REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Tome 25, Nº 1-2, 1996, pp. 185-193

COMMON FIXED POINT THEOREMS FOR COMPATIBLE MAPPINGS OF TYPE (A) SATISFYING A PHI RATIONAL INEQUALITY

H. K. PATHAK* and V. POPA (India) (Bacău)

THEOREM 1. Let C be a closed convex subset of a Banach space X. If T is a mapping of C into itself satisfying the inequality

(1)
$$||Tx - Ty|| \le a||x - y|| + b||Tx - x|| + c||Ty - y||,$$

for all x, y in C, where 0 < a < 1, 0 < c, c < b and a+b+c=1, then T has a fixed point in C.

Mappings satisfying inequality (1) with a = 1 and b = c = 0 are called non-expansive and were considered by Kirk [10]. Mappings with a = 0 and b = c = 1/2 were considered by Wong [14].

More recently, Diviccaro et al. [1], Fisher et al. [2] and many others generalized Theorem 1 in many ways. The following theorem was proved in [1]:

THEOREM 2. Let T and I be two weakly commuting mappings of a closed convex subset C of a Banach space X into itself satisfying the inequality

$$||Tx - Ty||^p \le a||Ix - Iy||^p + (1 - a) \max\{||Tx - Ix||^p, ||Ty - Iy||^p\}$$

for all x, y in C, where $0 < a < 2^{-p-1}$ and $p \ge 1$. If I is linear, non-expansive in C and such that I(C) contains T(C), then T and I have a unique common fixed point at which T is continuous.

Recall that the mappings T and I are said to be weakly commuting if

$$||TIx - ITx|| \le ||Ix - Tx||$$

for all x in C [12].

The next two definitions were given by Jungck [5] (see also [5]–[9]) and Jungck, Murthy and Cho [6] respectively.

^{*}Research partially supported by U.G.C., New Delhi, India.

DEFINITION 1. Let A and S be mappings of a Banach space X into itself. Then $\{A,S\}$ is said to be a compatible pair if

$$\lim_{n\to\infty} \left\| ASx_n - SAx_n \right\| = 0,$$

 $\lim_{n\to\infty} ||ASx_n - SAx_n|| = 0,$ whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = t$$

for some t in X.

DEFINITION 2. Let A and S be mappings of a Banach space X into itself. Then $\{A, S\}$ is said to be a compatible pair of type (A) if

$$\lim_{n \to \infty} ||ASx_n - S^2x_n|| = \lim_{n \to \infty} ||SAx_n - A^2x_n|| = 0,$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = t$$

for some t in X. |x-x| = |x| + |x-x| |x| + |x| + |x| = |x|

We now give some propositions to prove our main theorem. The proofs of these propositions follow along the lines of the proofs in [7].

PROPOSITION 1. Let $\{A, S\}$ be a compatible pair of type (A). Then it is a compatible pair if A or S is continuous.

PROPOSITION 2. Let $\{A, S\}$ be a compatible pair. Then it is a compatible pair of type (A) if A and S are both continuous.

The following proposition is a direct consequence of Proposition 1 and 2.

PROPOSITION 3. Let A and S be continuous mappings. Then $\{A, S\}$ is a compatible pair of type (A) if and only if it is a compatible pair.

Example 1. Let X = [0, 2] with the Euclidean norm and let A and S be the mappings defined by $Jox ull x y h \mathbb{C}$, where $0 \le a \le 2^{n-1} und g \ge 1$ [1 is the

$$Ax = \begin{cases} 2 - x, & x \in [0, 1) \\ 2, & x \in [1, 2], \end{cases}$$

$$Sx = \begin{cases} x, & x \in [0, 1) \\ 2, & x \in [1, 2]. \end{cases}$$

Then A and S are not continuous at t = 1. We assert that $\{A, S\}$ is a compatible pair of type (A) but not a compatible pair.

To see this, suppose that $\{x_n\}$ is a sequence in X and that

$$\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = t.$$

From the definition of A and S, it follows that $t \in [1, 2]$. Since A = S on [1, 2], we may suppose that $x_n \to 1$ and $x_n \le 1$ for all n. Then

$$Ax_n = 2 - x_n - 1$$
 from the right.
 $Sx_n = x_n - 1$ from the left.

