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THEOREM L. Let C be a closed convex subset of a Banach space X. If T is a
mapping of C into itself satisfying the inequality

(1) |7x - T3] < dx = ¥ + B7x - ] + Ty - 5]
forallx,yin C, where0 <a<1,0<c, c<bandatb+c=1, then T has a fixed

point in C.
Mappings satisfying inequality (1) with a =1 and b = ¢ = 0 are called non-
expansive and were considered by Kirk {10]. Mappings with a = Oandb=c=1/2

were considered by Wong [14].
More recently, Diviccaro et al. [1], Fisher et al. [2] and many others genera-

lized Theorem 1 in many ways. The following theorem was proved in [1]:

THEOREM 2. Let T and I be two weakly commuting mappings of a closed
convex subset C of a Banach space X into itself satisfying the inequality
|7x - | < dIx - B|f +(1-a) max{HTx - K, |1y - Iy”p} -

forallx,yin C, where 0 <a< 2PV and p 2 1. If Lis linear, non-expansive in C and
such that I(C) contains T(C), then T and I have a unigue common fixed point at
which T is continuous.

Recall that the mappings T and / are said to be weakly commuting if

|72 - ITx| < | Bx - Ty

for all x in C [12].
The next two definitions were given by Jungck [5] (see also [5]-[9]) and

Jungck, Murthy and Cho [6] respectively.
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DEFINITION 1. Let A and S be mappings of a Banach space X into itself. Then
{A4,S} is said to be a compatible pair if
lim || 4Sx, — SAx,| = 0,

n-—o
whenever {x,} is a sequence in X such that

lim Ax, = lim Sx, = ¢
n—»0 H—> 0

for sometinX.

DEFINITION 2. Let A and S be mappings of a Banach space X into itself. Then
{4, S} is said to be a compatible pair of type (4) if

=0

lim “ASx,, - S§%x,| = lim HSAx,, - A%x,

n—>00 n—owo

whenever {x } is a sequence in X such that

lim Ax, = lim Sx, = ¢
N> G 1> oC

for some i inX.
We now give some propositions to prove our main theorem. The proofs of
these propositions follow along the lines of the proofs in [7].

PROPOSITION 1. Let {4, S} be a compatible pair of type (4). Then it is a
compatible pair if A or S is continuous.

PROPOSITION 2. Let {4, S} be a compatible pair. Then it is a compatible pair
of type (A) if A and S are both continuous.
The following proposition is a direct consequence of Proposition 1 and 2.

PROPOSITION 3. Let A and S be continuous mappings. Then {4, S} is a coni-
patible pair of type (4) if and only if it is a compatible pair.

Example 1. Let X = [0, 2] with the Euclidean norm and let 4 and S be the
mappings defined by

2-x, xe[0,1)

Ax =
2 x e[1,2],
Xz x € [0, 1)
Sx =
2, x e[L2].

Then A4 and S are not continuous at 7 =1, We assert that { 4, S } is a compatible pair
of type (4) but not a compatible pair.
To see this, suppose that {x } is a sequence in X and that

lim Ax, = lim Sx, = 1.
n—r« 1n=> 0
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From the definition of A and S, it follows that z € [1,2] . Since A = Son {1, 2], we

 ay suppose that x, — 1and x, <1 for all n. Then

Ax, = 2 - x, —1 from the right.

4 Sx, = x, —1 from the left.

Thus, since x, <1 for all n.
' AS)C” = Ax” = 2 — xn —> 1

and since 2 —x, > 1 forall n,

S =18 2o 305, =024

Consequently,
HASx,, - Salx,,u 3\,
but
HASx,, = SQx,,“ = H2 — e = x”H — 0
and
sz, — 42x,| = |2 - 42 - x,)| = 0.

Thus {4, S} is a compatible pair of type (4) but is not a compatible pair.

Example 2. Let X be the set of real numbers with the Euclidian norm and let
A4 and S be the mappings defined by

i {x"‘, x #= 0,

1, x =0,

~3 =+ 0 -
Sy = Xy x # 0,

1, x =0,

- Then 4 and S are not continuous at t =0 . We assert that {4, S} is a compatible pair
but not a compatible pair of type (4) .

