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ON A NONLINEAR INTEGRAL INEQUALITY ARISING IN
THE THEORY OF DIFFERENTIAL EQUATIONS
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1. INTRODUCTION

The following integral inequality has played a very important role in the

theory of differential equations.
THEOREM A. Let u and f be real-valued nonnegative continuous functions

defined for t 2 Q. If

w2(1) < 2 + 2 fls)u(s)ds,

0

forall ¢ >0, where ¢ 2 0 is a constant, then

u(t) < c+j.f(s)ds,

forallt20.
As far as we know, this inequality was first considered by L. Ou-lang [7] in

1957 while studying the boundedness of the solutions of certain second order dif-
ferential equations. In1979 C. M. Dafermos [3] used the following variant of the
above inequality to establish a different connection between stability and second

law of thermodynamics.
THEOREM B. Assume that the nonnegative functions u e L® [0, s] and

g € I}[0,s] satisfy the condition

Y2 (1) < M2y2(0) + j [2ay? (x) + 2Ng(x)y (x)]dx, 1 € [0, 5],
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where a., M, N are nonnegative constants. Then

y(s) < Me*y(0) + Ne“""j g(x)dx,

The importance of these inequalities lies in their successful utilizations to
the situations for which the other available inequalities do not apply direetly. In
the past few years the inequality given in Theorem A is used to obtain global
existence, uniqueness, stability, boundedness and other properties of the solutions
for wide classes of nonlinear differential equations, see [1-7, 10]. In view of the
important role played by this inequality in the theory of differential equations, it is
natural to expect that some new generalizations and extensions of this inequality
would be equally important in certain new applications.

Our main objective here is to establish the two independent variables gene-
ralization of the innequality given in Theorem A which can be used as a handy tool
in the analysis of certain classes of partial differential equations. The correspond-
ing inequality on the discrete analogue of the main result is also established. Fi-
nally we present some immediate applications to convey the importance of our
results to the literature.

2. STATEMENT OF RESULTS

In this section we state our main results to be proved in this paper. In what
follows we denote by R the set of real numbers, R, =10, o) and N,={0, 1,2, b

For any function z(x, y) defined for x, y € R,, we denote the partial derivatives
o d 0%

—=zZiX : e Z\ X5 Y )
&A,ﬁ ay(y)ayax
any function z(m, 1) defined for m, n € N, we define the operators A z(m, n)= z(m+ 1,
n) - z(m, n), Ag(m, n) = z(m, nt-1) — z(m, n), and A A z(m, n) = A[Az(m, n)], (see,
[9]). Forallm>n, m,n € N, and any function p(n) defined for n € N, we use the
usual conventions

z(x, y) by z (% ), zy(x, ), zly(x, y) respectively. For

ip(s) =0 and ﬁp(s) =1.

s=m sS=m
Our main result is given in the following theorem.

THEOREM 1. Let u(x,y), f(x.y), g(xy) be real-valued nonnegative continuous
functions defined forx,y € R, and ¢ be a nonegative real constant. Let L: R — R
be a contiuous function which satisfies the condition

(L) 0< L{x,y,v) = L(x,y, w) < k(x, y,w)(v - w),
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forx,y e R, andvzw=20, where k:R 3—> R, is a continuous function. If

@.1) w*(x, y) < A+ 2]?[1’(5,1) u(s,t)L(s, t,u(s,t)) + g(s,t)u(s,l)] drds ,

00

forx,yeR,, then

fls,0) k(s 2, p(s, 1)) duds |,

O —

2.2) u(xy) < p(x,y)+q(x,y)exp J
0

forx,y € R,, where

Xy

J (s, 1) drds,
0

(2.3) p(xy)=c+

O ey

(2.4) g(x,y) = j.jf(S, 1)L(s,t, p(s,1))deds ,

forx,ye R, .
An interesting and useful discrete analogue of Theorem 1 is embodied in the
following theorem.

THEOREM 2. Let u(m,n), f(m,n), g(m,n) be real-valued nonnegative functions
defined for m, n € N, and ¢ a nonnegative real constant. Let H:N2 x R, = R,
be a function which satisfies the condition