Thus, since $x_n < 1$ for all n. Thus, since $x_n < 1$ for all n > 1 for al

$$ASx_n = Ax_n = 2 - x_n \rightarrow 1$$

and since $2 - x_n > 1$ for all n, x = 1 for all n,

$$SAx_n = S(2 - x_n) = 2.$$

Consequently,

Consequently,
$$||ASx_n - Sax_n|| \to 1,$$
 but

$$||ASx_n - S^2x_n|| = ||2 - x_n - x_n|| \to 0$$

and

$$||SAx_n - A^2x_n|| = ||2 - A(2 - x_n)|| \to 0.$$

Thus $\{A, S\}$ is a compatible pair of type (A) but is not a compatible pair.

Example 2. Let X be the set of real numbers with the Euclidian norm and let A and S be the mappings defined by

$$Ax = \begin{cases} x^{-1}, & |x \neq 0, \\ 1, & x = 0, \end{cases}$$

$$Sx = \begin{cases} x^{-3}, & x \neq 0, \\ 1, & x = 0. \end{cases}$$

Then A and S are not continuous at t = 0. We assert that $\{A, S\}$ is a compatible pair but not a compatible pair of type (A).

To see this, consider the sequence $\{x_n\}$, where $x_n = n^2$ for all n. Then

$$Ax_n = n^{-2} \to 0, \quad Sx_n = n^{-6} \to 0$$

and

$$||ASx_n - SAx_n|| = ||n^6 - n^6|| = 0.$$

Thus $\{A, S\}$ is a compatible pair.

Common Fixed Point

However,

188

$$||ASx_n - S^2x_n|| = ||n^6 - n^{18}|| \to \infty, \quad ||SAx_n - A^2x_n|| = ||n^6 - n^2|| \to \infty.$$

We therefore conclude that if A and S are discontinuous, then compatible mappings are not necessarily compatible mappings of type (A).

We also need the following proposition to prove our main theorem:

PROPOSITION 4. Let A and S be mapping of X into itself. If A and S are compatible mappings of type (A) and At = St for some t in X, then

$$ASt = A^2t = S^2t = SAt.$$

PROPOSITION 5. Let A and S be mappings of X into itself and let $\{A, S\}$ be a compatible pair of mappings of type (A). Suppose that the sequences $\{Ax_n\}$ and $\{Sx_n\}$ converge to t for some t in X. Then

(a)
$$\lim_{n\to\infty} ASx_n = St$$
,

 $n \to \infty$ if S is continuous at t and

(b)
$$ASt = SAt$$
 and $St = At$,

if both A and S are continuous at t.

We now suppose that A, B, S and T are mappings from a Banach space Xinto itself such that

(1)
$$A(X) \subseteq T(X), \quad B(X) \subseteq S(X),$$

and satisfying a phi rational inequality

$$(2) \quad \|Ax - By\|^{p-q} \le \phi \left(\frac{a\|Sx - Ty\|^p + (1-a)\max\{\|Sx - Ax\|^p, \|Ty - By\|^p\}\}}{\max\{(a\|Sx - Ty\|^q + (1-a)\|Sx - Ax\|^q\}, \|Ty - By\|^q\}} \right)$$

for all x, y in X, where 0 < a < 1, $p \ge 1$, $q \ge 0$, $p - q \ge 1$ and ϕ is a mapping of $[0, \infty)$ into itself such that ϕ is non-decreasing, upper semi-continuous and $\phi(t) < t$ for all t > 0. A left note by 0 = x is a continuous and 0 = x is a continuous and 0 = x.

Let x_0 be an arbitrary point in X. Then by (1) there exists a point x_1 in X such that $Ax_0 = Tx_1$ and then a point x_2 such that $Bx_1 = Sx_2$ and so on. We obtain a sequence (y_n) in X such that

(3)
$$y_{2n} = Tx_{2n+1} = Ax_{2n}, \quad y_{2n+1} = Sx_{2n+2} = Bx_{2n+1}$$

for $n = 0, 1, 2, \dots$

The following lemma was given by Singh and Meade [13]:

LEMMA 1. Suppose that ϕ is a mapping of $[0, \infty)$ into itself which is nondecreasing upper semi-continuous and $\phi(t) < t$ for all t > 0. Then $\lim_{t \to \infty} \phi^n(t) = 0$.