. To see this, consider the sequence {x } , where x, = n? forall n .
Then

Ax, = n ¢ =0, Sx, = n® 50

“and

.; |4Sx,, — SAx,|| = Hns A ,16" AR

: ‘Thus {4, S} is a compatible pair.
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However,

= ”116 - 7118” — o0, HSAx” - A2x,,” = ”116 - 112“ —

”ASx,, =525

We therefore conclude that if 4 and S are discontinuous, then compatible map-

pings are not necessarily compatible mappings of type (4).
We also need the following proposition to prove our main theorem:

PROPOSITION 4. Let A and S be mapping of X into itself. If A and S are
compatible mappings of type (4) and At = St for sometin X, then

ASt = A%t = S?t = SAL

PROPOSITION 5. Let A and S be mappings of X into itself and let {4, S} be a
compatible pair of mappings of type (A). Suppose that the sequences {Ax,} and
{Sx,} converge fo t for some 1 in X. Then

(@) lim ASx, = St ,

n—>oo
if'S is continuous at t and
(b) ASt = SAt and St = A4,
if both A and S are continuous at 1.

We now suppose that 4, B, S and T arc mappings from a Banach space X

into itself such that

(1) A(X) € T(X), B(X) < S(X),

and satisfying a phi rational inequality

Ty - B’ |

Ty - ByH”}

dlsx - ° +(1-a) max{"Sx - 4+,

) “Ax - Bpr-q <o

max{(a”Sx = Tqu +(1- a)HSx = AxHq ),

forall x, yin X, where 0 <a<1,p21,¢20,p—g=1 and ¢ is a mapping of
[0, o) into itself such that ¢ is non-decreasing, upper semi-continuous and
¢(r) <t forall 1> 0.

Let x, be an arbitrary point in X. Then by (1) there exists a point x, in' X'such
that Ax, = Tx, and then a point X, such that Bx; = Sx, and so on. We obtain a

sequence (y,) in X such that
(3) Yo = Tx2n+1 T Ax2n> Yo+1 = Sx2n+2 = Bx2n+l

forn=0,1,2, .....
The following lemma was given by Singh and Meade [13]:
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LEMMA 1. Suppose that ¢ is a mapping of [0, « ) into itself which is

nondecreasing upper semi-continuous and §(t) <1 for allt>0. Then lim ¢" (1) = 0.
n—w

We now prove the following lemma:

LEMMA 2. Let A, B, S and T be mappings of a Banach space X into itself
satisfying conditions (1) and (3). Then the sequence {y } as defined by (3) is a
Cauchy sequence.

Proof. Using (2) and (3} we have

Hyz” k. y2”+1||p—q 3 ”Ax2n 1) B-l'.2n+1Hp_q <

¥4
H

a”y2n—1 r yanP u (1 ¥ a) lnax{HyQM—l T Yo Yon — y2n+1”p}

max{(aHyQ,,_l ™ y2n”q - (1 o a)||y2n—l - y2n“q)’”y2n ., y2n+1”q}

If

>

”J’zu i J’2n+1“ =3 HJ’2n—1 — Yo
then
||J’2n 5 yzn+1“p = ¢(HJ’2n = J’2n+1||P> < "J’zn r J’2n+1”p=

a contradiction. Thus

Yoy — y2n+1Hp = ¢<|IYQn—1 o J)2n“p>-
Similarly we have

Hy2n+1 1l y2"+2“1’ = d)(”yiln - y2n+1”P>
and it follows that

Hyn T yn+l||p < ¢”(”J’0 i y]“p)

forn=1, 2, ..... It follows from Lemma 1 that
(4) ”11_1330 “yn i yu+1H = 0.

In order to prove that{y,} is Cauchy sequence, it is sufficient to show that
{y,,} 1s a Cauchy sequence. Suppose that {y, } is not a Cauchy sequence. Then
there is an € > 0 and a sequence of even integers n(k) defined inductively with
n(1) =2 and n(k+1) is the smallest even integer greater than n(k) such that
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However,

HASx,, - Szx,, = Hn6 - nlS” — o0, “SAxn - A2x,,” = Hn6 - :12“ — .

