P(2)={AcZ|42@}, C(2)={4eP(Z)Aclosed}, CCo(Z)={4eC(Z) A convex},
KCo(Z)={4 eP(Z)4 compact and convex}.

Let M be ameasurable space with a c-algebra .+ and X a separable metrizable
space, a multifunction, [6), F:M — P(X). F is said to be measurable (weakly
measurable) if F‘I(E):={t eM‘F(t)ﬂM # @} is measurable for each closed
(open) subset £ of X, If F has closed values and the c-algebra .« is complete, F is

measurable if and only if F is weakly measurable. This result together with other
equivalences may be found in [14] or [41]. If F: ¥ — P(X) is a multifunction,
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where Y is a topological space, then the assertion that Fis measurable means that
Fis measurable when Yis assigned with the c-algebra % of the Borel subsets of Y.
If F: M xY — P(X) and if the measurability of ' is defined in terms of the product

c-algebra &/ ®F on M x Y generated by the sets 4 x B, where 4 € «Z/and B € &,
then F is said to be product-measurable. If F:M xY — P(X) and for each multifunction
G:M—C(Y) the 1111'11tif1.1110t1011 Fy:M — P(X), defined by FG(I):UyeG(,)F(t,y) is
measurable, then F'is said to be super-positionally measurable.

Let [ be a fixed interval, /= [0,T"], 7>0, and X be a Banach space. Denote

by C(Z, X') the Banach space of continuous functions from / to X with the norm
given by |x] = sup,. ]“x(l)” and by ZY(1, X) the Banach space of Bochner inte-
grable (classes of) functions from 7 to X with the norm given by ||Jx||1 = J.] ” x (1) " dr .
Set ZYI):=2YI,R.),I[7].

A set-valued function G: 1 — P(X) issaid to be L-Lipschizzon K < I if for
all x,y € K, G(x) < G(y) + L|x — y|B, where B denotes the closed unit ball in X,

A set-valued function G:I—2% is said to be integrable bounded if there
exists m e ZY(I) such that G(1) < m(1)B a.e. on .

If F:I x X — C(X) is a multifunction, then by S}, := S}i('):: Szlr(-,x(-')) =D
we denote the set of integrable selections of Fi (-, x(‘)), x:I = X . A sufficient
condition that SI{, (x(0) # (2 is that ' has a measurable selection and that F(:, x("))

is integrable bounded.

A multifunction F: X — Y, Xand Y being topological spaces, is said to be
upper semicontinuous on a point x, € X if for every neighborhood ¥ of F(x,)
there exists a neighborhood U of x, such that F(U) cV.F: X — Y said to be
upper semicontinuous (u.sc.) on X if it is upper semicontinuous on every pgint
xg € X . Amultifunction F; X — Y is said to be lower semicontinuous if F~1(V)
is open in X whenever V c Y is open.

Let I be the interval / = [0, T'], T > 0 fixed, and X a Banach space. A family
of bounded linear operators %(t, s),on X, 0 < s <7 < T, depending on two para-
meters is said to be an evolution system, [28], if the following two conditions are
fulfilled:

(1) 2(s,s) =1, Ut,s)(r,s) = %(1,s) for 0<s<r<t<T;

(2) (1,5) > %(1,s) is strongly continuous for 0 < s < 7 < T, where by

strong continuity is meant that limu  %(z,s)x = x forall x e X .

We use the following assumptions:
(X, ) Xis aseparable Banach space;
(X,) Xsatisfies (X;) and, moreover, it is reflexive;
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(4) Forevery u e C(I,X) the family of linear operators {a, ult e I}

generates a unique strongly continuous evolution system U%(1,s), 0<s<1 T
(U) If ueC(l,X), the evolution system USt,s), 0<s<t<T satis.ﬁes
(i) there existsa ¢; > 0 with H%(z,s)ﬂ < ¢ for 0<s<¢< T ,uniformlyiny
(ii) there exists a ¢, = 0 such that forany u,v € C(I,X) andany w e X

we have

H%u(t, s)w — %1, S)WH < ¢y v J.: Hu(‘t) - V(T)” dr;

(Uy) IfueC(l,X)and 0<s<t<T,then %,(1,s), is a compact operator, i.e.
it transforms bounded sets in relatively compact sets. In this case, (cf. [28] p. 48),
U (1, s) is continuous in the uniform operatorial topology.

u\?

(U) If 1,1+ 8 €1, 8 >0, then limys_, ¢ %,(t +8,1) = 1, uniformly inu and .