We now prove the following lemma:

LEMMA 2. Let A, B, S and T be mappings of a Banach space X into itself satisfying conditions (1) and (3). Then the sequence $\{y_n\}$ as defined by (3) is a Cauchy sequence, Take to Sugar Transpill 3039 a Samuel space X have back

Proof. Using (2) and (3) we have

$$||y_{2n} - y_{2n+1}||^{p-q} = ||Ax_{2n} - Bx_{2n+1}||^{p-q} \le$$

$$\le \phi \left(\frac{a||y_{2n-1} - y_{2n}||^p + (1-a) \max\{||y_{2n-1} - y_{2n}||^p, ||y_{2n} - y_{2n+1}||^p\}}{\max\{(a||y_{2n-1} - y_{2n}||^q + (1-a)||y_{2n-1} - y_{2n}||^q), ||y_{2n} - y_{2n+1}||^q\}} \right).$$

$$||y_{2n} - y_{2n+1}|| \ge ||y_{2n-1} - y_{2n}||,$$

$$\|y_{2n} - y_{2n+1}\|^p \le \phi(\|y_{2n} - y_{2n+1}\|^p) < \|y_{2n} - y_{2n+1}\|^p,$$

a contradiction. Thus

$$||y_{2n} - y_{2n+1}||^p \le \phi(||y_{2n-1} - y_{2n}||^p).$$

Similarly we have

$$||y_{2n} - y_{2n+1}||^p \le \phi(||y_{2n-1} - y_{2n}||^p).$$

$$||y_{2n+1} - y_{2n+2}||^p \le \phi(||y_{2n} - y_{2n+1}||^p)$$

and it follows that

$$||y_n - y_{n+1}||^p \le \phi^n (||y_0 - y_1||^p)$$

for $n = 1, 2, \dots$ It follows from Lemma 1 that

(4)
$$\lim_{n \to \infty} ||y_n - y_{n+1}|| = 0.$$

In order to prove that $\{y_n\}$ is Cauchy sequence, it is sufficient to show that $\{y_{2n}\}\$ is a Cauchy sequence. Suppose that $\{y_{2n}\}\$ is not a Cauchy sequence. Then there is an $\varepsilon > 0$ and a sequence of even integers n(k) defined inductively with n(1) = 2 and n(k+1) is the smallest even integer greater than n(k) such that

However, and a substitute of the substitute of t

188

$$||ASx_n - S^2x_n|| = ||n^6 - n^{18}|| \to \infty, ||SAx_n - A^2x_n|| = ||n^6 - n^2|| \to \infty.$$

We therefore conclude that if A and S are discontinuous, then compatible mappings are not necessarily compatible mappings of type (A).

We also need the following proposition to prove our main theorem:

PROPOSITION 4. Let A and S be mapping of X into itself. If A and S are compatible mappings of type (A) and At = St for some t in X, then

$$ASt = A^2t = S^2t = SAt.$$

PROPOSITION 5. Let A and S be mappings of X into itself and let $\{A, S\}$ be a compatible pair of mappings of type (A). Suppose that the sequences $\{Ax_n\}$ and $\{Sx_n\}$ converge to t for some t in X. Then

(a)
$$\lim_{n \to \infty} ASx_n = St$$
, $\lim_{n \to \infty} ASx_n = St$ if S is continuous at t and

(b)
$$ASt = SAt$$
 and $St = At$,

if both A and S are continuous at t.

We now suppose that A, B, S and T are mappings from a Banach space Xinto itself such that

(1)
$$A(X) \subseteq T(X), \quad B(X) \subseteq S(X),$$

and satisfying a phi rational inequality

$$(2) \|Ax - By\|^{p-q} \le \phi \left(\frac{a\|Sx - Ty\|^p + (1-a)\max\{\|Sx - Ax\|^p, \|Ty - By\|^p\}}{\max\{(a\|Sx - Ty\|^q + (1-a)\|Sx - Ax\|^q), \|Ty - By\|^q\}} \right)$$

for all x, y in X, where 0 < a < 1, $p \ge 1$, $q \ge 0$, $p - q \ge 1$ and ϕ is a mapping of [0, ∞) into itself such that \$\phi\$ is non-decreasing, upper semi-continuous and $\phi(t) < t$ for all t > 0. A feel hoss $\phi(t) = \lambda$ is a foliation of the λ for λ

Let x_0 be an arbitrary point in X. Then by (1) there exists a point x_1 in X such that $Ax_0 = Tx_1$ and then a point x_2 such that $Bx_1 = Sx_2$ and so on. We obtain a sequence (v_{\cdot}) in X such that

(3)
$$y_{2n} = Tx_{2n+1} = Ax_{2n}, \quad y_{2n+1} = Sx_{2n+2} = Bx_{2n+1}$$

for $n = 0, 1, 2, \dots$

The following lemma was given by Singh and Meade [13]:

LEMMA 1. Suppose that ϕ is a mapping of $[0, \infty)$ into itself which is nondecreasing upper semi-continuous and $\phi(t) < t$ for all t > 0. Then $\lim_{t \to 0} \phi^n(t) = 0$.