We therefore conclude that if 4 and S are discontinuous, then compatible map-
pings are not necessarily compatible mappings of type (4).
We also need the following proposition to prove our main theorem:
PROPOSITION 4. Let A and S be mapping of X into itself. If A and S are
compatible mappings of type (A) and At = St for some t in X, then

ASt = A%t = S?%1 = SAL.

PROPOSITION 5. Let A and S be mappings of X into itself and let {A, S} be a
compatible pair of mappings of type (4). Suppose that the sequences {Ax,} and
{Sx,} converge to 1 for some t in X. Then

(@) lim 4Sx, = St ,

n—>w
if' S is continuous at t and
(b) ASt = SAt and St = At

if both A and S are continuous at t.
We now suppose that 4, B, S and T are mappings from a Banach space X

into itself such that
(1) A(X) c T(X), B(X) < S(X),
and satisfying a phi rational inequality

dlSx — 1y|” + (1- a) max{HSa, - A", |1y - By|* }

@ Jax- By < ¢
max{(auS.x - + (1= a)fss - "y - er”q}

forall x, yin X, where 0 <a<l,p21,4g20,p—¢g 21 and ¢ is a mapping of
[0, o) into itself such that ¢ is non-decreasing, upper semi-continuous and
¢(f) <t forall 1> 0.

Let x, be an arbitrary point in X. Then by (1) there exists a point x; in X'such
that Ax, = Tx, and then a point x, such that Bx, = Sx, and so on. We obtain a
sequence (y,) in X such that

(3) Yo = Tx2u+1 = AXZH’ Yopst = SX2”+2 = B'x2n+1

forn=0,1,2, .....
The following lemma was given by Singh and Meade [13]:
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LEMMA L. Suppose that ¢ is a mapping of [0, o ) into itself which is

nondecreasing upper semi-continuous and §(t) <t for all1>0. Then lim $"(1) = 0.
H—> @

We now prove the following lemma:

LEMMA 2. Let A, B, S and T be mappings of a Banach space X into itself
satisfying conditions (1) and (3). Then the sequence v,} as defined by (3) is a
Cauchy sequence.

Proof. Using (2) and (3) we have
”yZN = y2"+1“1)—9 = ”szn i Bx2n+l”p_q <

a“y2n 1 )’2)1” 1 5 a) lnax{”y2n 17 Yo ”pa”y2n five y2n+1“p}

ll‘lax{(a”y2)1—l T y2n“q + (1 A a)“y2n—1 - y2n“q)v “.VZN - y2n+1”q}

If

HJ’Zn = y2n+1” = ”)’2))—-1 = Yonl)
then
”y2n B y2n+1”p = d)(”,VQ;; i~ y2n+1“p> < ”y2n i y2n+1”p P

a contradiction. Thus
“Y:z" - )"2n+1”p < ¢<”J’2n—1 » bn“p)-
Similarly we have
”}’2u+1 o )’2n+2”p = ¢(“J’2n == J’2n+1”P)
and it follows that -
”yn T yn+]”p = ¢"(“)’o - yl"p)
forn=1,2, ... It follows from Lemma 1 that

4) lim ”y" - y"+1“ =10,
>0

In order to prove that{y,} is Cauchy sequence, it is sufficient to show that
{¥,,} is a Cauchy sequence. Suppose that {y,,} is not a Cauchy sequence. Then
there is an € > 0 and a sequence of even integers n(k) defined inductively with
n(1) = 2 and n(k+1) is the smallest even integer greater than n(k) such that
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(5) “yn(k+l) B yn(k)“ =12
so that

(6) Hyn(k+l)—2 i yn(k)” s €.

It follows that

& <|Wu(r+1) = yn(k)“ <

= yn(k+1)—2 - yn(k)“

yn(k+1)—l = yu(k+1)—2” +

yn(k+1) e yn(k+1)—1” +

fork=1,2, ..., it follows that

() _ ]\]EQ:O Pu(k+1) = Vn(k) ” =5

By the triangular inequality, we have

Yn(k+1)-1 = V()41

Y(ke+1) ~ Vn(k) ‘ TPt T (k1)1 < In(ke+1y = Vn(k+1)-1
|

and

It follows from (6) and (7) that

Yn{k+1) T yn(k)”' < “yn(k+1) ® yn(k+1)—l“ eh

(8) lim Yn(ky ~ yn(k+1)—1“ - nl_l_l)r;