Remark. 1f operator 4 does not depend on w, but it depends on #, then the
assumption (4) reads as follows: {A(t)|t el } generates a unique strongly continu-
ous evolution system %/(1, 5), 0<s<t<T.In this case we take c, = 0 (in (ii)
from (U, )).

In connection with the multifunction F we will use the following assumptions:

(F) F:IxX - C(X) and forany x € X, F(-,x) is measurable;

(F) FiIxX—> CCo(X) and forany x € X, F(-, x) is measurable;

(F,) F satisfies (F) and forany 7 € I, F(t;): X — C(X) is lower semi~con-
tinuous from X in C(X) and it is u.sc. from Xin C(w-X), where w - Xis X endowed
with the weak topology; ‘

(F,) F satisfies (F,), it is product-measurable and for all 1 €1,
F(t, ) X — C(X) isu.sc,

(F,) F satisfies (F, ) and, moreover, it is (1)-Lipschitz, ie. exists b e ZYI,R,)
such that for almostall 7 € I and forall x,y € X, D(F(t,x), F(t,y)) < k(l)”x -y
D being the Hausdorff-Pompeiu metric.

(F,) F is integrable bounded by a function m € & YI,R,) , that is for all
x €C(I,X) and ¢ e I wehave F(z, x(t)) < m(1)B, B is the closed unit ball in X.

(F,) the function = d(O, F(I,O)) is integrable on /.
By an inclusion of evolution we mean an inclusion of the following form

>

da:j(’r) e A1, x(1))x(t) + F(t,x(1)), actel

-
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Hereafter we are interested to study the mild solutions of (CP), i.e. the con-
tinuous functions having the following representation

x(t) = % (1,0)a + J;:%(t, S)f(s)ds, tel, feSk.

Remark. The evolution inclusions have been investigated in a series of papers,
e.g. [28], [34], [1], [26].

2.1. EXISTENCE RESULTS

From the form of the mild solution it is clear that first of all we have to check
that the set of integrable selections is non-empty.

2.1. LEMMA. If one of the following two conditions is satisfied

@) (X)), (F,) and (F);

(i) (X)), (F3) and (Fy),
then for each x e C(1,X), S}l,x % @

Proof. If the condition (i) is satisfied, from (X)) and (F,) it follows that F is
superpositionally measurable, [40], [42]. Hence for each x e C(I X ) the multi-

function defined by ¢ > F (t, x(t)) is measurable. Now applying the Kuratowski,

Ryll-Nardzewski selection theorem, [18], it follows that there exists a measurable
selection. Taking into account (F) we get that the selection is (Bochner) integrable.

If we consider (ii), from (X,) and (F}), using [25] theorem 3.4, we get that F
is super-positionally measurable. From here we continue as above. B

Remark. In [30] the problem of non-emptyness of the set of integrable selec-
tions is solved by considering it as an assumption, (4,), p.218. '

We use two fixed point theorems. One is called as the Bochnenblust-Karlin
fixed point theorem in [1], [33] p.74, [15] p.160 or as the Himmelberg fixed point
theorem in [36]. The other is a multivalued version of the Banach fixed point
theorem.

2.2. THEOREM. Let K be a nonempty, closed and convex subset of a locally
convex space X, Let \y: K — CCo(K) be an upper semi-continuous multifunction
such that (K ) is a compact set. Then \y has a fixed point.

2.3. THEOREM [3]. Let Y be a non-empty and closed subset of a Banach
space X and let F:Y — C(Y ) be a multifunction with the property that there ex-
ists a constant ¢ € (0,1) such that for any x,y € Y and any u € F(x) there exists
v € F(y) which satisfies the following inequality
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e = vl < o - 1.

Then F has a fixed point in Y.

Admit (X, ) and (A4 ). Let M be defined by M = {x € C(1, X)|x(0) = a}.
Obviously, M is a non-empty convex and closed subset of the Banach space C(/, X).
Consider the multifunction y: M — P(M) defined by

2.1 W(x):{y eMy(}):Q/_t(z>O)a+j;%x(l,s)f(s)ds, tel,f ES};’}, xeM.

If the assumptions of lemma 2.1 are satisfied, the multifunction W is properly

defined, thatis (x)= @, for each x'c M . Denote by b = (“a“+”m”l)c1 (m in
(Fy)) and let M, be the set defined by

My = MYx e C(1,)|x| < o},
Let M, (1) be the t-section of the set (M)

o)) = [5(0)]y € wix) x M),

We consider one more assumption
(Ml. ) If A depends on w we suppose that for each 7 e I, M,(1) is relatively
compact in X.