(H) 0 < H(m,n,v) — H(m,n,w) < M(m, n, w)(v — w),

formyne Nyand vzw2 0, where M is a real-valued nonnegative function
defined form,n € Ny, w2 0. If

m-1n-1

2.5) u*(m,n) <+ ZZ z [f(s,r)u(s, OH(s,1,u(s, 1)) + g(s, )uls, t)],

s=0 ¢=0

form,n € N, then

m=1 n—1
2.6)  u(m,n) < a(m,n)+ b(m, n)H 1+ Z S (s, z)M(s, I3 a(s,t)) !
s=0 s=0
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for m,n € Ny, where

m—1n-1

2.7 a(m,n) = ¢ + Z Z g(s,1),

s=0 (=0
m—1n-1
(2.8) b(m,n) = ZZ f(s, I)H(s, 1, a(s, t)),

s=0 =0

Jor m,n € N,

3, PROF OF THEOREM 1

We first assume that ¢ is positive and define a function z(x,y) by

3.1y zx, y) = & +2 [f(s, (s, I)L(s, 1, u(s, I)) + g(s, Duls, t)]dtds,

ey ™
o —

o o
—

From (3.1) and using the fact that u(x, y) < z(x, y), it is casy to observe that

(3.2) Z_,O,(]C, y) <2 z(x, y)[f(x, y)L(x, ¥y, 2(x, y)) + g(x, y)}

From (3.2) and the facts that y/z(x, y) > 0, z.(x, y) 20, z,(x,y) 2 0 for
x,y € R,, we observe that

< Z[f(X, y)L(x, y, J2(x, y)) i g(x,_y)} z.(x, )z, (x, )

z(x, y) . 2( /Z(x, y))3 ’

1.e.

e

By keeping x fixed in (3.3) and setting y = 7 and integrating with respect to 7 from
0 to y and then keeping y fixed in the resulting inequality and setting x =s and
integrating with respect to s from 0 to x we obtain

3.4) 1/2()5, y) < p(x, y) + ]£ f(s, Z)L(s, t, \/;(—s,—l)—)dtds.

~

S —
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Define

S (s, t)L(s, , 1{z(s, t))dtds.

Differentiating (3.5) and then using the fact that Jz(x, y) <
< p(x, y) + v(x, y) and the hypothesis (L) we observe that

O ey

(3.5) v(x,y) = |
0

V(% 3) = S5 P)Lx 3, 2%, ) <
< f(x% Y)L(x, y, p(x, ¥) +v(x, ¥)) =
(3.6) = f(x Y L(x 3, Pl ) + V(5 7)) = Lx p, p( )]+
+f (%, ) L(x, y, p(x, ¥)) <
< f(x Y)(x, 7, p(x, Y))V(x, ) + £ (% Y)L(x, v, p(x. ).

By keeping x fixed in (3.6) and seeting y =1¢ and integrating with respect to ¢ from
0 to y and then keeping y fixed in the resulting inequality and setting x = s and
integrating with respect to s from 0 to x we obtain

3.7) v(x, ) < q(x ) + ij (s, 1)k(s, 1, p(s, ))v(s, £)deds.

From (3.7) we observe that

(3.8) v(x,7) < ¢,(x, ) + j [ £(s.0)(s, 1, pls, 1)) v(s, 1) dids,

where ¢5(x, y) = & +q(x, ) in which € > 0 is an arbitrary small constant. Since
g.(x, y) is positive and monotone nondecreasing for x, y € R,, from (3.8) we ob-
serve that

v(x, 7) [
o PR R l

v(s, 1)

g:(5,1)

S(s, k(s 1, p(s, 1)) deds.

O —y

Inequality (3.9) implies the estimate (see, [8,p. 492])

(3.10) v(x,y) < g5(x, y) exp S(s, t)k(s, t, p(s,t))dtds ;

O Sy
D 2
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By letting € — 0 in (3.10) we have

(3.11) v(x, y) < g(x, y) exp f(s, l)k(s,t,p(s,t))dzds .

© Sy 8¢
O ey

The desired inequality in (2.2) now follows by using (3.11) in (3.4) and the fact
that u(x, y) < y/z(x, y) .

If ¢ is nonnegative, we carry out the above procedure with ¢+ g instead of ¢,
where €, > 0 is an arbitrary small constant, and subsequently pass to the limit as
g, — 0 to obtain (2.2). The proofiis complete.

4, PROOF OF THEOREM 2

We assume that c is positive and define a function z(m,n) by
LH e

n—-1n-1
(4.1) " z(m, n) = o+ ZZ
§=0 r=0

[ /(s uls, 1) H (s, 1, u(s, ) + g(s, (s, 1))
From (4.1) and using the fact that u(m, n) < \/;(m, n) we observe that

(4.2) A2A12(171, n) <2 z(m,n)[f(m, n)H(m, n, z(m, n)) + g(m, n):|.

By using the fact that 1/z(m,n) >0, A,z(m,n)z 0, \/z(m +1, n) < \/z(m +1Ln+ 1),

.\/z(m, n) < \/z(m + 1,n), form, n € N, it is easy. to observe that

Az(m, n)

/_\.1( z(m, ﬂ)) i \/z(m TLn)+ \/z(m,n) )
s ) = )

Z(m+1L,n+1)+ \/z(m, n+1)

(4.3)
Az(m, n) .