We now prove the following lemma:

LEMMA 2. Let A, B, S and T be mappings of a Banach space X into itself satisfying conditions (1) and (3). Then the sequence $\{y_n\}$ as defined by (3) is a Cauchy sequence. 1. E. S. 1996 Thompson & Story a manach space X into party

Proof. Using (2) and (3) we have

$$\|y_{2n} - y_{2n+1}\|^{p-q} = \|Ax_{2n} - Bx_{2n+1}\|^{p-q} \le \left\{ \frac{a\|y_{2n-1} - y_{2n}\|^p + (1-a)\max\{\|y_{2n-1} - y_{2n}\|^p, \|y_{2n} - y_{2n+1}\|^p\}}{\max\{(a\|y_{2n-1} - y_{2n}\|^q + (1-a)\|y_{2n-1} - y_{2n}\|^q), \|y_{2n} - y_{2n+1}\|^q\}} \right\}.$$

$$||y_{2n} - y_{2n+1}|| \ge ||y_{2n-1} - y_{2n}||,$$

then

$$\|y_{2n} - y_{2n+1}\|^p \le \phi(\|y_{2n} - y_{2n+1}\|^p) < \|y_{2n} - y_{2n+1}\|^p,$$

a contradiction. Thus

$$|y_{2n} - y_{2n+1}||^p \le \phi(||y_{2n-1} - y_{2n}||^p).$$

Similarly we have

$$|y_{2n+1} - y_{2n+2}||^p \le \phi(||y_{2n} - y_{2n+1}||^p)$$

and it follows that

$$||y_n - y_{n+1}||^p \le \phi^n (||y_0 - y_1||^p)$$

for $n = 1, 2, \dots$ It follows from Lemma 1 that

(4)
$$\lim_{n \to \infty} ||y_n - y_{n+1}|| = 0.$$

In order to prove that $\{y_n\}$ is Cauchy sequence, it is sufficient to show that $\{y_{2n}\}$ is a Cauchy sequence. Suppose that $\{y_{2n}\}$ is not a Cauchy sequence. Then there is an $\varepsilon > 0$ and a sequence of even integers n(k) defined inductively with n(1) = 2 and n(k+1) is the smallest even integer greater than n(k) such that

Common Fixed Point

 $\left\|y_{n(k+1)}-y_{n(k)}\right\|>\varepsilon\,,$

$$\left\| y_{n(k+1)-2} - y_{n(k)} \right\| \le \varepsilon$$

It follows that
$$\varepsilon < \|y_{n(k+1)} - y_{n(k)}\| \le$$

$$\le \|y_{n(k+1)} - y_{n(k+1)-1}\| + \|y_{n(k+1)-1} - y_{n(k+1)-2}\| + \|y_{n(k+1)-2} - y_{n(k)}\|$$

for $k = 1, 2, \dots$, it follows that

(7)
$$\lim_{k \to \infty} \left\| y_{n(k+1)} - y_{n(k)} \right\| = \varepsilon.$$
 By the triangular inequality, we have

$$\left| \left\| y_{n(k+1)} - y_{n(k)} \right\| - \left\| y_{n(k)} - y_{n(k+1)-1} \right\| \right| \le \left\| y_{n(k+1)} - y_{n(k+1)-1} \right\|$$

$$\left| \left\| y_{n(k+1)-1} - y_{n(k)+1} \right\| - \left\| y_{n(k+1)} - y_{n(k)} \right\| \right| \le \left\| y_{n(k+1)} - y_{n(k+1)-1} \right\| + \left\| y_{n(k)+1} - y_{n(k)} \right\|.$$

It follows from (6) and (7) that

(8)
$$\lim_{n \to \infty} \left\| y_{n(k)} - y_{n(k+1)-1} \right\| = \lim_{n \to \infty} \left\| y_{n(k+1)-1} - y_{n(k)+1} \right\| = \varepsilon.$$