Remark. 1f 4 does not depend on w, then we prove by lemma 2.6 that M,(7)
is relatively compact, hence the assumption (M ) is unnecessary.

In what follows we study some properties of the multifunction Wy, useful in
applying theorems 2.2 and 2.3.

2.4. LEMMA. Suppose the following assumptions are satisfied: (X,), (4), (U,).
(Fy), (Fy), (Fy) or (F,). Then for each x e M, y(x) e CCO(C(I, X))

Proof. Under the above assumptions, taking into account lemma 2.1, for
eachx € M, S}X #. < and hence y(x) # & . The convexity of the set y(x) follows
from the assumptions (X 2 ), (4) and from the linearity of the Bochner integral. All
we have to do is to show that yi(x) is a closed set in C(7, X), that is y(x) e C(C(1,X)).
For it we consider a sequence ( y")” o~ C W(x) convergent in the uniform topology
to anelement y € C(7,X). We show that y e y(x), it means that there exists an
clement [/ € S};} such that

W)= % (t0)a + [ % (1,5)f(s)ds, 11

Now, if y, € y(x), there exists /y € Sk such that
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wlt) = U(t0)a+ [ U (09)fy(s)ds, el neN.

gince I is integrable bounded, {/uln < N} is a bounded set in ZYI1,X). From
pettis theorem, theorem 2.11.2 [13], and (X,) it follows that the set { £, (1)}n € N }
1 sequentially weak compact, ¢ € I'. From proposition 1.2 [38] we have that the set
{ /i (t)ln € N} is metrizable relatively weak compact in #(7, X ). It means that
(i)assillg to a subsequence and keeping the notation, if necessary) (f,, )HGN con-
verges weakly to an element f e (7, X) . Itremained to seeif f & S}vx . From
Mazur lemma, [39] p.199, or [32] there exists a sequence (g,, )”EN, as convex
combinations of elements fiom {f,,}” en » Which converges strongly to /e (1, X)),
[t is clear that g, (1) e F(z, x(t)), t €I and, moreover, g, € S}Vx ,nmeN  Since
(2 ),en converges strongly to /" e Y1, X) and F has closed values, we have
that f(f) € F<l, x(l‘)) a.e. land hen(ie [ e S};} )

For cach ¢ € I'the map h > fo U,(1,s)h(s)ds from, £ Y1, X) in.Xis lincar
and continuous (in fact Lipschitz, from ( U, )) and, from theorem IV.7.4 in [35], it
remains continuous as a map from w - #Y(7, X) in w - X. Hence, for each 7 e I,
the sequence (y,,(t))n on converges to p(r) in w - X. From hypothesis we have that
y, > ¥ uniformly, which implies that y e y(x). &

2.5. LEMMA. [f the assumptions from lemma 2.1 and (U | ) are satisfied, then
\[/(M ) < M, .

Proof. We show that for each x € M and each y € \y(x) the estimation
Hy“ < bholds. Indeed

o)l = |20\l + [

U1, .5)“ “f(s)”da < ”a“cI + “m”lcl =b, tel.

2.6. LEMMA. Under the assumptions of lemma 2.1 and ( U)) and (F ), the
map x > y(x) from Mto CCy(M,) is uniformly upper semi-continuous in respect to
Hausdorfj~-Pompeiu metric.

Proof. Choose an arbitrary € > 0. We want to find an M > 0 such that if
u,v.& M with [ju- v <mn, then d(\,u(u), W(V)) <&, thatis, for each y e y(u)
there exists z e y(v) with |

If = vihen W) = w(v) and d(yw(u) y(v)) =0 <s.

y-<e.
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Suppose u # v . Let = 0 be arbitrary. If d(\v(u), \y(v)) < g, then for each
y e y(u) there exists z € y(v) such that ly-2<e.1f ye y(u) there exists
f e Slp such that

1
= . )ds, tel.
w(t) = U1, 0)a + J( U t,s)f(s)ds, 1€
Write k() = k(1) + . We have the assumption (F)
D(F( ), F(6¥) € KO~ Y] < k@~ ]
It follows that there exists & € S 11'*1 such that

/() - g@)] £ ku(ofl) - W

)l, a.e. on /.

Let us take
1) = U100 + [ (5, 9)8(s)ds, 1 € 1.

