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If E c R, we denote by % (E) the set of the functions /- E— R and for ne N,
n>0, we denote by &, the set of the algebrical polynomials of degree not greater
than n. If fe F(E), k€N, k>0 and x,c E, (1Si<k+1), x;#Xx; ,(i# j) we denote by
[%),... %15 /] the divided difference of order k of the function f on the points x,.

We recall that a function f € #(E) is said to be nongoncave, (nonconvex

respectively) of order k, k > —1 on E, if we have:

(1) [xl,...,xk+2;f] >0 , (<0 respectively),

for any system of distinct points x; € E, (1<i <k +2). In particular, the func-

tions that are nonconcave (nonconvex) of order 0 coincide with the functions that
are nondecreasing (nonincreasing) on E.

Bemstein’s operators B,: #([0,1]) — & are defined by:

O BUA) =3 S pal, where o) = ()20
k=0 -
f e 37([0,1]), nelN, n>1 and x € [0,1].

In [6] Tiberiu Popoviciu has proved that Bemstein’s operators have the re-
markable property thatif / € & ([0,1]) is nonconcave of order £ on [0,1] then B,,[ S ]
is nonconcave of order & on [0,1], for any n>1and k > —1. In this paper we
show that Bemstein’s operators preserve also the property of the quasiconvexity
of higher order of the functions. The notion of the quasiconvexity of higher order
was introduced by Elena Popoviciu [4] in the following mode.
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DEFINITION [4]. The function f € #(E) is quasiconvex of order k, k > 0,
on E ifthe following inequality
(3) [xZa"'5xk+2;f]£ n‘lax{[xla'-'>xk+l;f], [x3,...,xk+3;f]}

holds for every system of points x| <...< x3,3 of E.
Of course, if E does not contain k+2 (respectively k+3) distinct points then,

any functions f € #(E) has automatically the above properties of convexity (re-

spectively quasiconvexity) of order k.
The inequality in (3) is obviously equivalent with the following one

4) 111ax{[x2,...,xk+3;f], - [xl,...,,xk+2;f]} > 0.
In the case where k£ = 0 the inequality in (3) becomes:
(5) f(x) < max{f(x)), f(x3)}.

In [7] Tiberiu Popovici has got the following simple characterization of the
functions that satisfy (5). Here, the expression £, < E,, where E;c R, E, c R,
means that we havex; < x,, for any x; € E; and x, € E, ..

THEOREM 1. [7] 4 function [ € #(E) , where E is an arbitrary subset of
R, satisfies the inequality in (5) for every poimfs x; < x,< x,0f E, if and only if
there are two subset E, and E, such that E{UE,=E, E, < E, and [ is
nonincreasing on E, and nondecreasing on E,,.

For our purpose we need to generalize this theorem. First we shall be con-
cerned with the direct part of the equivalence. For this we use the following for-
mula for the divided differences given in [5]: For every system of strictly ordered
points x; <...< x,, m 2= 2 ,and every indices 1 = j; <...< i, =m, n 2 1, there
are the real numbers a; >0, (1< j<m-n+1), >0, a,,_,., >0 such that, for any

function f defined on the points x,, (1< i < m) we have:

m—n+1

(6) [xila“-’xi";f]z Zaj-[xj,...,xjﬂ,_l;f]
j=1

In what follows let the natural number £ = 0 and the arbitrary subset E — IR
be fixed. Let us denote by X the set of the all finite systems of points of
E:c ={x <..<x,}, where m2 k + 2. For sucha o and for f € #(E) let us
denote by d; = xj,---yxj+k+1_:f}, (1<j<m-k-1), and let us denote by
V(o) the greatest index p,1< j <m—k —1, such that d < 0. If there are not
such indices we put V(o) = 0. We have: J
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LEMMA. If f € F(E) is quasiconvex of order k, k > 0, on E then, the
following inequalities hold:

@ X

Proof. We have only to prove the first inequality in (7). Suppose that this one
is not true and obtain a contradiction. Let i be the greatest index 1< i < v(c) -1
such that d, > 0. Wehave d; < 0 forany indices i < j < V(o) , if there exist such
indices. By applying relation (6) there are the numbers a; = 0, (i +1gj< v(c)),
) > 0 such that:

iyl > 03 av(o

|:xi+l""’x1'+k+l5 v(o +k+1’ ] Za d S Ayg) - d\'(c) <0.
j=i+l
But this inequality together with d. > 0 contradict the quasiconvexity of

order k of the function fon the points x; < X1 <. < Xpypp1 < Xy(g)ek41 S€C 4).

Lemma is proved. ®
We can prove moreover:
THEOREM 2. If f € #(E) is quasiconvex of order k, \k > 0, where E = R

is an arbitrary subset of R then, there are two subset E| and E,, possibly one of
them being the empty set, suchthat E{\UE, = E, E| < E2 and fis nonconvex of
order k on E, and is nonconcave of order k on E,.