Using (5), we have

(9)
$$\|y_{n(k+1)} - y_{n(k)}\| \le \|y_{n(k+1)} - y_{n(k)+1}\| + \|y_{n(k)+1} - y_{n(k)}\| =$$

$$= \|Ax_{n(k+1)} - Bx_{n(k)+1}\| + \|y_{n(k)+1} - y_{n(k)}\|$$

and using (4), we have

(10)
$$\left\| Ax_{n(k+1)} - Bx_{n(k)+1} \right\|^{p-q} \le$$

$$\leq \phi \left(\frac{a \left\| y_{n(k+1)-1} - y_{n(k)} \right\|^{p} + (1-a) \max \left\{ \left\| y_{n(k+1)-1} - y_{n(k+1)} \right\|^{p}, \left\| y_{n(k)} - y_{n(k)+1} \right\|^{p} \right\}}{\max \left\{ a \left\| y_{n(k+1)-1} - y_{n(k)} \right\|^{q} + (1-a) \left\| y_{n(k+1)-1} - y_{n(k)} \right\|^{q}, \left\| y_{n(k)} - y_{n(k)+1} \right\|^{q} \right\}} \right).$$

Using (6), (7), (9), (10) and the upper semi-continuity of ϕ , it follows on letting n tend to infinity in (11) and (12) that

$$\left[\phi\left(\epsilon^{p-q}\right)\right]^{1/p-q} < \epsilon$$
 , and 1 — consideration is $1 \le p \le q$

a contradiction. Therefore, $\{y_{2n}\}$ and so $\{y_n\}$ are Cauchy sequences in X. We now prove our main theorem.

THEOREM 2. Let A, B, S and T be mappings of a Banach space X into itself satisfying conditions (1) and (2). Suppose that one of the mappings A, B, S and T is continuous and that $\{A, S\}$ and $\{B, T\}$ are compatible pair of type (A). Then A, B. S and T have a unique common fixed point in X.

Proof. Define the sequence $\{y_n\}$ as above. By Lemma 2, $\{y_n\}$ is a Cauchy sequence and has a limit u in X since X is a Banach space. Since $\{Ax_{2n}\}$ $\{Bx_{2n-1}\}$, $\{Sx_{2n}\}\$ and $\{Tx_{2n-1}\}\$ are subsequences of $\{y_n\}$, these subsequences converge to u. Suppose S is continuous. Then

$$\lim_{n\to\infty} S^2 x_{2n} = \lim_{n\to\infty} SAx_{2n} = Su$$

Further, since $\{A, S\}$ is a compatible pair of type (A), we then have on using Proposition 5 that

$$\lim_{n\to\infty} ASx_{2n} = Su$$

Using (2) we have

$$\left\|ASx_{2n} - Bx_{2n_1}\right\|^{p-q} \le \left\|ASx_{2n} - Tx_{2n-1}\right\|^{p} + (1-a)\max\left\{\left\|S^{2}x_{2n} - ASx_{2n}\right\|^{p}, \left\|Tx_{2n-1} - Bx_{2n-1}\right\|^{p}\right\}\right\| \le \phi \left(\frac{a\left\|S^{2}x_{2n} - Tx_{2n-1}\right\|^{p} + (1-a)\max\left\{\left\|S^{2}x_{2n} - ASx_{2n}\right\|^{q}, \left\|Tx_{2n-1} - Bx_{2n-1}\right\|^{q}\right\}\right)$$

Letting n tend to infinity we have

$$||Su - u||^{p-q} \le \phi (||Su - u||^{p-q} \le ||Su - u||^{p-q},$$

if $Su \neq u$, a contradiction. Thus Su = u.

Using (2) again we have

$$\left\|Au - Sx_{2n-1}\right\|^{p-q} \le \phi \left(\frac{a\|u - Tx_{2n-1}\|^p + (1-a)\max\{\|u - Au\|^p, \|Tx_{2n-1} - Bx_{2n-1}\|^p\}}{\max\{a\|u - Tx_{2n-1}\|^q + (1-a)\|u - Au\|^q, \|Tx_{2n-1} - Bx_{2n-1}\|^q\}}\right),$$

since Su = u. Letting n tend to infinity we have

$$||Au - u||^{p-q} \le \phi (||u - Au||^{p-q}) \le ||u - Au||^{p-q},$$

if $Au \neq u$, a contradiction. Thus Au = u.