We have

|Mo_4wsW%@ma~%0m4+ﬂW%@gﬂg—%ﬁﬁg@m@,xeL

Taking into account (U; ) we have the estimation

4100 - %4100 < el [ ) - vis ldS<CzllallTllu-Vll

On the other side we have

(1, ) /() = % (1, 9)1(s)] +

|4,(t, )1 (s) ~ % (¢, s)8(s (s)] =
|, (1, 5)f(s) - (1. 5)8 (s)] < al/(s) -
< el 1) - ol + ot~ 1

Hence
I(e) - 0] < ol = ]+ 1) -
< [eat(lll+ )+ el Jbu = b 2 2

g(s)”ds 3o “m“l“u - VH <

o(s)] + ol N Jpe) - v e <
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Let us write ¢3 = ¢;T (Ha“ + Hm“l) + ¢ HkP“1 . Then
Iy =2l < eshe — vl

If¢,=0, thenn>0 is arbitrary. If ¢; > 0, then we may consider 0 < m < &/ ¢5.
Thenif “u - VH < n, it follows that Hy - zH < g . Itis clear that n does not depend
on % or v. From the method of finding of y and z we have that d(w(y), w(v)) <

< C3Hu = V“

2.7. THEOREM. If the following assumptions (X,), (4), (U,), (I5)8 (Mg o Jiare
satisfied and if 0 < ¢y <1, then there exists amild solution of the problem (CP) in M,

Proof. We consider the map y: M, — C(M,) defined by w, =
and then we use theorem 2.3, |

2.8. LEMMA. Under the assumptions (X,), (4), (Fs_¢),(U,) and (Uy), w(M) is
a family of equicontinuous maps.

Proof. To prove that w(M) is a family of equicontinuous maps it is enough to
show that for any & > 0 there exists 1> 0 such that forevery 7, 1 + 6 € [, 0 <8 < p,
x € M and y e y(x) the following inequality takes place

Hy(t + 8) - y(f)“ <.

We have
Hy (+8) — (1) < |2 (2 + 5.0)a — %(1,0)a] +
) (s)ds = [ @4 (o + 5)/(5) ] < l
<[ (s +5,1) ~ 15 )24, (0)d) +
+j;[0z4.(z +8,0) = 1y | 2% (1,5) /(s)ds] + f”a | 2%t +8,5)(s)] ds

and since a linear and continuous operator commutes with the integral we have

further
ffos)+ [

<[t 0.0 141]

From the hypothesis and from theorem 9 p. 49 [7], (by which the last integral is as
small as we likc provided 8 is sufficiently small) there results our lemma. 2]

024.([,0)4| +

(HSS ”ds
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Remark. Similar evaluations appear in [11] and (38].

2.9. LEMMA [11]). Let U:] —> C( X ) be a measurable set-valued map and

gl— X, kI>R, be measurable single-valued maps. Assume that

w(r) = U()N{g(t) + k(t)B} # &, a.e on I.
Then there exists a measurable selection from W on L
Proof. g(1) + k(t)B = B(g(?), k(f)), i.e., the closed ball centered in g(f) with
radius k(7). By theorem II1.41 and proposition 11113 in [5] the multifunction
1+ B(g(2), k(1)) has measurable graph. Now, by theorem 111.40 in [5] the mul-

tifunction ¢ — W(r) has measurable graph, and by theorem 3.5 in [14],itis a
measurable closed valued multifunction. Then it has a measurable selection,  H

2.10. LEMMA. If the assumptions X)), (4), (U)), (F)), (F) and (M) or (X,),
then the set M, (1) is relatively compact in X, for eacht € L

Proof. If A depends on w, then by the assumption (M,) it follows that the
lemma is true. Suppose, further, that 4 does not depend on w and we follow the
way in [27]. Then

My(1) < wu(0)a+ [ (e, 5)P(s)ds,

where P(1) = {x € X. "x” < sup{'F(t, z)l: “z” < b}. By (F,) we have that

P(s) = m(s)B, with m e & (I, R, ), iar and by (U,) that U(t, s)P(s) is convex
and compact in X. Since P(s) is measurable, (lemma 2.9 with g =0, k = m), 1t
follows that the map s > (1, s)P(s), s € [0, t], is measurable, too. By the
embedding theorem ot; Rédstrom, [31], [16] or [12] theorem 3.6 (2°) and theorem
4.5 (2°) we get that J.O%(t, s)P(s) ds is convex and compact in X. From here it
follows that M, (1) is compact in X. |

2.11, THEOREM. Suppose the following assumptions are satisfied
() (), (), (U, Uy, (Fy), (Fig)s
(i) (M) or (U
(iif) (F3) or (F,).
Then there exists a mild solution in M, of the (CP) problem.