\/z(m +1n) + \/z(m, n)

A,Az(m, n) A 2Az(m, n)

<
Jz(m +1,n) +J (m, n) Jz (m, n)

7 Nonlinear Integral Inequality 179

By using (4.2) in (4.3) we have

(4.4) AzAl( z(m, n)) < [f(m, n)H(m, n, \z(m, n)) + g(m, n)},

Now keeping m fixed in (4.4), set n =t and sum over 1 =0, 1, 2, ..., n—1 and then
keeping n fixed in the resulting inequality set m=s and sumovers=0,1,2, .. m-1,
to obtain the following

m—1n-1

(4.5) 1/z(m,n) < a(m, n) + ZZf(s,t)H(s,t,,/z(s, r))
s=0 (=0

Define

1/

(4.6) v(m,n) = ’"Z: ]Z:: f(s,t)H(s,t, A 2(5, r))

=i
5=0
From (4.6) and using the fact that |/z(m, n) < a(m, n) + v(m,n) and the hypo-
thesis (H) we observe that

AyAyv(mn) = f(m,n) (m n, \z(m,n) )

< S (m,m) H(m,n,a(m, n) v(m, n)) H(m,n,a(m, )] +

+/(m,n) (m n, a(m,n )
< f(mn)M (m, n, a(m, n))v(m, n) + f(m,n)H (m, n,a(m, n))

Now keeping m fixed in (4.7), set n =t and sum over £ =0, 1, 2, ..., n—1 and then
keeping » fixed in the resulting inequality set = s and sumovers =0, 1,2, ..., m~1 to

4.7

obtain the following !
m=1n-1

(4.8) V(m., n) < b(m, n) + Z Z f(s, t)M(s, 1, a(s, t))v(s, z) .
s=0 =0

From (4.8) we observed that

m=1n-1

4.9 v(m,n) < b,(m,n) + ZZfsf (s.t,a(s,1))v(s, 1),

s=0¢=0
where b (m,n) = € + b(m,n), in which & > 0 is an arbitrary small constant. Since
b.(m,n) is positive and monotone nondecreasing for m, n € N, from (4.9) we
observe that
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v(m,n) B, v(s, 1)
<1 1) M(s,t,als, ¥

(4.10) by (m, n) i szzozzaf(s ) (S a(s )) by (s, 1)
Define

m—1n-1 i V(S, t)
(4.11) w(m,n) =1+ Z Z £ (s, t)M(s, 1, a(s, t)) bg(s, )

§=0 (=0
Form (4.11) and using (4.10) we observe that
(4.12) AyAw(m,n) < f(m, n)M(m, n, a(m, n))w(m, n),

From the definition of w(n,n) we observe that w(m, n) < w(m,n + 1), for
m, n € Ng. Using this fact in (4.12) we observe that

Apw(m,n +1)  Ayw(m, n)
w(m, n + 1) w(m, n)

(4.13) < f(m, n)M(m, n, a(m, n))

Now keeping m fixed in (4.13) and substituting n = ¢ and then taking the sum over
t=0,1,2, .., n-1and using the fact that A, w(m,0) = 0, we have

n-1
) 88 )

“:14) w(m, n)

From (4.14) we observe that
n—1

(4.15) w(m +1L,n) < wimn [1+ Zf(m )M m t,a(m, f))]

Now keeping n fixed in (4.15) and letting m = s and substituting s =0, 1, 2, ...,
m—1 successively, we have

1 n—1
(4.16) w(m, n) H{l + 3 f(s,0)M(s,1,a(s, t))J N

=0 =0

-

Using (4.16) in (4.10) we get

m~1 n—1
4.17) v(m,n) < by(m, n) l:l + Z ¥ilrE t)M(s, t,a(s, t))] g

P
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The desired inequality in (2.6) now follows by using (4!17) in (4.5) and then let-
ting € — 0 in the resulting inequality and using the fact that u(m, n) < z(m, n).

The proof of the case when ¢ is nonnegative can be completed as mentioned
in the proof of Theorem 1 and hence the proof is complete.

5. SOME APPLICATIONS

In this section, we present some applications of our results to obtain bounds
on the solutions of certain differential and sum-difference equations. These appli-
cations are given as examples.