H—> <G

‘yn(kﬂ)—l V) +|| < &

Using (5), we have

"

Vi(k+1) ~ yn(k)“ < Vu(ky+1 =Y n(k)“

Yue+1) 7 Vu(k)+1
©)

+

= “A'xll(/(+l) = Bx”(k)+1 yn(k)+l 1 yn(k)“

and using (4), we have

P9

(10) “Axn(kﬂ) i an(k)+]

a

|

v
Pn(k+1)-1 ~ yn(k)” i (1 - a) max{‘ Yn(k+1)=1 = Vie+1)

’yu(k) T Yn(k)+1

yn(k)+l n ,))n(:/\')”’

]

q
max a“y"(kﬂ)_l - y"(k)H +(1-a)

q
Yn(k+1)-1 ~ yn(k)” ’ Hyn(k) ~ Vn(k)+1

)
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Using (6), (7), (9), (10) and the upper semi-continuity of ¢, it follows on letting n
tend to infinity int (11) and (12) that

[q)(sp—q )]WH] <g,

a contradiction. Therefore, {y,,} and so {y } are Cauchy sequences in X
We now prove our main theorem.

THEOREM 2. Let A, B, S'and T be mappings of a Banach space X into itself
satisfying conditions (1) and (2). Suppose that one of the mappings A, B, S and T is
continyous and that { A, S} and { B,T} are compatible pair of type (A). Then A, B,
S and T have a unique common fixed point in X.

Proof. Define the sequence {y,} as above. By Lemma 2,{y, }is a Cauchy
sequence and has a limit » in X since X is a Banach space. Since {4x,,} {Bx,, |},
{Sx,,} and {Tx,, ,} are subsequences of {y, }, these subsequences converge to u.

Suppose S'is continuous. Then

lim S%x,, = limSAx,, =Su.

>0 N>
Further, since {4, S} is a compatible pair of type (4), we then have on using Propo-
sition 5 that

lim A.Sx,,=5u.
NG

Using (2) we have

p-q

|48, = By, |

P
K

a

2 \ r 2 )
Sxy, — 7.1,2,,_]” + (l —a) max{HS Xy, — ASx,,

IJ}'”‘Znhl I BxQn—dHP}

<4

q
>

q
max{a“S gy — sz,,_lu + (1= a)“SZxQ,, — ASx,,

Ty — Bx:n—1“q}‘
Letting » tend to infinity we have
e = sl < o lsw = o < flou— o,

if Su # u , a contradiction. Thus Su = u .
Using (2) again we have

di=Tsylf +1-amafo= alf [P - B |}

max{aﬂu = Txg, | + (1= a)u~ A4

|4u= Sy "7 <6

q gl |’
;”Txl’.n—l A BxZH"]“ }
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since Su = u. Letting n tend to 1nﬁ111ty we have
=™ < g ™ <

ifAu+#u a contrad1ct10n Thus Au=u.

+ Since 4(X) < T(X), there exists a point v in X such that v = Ay = Tv. We
claun that Bv = u, forif Bv # u, then using (2) we have

\

J - A",

' '

= B = ot _~BV|4P ! <

a”u - TVHP 1 —-a max{“u —

5’}
- i)

max{a Hu — Tv“q 1 —a “u -

=¢W—Bw“qsw—34”<
1fBV¢ u, a contradiction. Thus Bv= u, I

Since {B T} is a compatible pair of type(4) on X and using proposition 4,
we have BTv= T2v and so

BM—BTV—TQV_ Tu

Thus B and T have a coincidence pomt u.

We claim that u 15 111 fact a commo n fixed point of B and T Usmu (2) again,
we have

o = Bl = | u -~ B <
a”Su - Tu”p + (1— a 111a,x{ “Au - Su”p ”Bu - Tu”p}

u -1}

max{a”Su - Tu”q 1 -a ”Au —

= Ol = 77 < e = 7

if Tu # u, a contradiction. Thus Tu = » = By and we have proved that u is common
fixed point of 4, B, Sand T.
The uniqueness of the common fixed point follows easily on using (2).
Remark. Theorem 2 generalizes the result of Murthy, Cho and Fisher [11].
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