Proof. Consider in theorem 2.2. K = M, € CCo(C(], X)) and  defined

by (2.1).From lemma 2.1 we have that \y(x) # @, for each x € M, and from
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lemmas 2.4 and 2.5 it follows that w(M,) < y(M) c M,.Moreover, itis valid
that y(x) € CCo(M,), foreach x € M, . So, we have checked that gz M, — CCoM,,).

By lemma 2.8 it follows that w(M,) is a family of equicontinuous maps, and
by lemma 2.10 it follows that M,(#) (t-section) is relatively compact in X, for each

1 e I. Hence, based on the Ascoli-Arzeld, [2] p.13, we have that \J,I(M b) is com-
pactin C(J, X).

From y(x) < w(M,) it follows that w(x) = w(x) € W(M,) for cach

x € M,, such that y(x) € KCo(M » ). Taking into account that y is upper semi-

continuous in respect to the Hausdoff-Pompeiu metric and it has compact values,
based on an observation in [2] p. 45, we have that  is upper semi-continuous.
In this way we have verified all the requirements of theorem 2.2. Hence the
multifunction  has a fixed point in M, . This fixed pointis a mild solution of
the problem (CP). |

2.12. THEOREM. Consider f,geZ (1, X),1= ﬂf—g”l and & =xo — ¥

such that the assumptions of theorem [2.11] are fulfilled with f and g instead of F. .
Denote by x andy two mild solutions of the quasi-linear equations corresponding
1o the cases [, x,, respectively g, y, . Then the estimation holds.

Hx(z) - y(r)” < ¢y +98) exp[cz (min{”xol

Jyol} + minf]

N g"l})t], tel
Proof. Let us denote by
5(1) = % (10)x0 + [ %(1,5)/(s)ds, 11, .
1) = % (10)yo + [, %,(1,)g(s)ds, 1 el

the two mild solutions. Then

LORSIO Bl

U (1,0)x - %(’,O)J’O” n J.(j|
)

< e+ aalo] [ () - v as + e fLAs) - el as +

U (1,5)1 () — %1, s)g(s)| ds +

%, (1,5)g(s) - %1, 5)g(s)] ds <
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o j’ l¢(s)] jf [x(x) - (e )eds <

< (8 + %) + eafol + ) [ be(s) = ()
Using Bellman lemma, [19] p.353, we get the inequality
Ie) = 0 < e + )exsfeallel + I} 1<

From here there results the desired estimation.

COROLLARY. Under the assumptions of the above theorem we have

S NER

COROLLARY. Under the assumptions of the above theorem and if, moreover,
§ =y =0, then x =y, hence the mild solution of an initial value quasi-linear

[~ yHC(]__X) < (8 + ) exp[cz( 5

equation is unique.

22, FILIPPOV-TYPE THEOREM

In this section we consider two Cauchy problems:

l dz(;) e A(t, x(0))x(1) + F(1,x(1)), a.e.t €],

2.2)
|%(0) = a = x,
and
dyl(1
(2.3) Jd(t’) = A, y())p(1) + g(1), g € L1, X), ae tel,
)’(0) =JYo-

(S;) Suppose that problem (2.3) has a mild solution
t
¥(t) = %y(t,O)_yO + J;) @ly(t,s)g(s)ds, t el

We show that if the initial values and the non-linear parts are sufficiently
close, then problem (2.2) has a mild solution x whose distance to y does not exceed
a certain value.

2.13. LEMMA [11]. Let G:I x X — C(X) be measurable in the first vari-
able and continuous in the second variable and z € C(I, X), then the set-valued
map t = G(1, (1)) is measurable.
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Proof. From proposition 2.3 [24] we have that G is product-measurable. By
theorem 1 in [40] there results that G is super-positionally measurable.
The above result may be obtained from theorem 2.2 in [30], too.

2.14. LEMMA [11].Let U:I — C(X) be a measurable multifunction and
wl — X beameasurable map. Then the function t — d(u(l), U(f,)) is measurable.
2.15. LEMMA [11]. Let G and z be as in lemma 2.10 and h € NI, X).
Then, if G satisfies (F,) and a k(t)y-Lipschitz condition, thefunction t — d(h(r), G(l, z(r)))

is integrable on 1.