Example 1. As a first application we obtain a bound on the solution of the
following partial differential equation

(5.1) (2(x )zl 7)), = 25 Y] F(x 7, 2%, 9) + g% 9)]

with the given boundary conditions
(5.2) z(x,O) = CD(x), Z(O, y) = ‘-I-’(y) ,

for x, yeR,, where g: Rf — R, F'R2 x R > R, ¢, V:R, — Rare continuous
functions and @®(0) = W¥(0). It is easy to observe that problem (5.1)-(5.2) is equiva-
lent to the integral equation :

(53) Z(xy)=d(xy)+2

O S, M

j: s 1, 2(s, l)) + g(s, t)]dtds ,

where d(x, y) = ®*(x) + ¥?(y) -~ ®*(0). If 2(x,y) is a solution of (5.1)—(5.2);
then clearly it is also a solution of the integral equation (5.3). We assume that

(5.4) jd(x, y) < &,

(5.5) |F(x, 3, 2(%, ) < £ 9)L{x, [, )
where f{x, y) is a nonnegative real-valued continuous function defined for
x,y € R, cis a nonnegative real constant and L: Rf x R, — R, is acon-

tinuous function satisfying the condition (L) in Theorem 1. From (5.3), (5.4)
and (5.5) we observe that

|z(x, y)l2 <+ ZIT[ f(s, f s H fL(s 4 | (s,1 D + |g(s, t)“z(s,t)” deds .
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Now an application of Theorem 1 yields

£ (s, 0)k(s, 7, pi(s, 1)) drds

O Gy

(5.6) |o(x ») € m(x ») + alx v)exp |

where

c+ ]i '_v“g(s, .')l drds |

o) = | ] S Dot a5, )i,

for x, y € R, . Inequality (5.6) gives us the bound on the solution z(x, y) of
(5.1)—(5.2) in terms of the known functions.

11

n(x y)

Example 2. As a second application, we shall obtain a bound on the solution
of the following sum-difference equation

m--1n-1

(5.7) 22(171, n) = h(m, n) + 22 Z z(s, t)[F(s, t, z(s, t)) + g(s, z)],
s=01=0

where h, g2N3 — R, F N2 x R — R are functions such that

(5.8) lh(m, n)l < ¢,

(5.9 .F(m, n, Z(m, n))) < f(m, n)H(m, n, lz(m, n)l) ,

where f{(m,n) is a real-valued nonnegative function defined for m, n € N, cisa

nonnegative real constant and H:N} x R, — R, isa function satisfying the con-
dition (H) in Theorem 2. From (5.7), (5.8) and (5.9) we observe that

m—1n-1

‘z(m, n)l2 <+ ZZZ[f(s, )

s=0¢=0

z(s, l)lH(s, t, ‘z(s, I)D + lg(s, r)“z(s, r)\] ;

Now an application of Theorem 2 yields

m—1 n—1
(5.10) |z(m, n)l < ay(m, n) + b(m, n)H 1+ (s 1)M(s, 1, a (s, NE
s=0 t=0

for m, n € N, where
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m-1n-1
aj(m,n) = ¢+ ZZ.g(s, t)|,
s=01=0
m-1n-1
bi(m,n) = 2> fls, 1)H(s, 1, al(s,t)),
s=01=0

for m, n € N,. Inequality (5.10) gives the bound on the solution z(m, n) of equation
(5.7) in terms of the known functions.

In concluding this paper, we note that the inequalities established in this
paper can be extended very easily to more than two independent variables. The
precise formulations of these inequalities is very close to that of given in Theo-
rems 1 and 2 with suitable modifications and hence we do not discuss it here.

REFERENCES

1. V. Barbu, Differential Equations (in Romanian), Ed. Junimea, Iagi, 1985.

2. H. Brézis, Opérateure maximaux monotones el sémigroupes de contractions dans les éspaces de
Hilbert, North-Holand, Amsterdam, 1973.

3. C. M. Dafermos, The second law of Thermodynamics and stability, Arch. Rat. Mech, Anal. 70
(1979), 167-179.

4. S. S Dragomir, The Gronwall Type Lemmas and Applications, Monografii Matematice, Univ.
Timigoara 29, 1987,

5. A. Haraux, Nonlinear Evolution Equations: Global behavior of solutions, Lecture Notes in Math-
ematics, No. 841, Springer-Verlag, Berlin, New York, 1981.

6. S. N. Olekhnik, Boundedness and unboundedness of solutions of some systems of ordinary differen-
tial equations, Vestik Moskov Univ. Mat. 27 (1972), 34-44,

7. L. Ou-lang, The boundedness of solutions of linear differential equations y" + A(t)y = 0, Shuxue
Jinzhan 3(1957), 409-415.

8. B. G. Pachpatte, On some integrodifferential inequalities of the Wendorff tvpe, J. Math. Anal.
Appl. 73 (1980), 491-500. ’

9. B. G. Pachpatte, Discrete inequalities in two variables and their applications, Radovi Matematicki
6 (1990), 235-247.

10. M. Tsutsumi and 1. Fukunda, On solutions of the derivatives nonlinear Schrodinger equation.
Existence and uniqueness theorem, Funkcialaj Ekvacioj, 23 (1980), 259-277.

Received 1.04.1994 57. Shri Niketan Colony
Aurangabad 431001
(Maharashtra) India