Since $A(X) \subseteq T(X)$, there exists a point v in X such that u = Au = Tv. We claim that Bv = u, for if $Bv \neq u$, then using (2) we have

$$\|u - Bv\|^{p-q} = \|Au - Bv\|^{p-q} \le$$

$$\le \phi \left(\frac{a\|u - Tv\|^p + (1-a)\max\{\|u - Au\|^p, \|Tv - Bv\|^p\}}{\max\{a\|u - Tv\|^q + (1-a)\|u - Au\|^q, \|Tv - Bv\|^q\}} \right) =$$

$$= \phi \|u - Bv\|^{p-q} \le \|u - Bv\|^{p-q},$$

if $Bv \neq u$, a contradiction. Thus Bv = u.

Since $\{B, T\}$ is a compatible pair of type(A) on X and using proposition 4, we have $BTv = T^2v$ and so

-open in the second of
$$Bu = BTv = T^2v = Tu$$
. The second is a second of the second o

Thus B and T have a coincidence point u.

We claim that u is in fact a common fixed point of B and T. Using (2) again, we have

$$\|u - Bu\|^{p-q} = \|Au - Bu\|^{p-q} \le$$

$$\le \phi \left(\frac{a \|Su - Tu\|_{p} + (1-a) \max\{\|Au - Su\|_{p}^{p}, \|Bu - Tu\|_{p}^{p}\}\}}{\max\{a \|Su - Tu\|_{p}^{q} + (1-a) \|Au - Su\|_{p}^{q}, \|Bu - Tu\|_{p}^{q}\}} \right) =$$

$$= \phi (\|u - Tu\|_{p}^{p-q}) \le \|u - Tu\|_{p}^{p-q},$$

if $Tu \neq u$, a contradiction. Thus Tu = u = Bu and we have proved that u is common fixed point of A, B, S and T.

The uniqueness of the common fixed point follows easily on using (2). Remark. Theorem 2 generalizes the result of Murthy, Cho and Fisher [11].

REFERENCES

- 1. M.L.Diviccaro, B.Fisher and S.Sessa, A common fixed point theorem of Gregus type, Pub. Mat. 34
- 2. B.Fisher and S.Sessa, On a fixed points theorem of Gregus, Internat. J.Math. and Math. Sci. 9 (1986), 23-28.

- 3. M. Greguš, Jr., A fixed point theorem in Banach spaces, Boll, Un. Mat. Ital. (5) 17-A(1980), 193-198.
- 4. G. Jungck, Compatible mappings and common fixed points. Internat, J. Math. and Math. Sci. 9 (1986), 771-779.
- 5. G. Jungck, Compatible mappings and common fixed points (2). Internat, J. Math. and Math. Sci. 11 (1988), 285-288.
- 6. G. Jungck, Common fixed points of commuting and compatible maps on compata, Proc. Amer. Math. Soc. 103 (1988), 977-983.
- 7 G. Jungck, P. P. Murthy and Y. J. Cho, Compatible mappings of type (A) and common fixed points, Math. Japonica 38 (1993), 381-390.
- 8. S. M. Kang, Y. J. Cho and G. Jungek, Common fixed points of compatible mappings, Internat. J.Math. and Math. Sci. 13 (1990), 61-66.
- 9. S. M. Kang and Y. P. Kim, Common fixed point theorems, Math. Japonica (1992), 1031-1039. 10. W. A. Kirk, Fixed point theorems for non-expansive mappings, Nonlinear Func. Anal. Proc. Sym. Pure Math. Vol. 18 Part. I A.M.S. (1970), 162-168.
- 11. P. P. Murthy, Y. J. Cho and B. Fisher, Compatible mappings of type (A), and common fixed point theorems of Greguš, to appear,
- 12. S. Sessa, On a weak commutativily condition of mappings in fixed point considerations, Publ. Inst. Math. 32 (46) (1982), 149-153.
- 13. S. P. Singh and B. A. Meade, On common fixed point theorems, Bull. Austral. Math. Soc. 16 (1977), 49-53.
- 14. C. S. Wong, On a fixed point theorem of contrative type, Proc. Amer. Math. Soc. 57 (1976), 283-284.

Received 1.06,1994 Department of Mathematics, Kalyan Mahavidyalaya, Bhilai Nagar (M.P.) 490006. India Department of Mathematics, University of Bacău 5500 Bacău, Romania