Proof. From lemmas 2.13 and 2.14 we have that our function is measurable.
It is also bounded by an integrable one since

a(A(1), G(z, 2(1))) < )| + 4(0,6(2.0) 0)) + 4(G(1.0), 61, (1)
< [n(0)] + d(0, G(1,0)) + D(G(1,0), 61 (1)) <

z(z)H.

IA

< Ja(z)| + d(0, G(1,0)) + k()

2.16. LEMMA. Suppose that under the assumptions (X;), (4) and (U,) each quasi-
linear Cauchy problem

{x;1(r) = A(t,xn(z)x,,(t) +1,(1), ae onl
xn(o) T & )

n € N, has a mild solution

5,(0) = %, (10)a + [9%, (1,5)f () ds, 1 €L -

n

Suppose, also, that there exist x € C(1,X) and [ e (I, X) such that
X _ CUX) oy and f, = f in LI, X) and that the set {1} U{f,,}neN is

n

integrable bounded by a function m € & (1, X). Then
x(1) = % (1.0 + [ % (1.5)/(s) ds, 1l
!
x,() = 2% (10)a — || %(1,5)1(s)ds

Proof. We show that converges to 0

provided 1 — o0, uniformly in 7. We have
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<

(1) - 2% (100 - [ % (05)1 ()3

<

2, (19)13(5) ~ (1.9) ()]s =

2, (10) - %(10)| + ||
< e ]! ol - ol +
of! i (15)7(6) - %)) s =
< co ! Jrnls) - st s + afy Ue) - S +
serf! O] Bee) - e <
S A ORES CEEINVAORFIOILS
< (call)+ bl o = o1+ el = 71

%, (1,5)f,(5) - %, (,5)/ ()| ds +

Remark. Convergence results as stated above may be found in [38].
We consider problems (2.2) and (2.3) under the assumptions (X, ), (4), (Fy)

and (Fy). Write 8 =[x =yl » = callxo]+ lm],), *o(0) = k() + e, & >0,
k() = [ [p+ ku(s)]ds, B(0) = exp(K(1), £ €1 Moreover, we admit the
assumption (S, )and let (1) = d(g(1), F (1, 1)), ¢ € 1. Based onlemma 2.15 we
have that y € & ! and then consider n(t) = cl[ﬁ + j; (y(s) + s)ds} tel!

2.17. THEOREM. Suppose the following assumptions are satisfied: (X,), (4),
(U, (Fy), (Fg), (Fy) and (S)). Then problem (2.2) has a mild solution x € C(I, X)
such that

@) o) - (o) = () = cl[SE(I) v B! (1(s) + s)ds], =
and for almost every t € 1 '
(2.5) .‘f(z) - g(l)“ < y(1) + & + n(t)k () E(1).

Proof. The method (as in [8], [10], [11] [38]) consists in constructing two
convergent sequences (x");m /G and (fi)s ] '(1,X) such that x,
the limit of ()C,,)”21 in the uniform topology from C(/, X) , is the mild solution of
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the problem (2.2) and it satisfies (2.4). /, the limit of the sequence (./fn),m n
$Y(1,X), satisfies (2.5) and appears in the formula of x.

Let us sce the first two steps of this inductive procedure. Consider the multi-
function given by

L (1) = F(l,y(t))ﬂ{g(t) + (y(l) + 8)3} =, rel

From the definition of ¥ it results that it is measurable, integrable bounded and
closed valued., Hence it has an integrable selection f; € # (1, X). Then

Hf](’) - g(f)H < y(1) + & Define x, as

‘
xi(2) = 2, (2.0)x + L) (1, 5)1(s)ds, (€L,

and we get that

(0 - 0] < 01(6 L) s)ds} iy

Consider the multifunction given by
(e W(0):= Pt m @) A + k() = wolB) = 2, 1 e
We show that W,(1) = @foreach ¢ e . 1fx() = y(f), then F(£,x,) = F(4,y(1)),

hence f1(1) € F(t,x,(7)). Suppose x,(1) # #(1). From the following inequalities
d(fl(r), F(I,,\fl» < d(F(\t,y(r)), F(r, xl(t» < D(F([’ y([))) F([)x](){» <
< ) 0] < B0 - ot

we infer that there exists z € F(r, xl(t)) such that

z e fi(8) + ke ()pae) - (0)| B ,
and so WQ(Z) # . Hence for cacht e I, Wz(!) # . By lemma 2.13 the multi-
function « > F(r,xl(f)> is measurable, ¢ € [; the function > /cg(z)Hxl(z) - y(l)“
is summable on . By lemma 2.9 we have that multifunction 7+ Wy(1), ¢ € I
admits a measurable selection which is also summable, hence /‘é e? '( I, X ) i
Then there holds the estimation

1£2() = A < e (n(2).
Define x,as
x5 (£) = %, (1,0)xg + j(: U, (1,5)f5(s)ds, 1 e 1.
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We have
FOREN0E
< el ) - ol +
NN CAGHIIORLACOVO LR
< oyld] J: fa(s) - s ds + e[ | Sals) = Als) s +
ver [, A J’j ) - o) e <
< [[p+ ek (s)pu(s) - (o o 2 [[p+ e (nls)as

If the last integral is increased to n(f)K(7) (this is allowed since the function n(7) 1s
positive and increasing), then we get

llxz(f) g Xl(f')“ < n(t)K(1)

(100 - % (0)d) + [ |2, (1.)15(s) - %,0:5) fi(s)ds <

x,(t, 5)fo(s) = %l(t, S)fl(s)u ds +

and
s = gy < T3+ KT
Now, letus take n € N, n>2 and suppose we have determined the sequences

(xf)1s;'su c C(1,X) and ('fi)lﬁisn < #Y(1,X) such that

w(t):= (f’le ﬂle £) + ks “:1 'i—z(f)“B} f,-eSW,
x(1) = %, (10)x 4 J"z/ (1, 5) fi(s)ds,

i-1

Hf,(f) ] g(l)” = Y(t) +&+k; (L‘)n(t)i [_K;(_t}l—

i
j=0 i
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(e andi>2. Weaccept thatx () = (0, 1€ I. Consider the following multifunction

s Wy (0= F( 5 O) (0 + B (Oale) = %a (D) |},

which admits an integrable selection f, ;. Thus we have

(2.6) TAOREAG EXAOIAOEENC B
@.7) n(2) = 2] £7(0) # 5 4 Ko , 2 [K(r]

Using the selection fn . we constructx, |, as

(2.8) A,Hl() . (rO Xg + j @/ Ts)f,,ﬂ( )

and it results that

2.9 “xnﬂ(t) - xn(z)” < n(1)

210 (1) = (0] £ 103
From (2.9) (2.5) forall n € N we have

Hx,H.l s x"“c(I,X) < n(T)——«———- \
“fnﬂ fnul = ” “kH “erl "“C(I,X)'

These inequalities imply that (x,,)nZl and (f}, ) > are convergent sequences. Let
x € C(I, X), respectively f € & i(1, X), be their limits. Then by lemma 2.16 we
have that f € Sk , more exactly that x is a mild solution of problem (2.2) which
corresponds to th:: selection . From (2.10) we get estimation (2.4), and from (2.7)
it follows (2.5). i

Remark. 1f the differential inclusion in (2.2) is semi-linear, then p = 0 and
thus we get a resultin [11].



170 Marian Muregan, Comelia Muresan 18

[ \S]

[F8]

6.
7.
8.

REFERENCES

. Anguraj, A, Balachandran, K., Existence of solutions of nonlinear differential inclusions, Mem.

Fac. Sci. Kochi Univ. Ser. A'Math, 13 (1992), 61-66.

_Aubin, I.P., Cellina, A., Differential Inclusions, Springer, Berlin,1584.
_Avramescu, C., Teoreme de punct fix pentru aplicatii contractante definite pe spafii unifornie, An.

Univ. Craiova Mat, Fiz.-Chim. Ser. a [V-a I (1970), 63-67. (Romanian).

. Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Ed. Academiei-

Bucuregti; Noordhof-Leyden, 1976.

. Castaing, C., Valadier, M., Convex Analysis and Measurable Multifunctions, Springer, Berlin,

1977.

Deimling, K., Multivalued Differential Equations, W. de Gruyter, Berlin, 1992.

Diestel, 1, Uhl, L., Vector Measures, Amer. Math. Soc., Providence, 1977.

Filippov, AF., Clas_szcal solutions of differential equations with multivalued right-hand side,
Vesmik Moskov Univ. Ser. I Mat. Mekh., 3 (1967), 16-26. (Russian).

9. ——, Classical solutions of differential equcations with multivalued right-hand side, SIAM
J. Control, 5 (1967), 609-621.

10, ——, Differential Equations with Discontinuous Righthand Side, Kluwer, Dordrecht, 1988.

11. Flankow<ka H., A priori estimates for operational differential inclusions, 1. Differential Equa-
tions, 84 (1990), 100-128.

12. Hiai, F; Umegaki, H., Integrals, conditional espectations and martingales of multivalued func-
tions, 1. Multivariate Anal., 7 (1977), 149-182.

13. Hille, B., Functional Analysis and Semi-groups, Amer. Math. Soc., New York, 1948.

14, Himmelberg, C.J.,, Measurable relations, Fund. Math., 87 (1975), 53-72.

15.

Iswratescu, V.1, Introducere in teoria punctelor fixe, Bd. Academiei RSR, Bucuresti, 1973. (Ro-
maniat).

16. Klein, E., Thompson, A.C., Theory of Correspondences, Wiley, New York, 1984,
17. Kobayasi, K., Sanekata, N., 4 method of iteration for quasi-linear evolution equations. in

18.

nonreflexive Banach spaces, Hiroshima Math. I, 19 (1989), 521-540.
Kuratowski, K., Ryll-Nardzewski, C., 4 general theorem on selectors, Bull. Polish Acad. Sci.
Math,, 13 (1965), 397-403.

19. Mitrinovic, D.S., Pedarié, J.E., Fink, A M., Inequalities Involving Functions and their Integrals

and Derivatives, Kluwer, Dordrecht, 1991,

20, Muresan, M., On quasi-linear inclusions of evolution, Preprint. *“B abes-Bolyai” Univ. Cluj-Napoca,

7 (1993), 29-46.

21, ——, On a boundary value probicm for quasi-linear differential inclusions of evolution, Collect.
Math., 45 (1994), 2, 165-175.

22. ———, Qualitative properties of solutions to quasi-linear inclusions, 1., Pure Math. Appl., 5
(1994), 331-353.

23. ——, Qualitative properties of solutions to quasi-linear inclusions, 11, to appear, Pure Math.

Appl, 6 (1995).

24, Nowak, A., Random differential inclusions: Measurable selection approach, Ann. Polon. Math.,

25.

49 (1989), 291-296.
Papageorgiou, N. S., On measurable multifunctions with applications to random multivalued
equations, Math. Japon 32 (1987), 437-464,

26. ——, On quasilinear differential inclusions in Banach spaces, Bull. Polish Acad. Sci., 35 (1987),

407-416.

27. ——, Boundary value problems for evolution inclusions, Comment. Math. Univ. Carolin., 29

(1988), 355-363.

28. Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations,

Springer, New York-Berlin-Heidelberg, 1983.

29. Pianigiani, G., On the fundamental theory of multivalued differential equations, 1. Differential

Equation, 25 (1977), 30-38.

19 Quasi-Linear Inclusions 171

30. Qi Ji, Zhu, On the solution set of differential inclusions in Banach spaces, ]. Differential Equa-
tions, 93 (1991), 213-237.

31. Radsttom, H., An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 3
(1952), 165-169.

32. Rudin, W., Functional analysis, McGraw-Hill, New York,1973.

33. Rus, AL, Principii si aplicafii ale teoriei punctului fix, Dacia, Cluj-Napoca, 1979. (Romanian)

34. Sanekata, N., Abstract quasi-linear equations of evolution in nonreflexive Banach spaces,
Hiroshima Math. J., 19 (1989), 109-139.

35. Schaefter, HH., Topological vector spaces, Macmillan, New York, 1966,

36. Seda, V., Some fived point theorems for multivalued mappings, Czechoslovak Math. 1., 39(114)
(1989), 147-164.

37. Tolstonogov, A.A., Differential Inclusions in Banach Spaces, Nauka, Novosibirsk, 1986. (Rus-
sian).

38. ——, On the solutions of evolution inclusions. 1, Sibirs. Mat. Zh., 33 (1992), no. 3, 161-172.
(Russian).

39. Trenoguine, V., Analyse Functionelle, Mir, Moscou, 1985,

40. Tsaliuk, V.Z., On the superpositionally multifunctions, Mat. Zametki, 43 (198‘3) 98-102. (Rus-
sian).

41. Wagner, D.H., Survey of measurable selection theorems, SIAM J. Control Optim., 15 (1977),
859-903.

42. Zygmunt, W., On superpositionally measurable semi-Carathéodory multifunctions, Comment.

Math. Univ. Carolin,, 33 (1992), no. 1, 73-77

Received 15.06.1994 Faculty of Mathematics and Informatics
Babes-Bolyai University
1, M. Kogalniceanu str.

3400 Cluj-Napoca, Romdnia, Fax: 40-64191906
Department of Social Work
Babes-Bolyai University
1, M. Kogalniceanu str.

3400 Cluj-Napoca, Romdnia, Fax: 40-64191906