Proof. We suppose that E contains at least k+3 points, since the contrary
case is obvious, Let ¢ = inf E, b = sup E, where the infimum may be — o and the

supremum may be + oo
If o= {x <..<x,} €Z letus denote:

Xis)l> I V(o) > 0

& o) a if v(o)=0

Let us consider the set 4 = {a(c),c eX } , and let y = sup 4, where y may be

+ oo . We take the subset E| in the following mode:
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(i) El=(—°°,y)ﬂE', if yedor y=beAd

€) :
(ii) E; = (-0, y)NE, if y €4 or v <b,

and thenlet E, = E\E,.
Let us prove that f is nonconvex of order k on E,. We have only to consider
the case where E; contains at least k+2 distinct points and let the points of £ : x, <

<o < Xy In each of the cases i) or ii) of (9) there is c € Z such that

Xpsz S0(0)<y.Letusput G = {x,..., %, }Uoc and let us represent G by
G = {) <..< Ym}. Denote d; = {yj,...,yj+k+1;f}, (1<j<m-k-1). Let
p be that index such that y, = a(c). It follows that y; €o, for p< j<m.
Therefore dp <0 and by (7) we have d; <0, for 1< j< p. There are the indi-
ces 1<) <..<iy,, < p such that x, = y; , (1<s<k+2).Bytakinginto

account formula (6), there are the numbers a; 2 0, (i < j < iy — k — 1), such that:

[xl,...,xk+2;f]= ZadeS.O

i< iy —k=1

Hence f'is nonconvex of order kon E|.

Let us prove now, that fis nonconcave of order k on E,. We have also to
prove only the case where E, contains at least k+2 distinct points. Let the points of
E, :x, <..<x,, We have [xl,...,xk+2,f] > 0. Indeed, contrarily we have
o(c) = x,, where 6 = {x) <...< x;,,} and hence y < a(c). But this implies
that y € 4. By (9) and since E, contains k + 2 > 2 distinct points it follows that
E; = (y,%)NE . Hence x, >y , that means a(c) > y . Contradiction. Then f'is
nonconcave of orderkon E,. H

Remarks. 1°. In [2] we obtain a variant of Theorem 2 in which the
quasiconvexity of order k is replaced by the more general notion of the
quasiconvexity with respect to an interpolating set of functions. However in [2] it
is required that E be an interval.

2°. According to Theorem 1 the converse of the implication in Theorem 2

holds too, in the case k = 0. But in the general case k > 1 that is not true without
supplementary conditions. For example, the function

(10) f(x)={_x7” x<0

x"+5x, x>0,

is continous, itis noncenvex of order 2 on (~o0,0] and nonconcave of order2 on [0,00), but
it is not quasiconvex of order 2, since [-2,-10,1;f]=1/6and [-1,0,1.2; f]=-1/6.
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In a particular case we give the following reciprocal theorem:

THEOREM 3. If f:1 — R is a polynomial function, where [ is an interval,
and if there are the subintervals I, < I,, I;UI, =1, such that f is nonconvex or

order k=0 on I, and nonconcave of order kon I, then f'is quasiconvex of order
konl

Proof. If I, =@ or I, =@, then the theorem is obvious. Hence we consider
I,#@# I, and let ¢ = sup /; = inf I. From the hypothesis we have f(k“)(x)g 0,

(xel)) and % (x)20,(x el,). Hence FU%*2)(£)20. There is a number §>0

such that:
(11) FEA(x)20, if |x-d<s.

Indeed, the case where the degree of f is not greater than k+2 or [ (l5:23) (c)>0
is obvious. In the opposite case we have f (2] ( )>0, for any x,1; <x<t,, x#c,
where by ¢, is denoted the greatest root of f (k+2) that is less than c or 1 =-,if
such root does not exist, and ¢, denotes the least root of f (k+2) that is greater than
¢, or 1, =+co if such root does not exist.

Consider now the points of I:x; <...<x,5 .Inordertoprove (3)itis enough

to consider only the case where x; <c<x;,; . We choose the points y, <... <y, of
I with the following properties: 1° There are the indices 1 =7, <...<i,,; = m such
that y; =x,,(1<p<k+3) and 2° y;,q ~y; <8/(k+2), (1<}<m 1). We denote
[yj, ,yj+k,f] (1<j<m-k). Let r €{2,...,m} be the least index such that
. =G t
In what follows we shall use Cauchy’s formula, i.e. for a function
g:J — R, J an interval, that admits the derivate of order p on J, and for the
points 4 <...< 1,4 of J thereis & 1 < & < 1,41 such that [rl,. A p+1,g] =
= g¥(e)/ pt.

We prove the following relation:
(12) Citl <max{cj,cj+2} (lSjSm—-k—z),

If1<j<r-k-2itresults [J’j,---,yj+k+1;f} 0 and hence ¢; = ¢y,
If r—k—1<j<min{r—Lm-k-2} it results Yy —4 <8, (JSp<j+k+2),
and hence, by (11) and by Cauchy’s formula we infer [yj, Iy ias f] >0,
Afterwards there results [y‘,+,,---,y,-+k+2; f] > [,V,-,..-,)’ iviers S 1. and then:
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1 +

'Cj “Cj+2 s
p+q

Cj+1 = j

ptq

where p = Yjype1 — ;> 0 and g = y; 40 — y;41 > 0. From the last inequality
it obtains the inequality in (12).

Finally, if r < j < m -k — 2 itresults [yj+1)'“,yj+k+2;f]2 0 and hence
¢jy1 S ¢jyo . Thusin every cases (12) holds true.

Now take us an index 1< i <m such that y; & {x,...,x;,3} andcon-
sider the points z;, (1< j<m-1) defined by: z;, = y;,...,2,_1 = Vi_1, % =
= Yishl gy = vy If we denote' d; = [zj,...,zj+k;f], (l<j<sm-—k-1),
by using (6) wecan write d; = A ;c; + (1 - kj) “Cjy1, Where ;€ [0,1], forany
1< j<m-k~1. Therefore from (12) and Theorem 1 it deduces

(13) djn Smax{dj,dj+2} , (1€ j<m—k-3).

By repeating this procedure of elimination of the points that differ from the
points xy, ... ,x, 5, We obtain after m—k-3 steps that (3) holds true. The theorem
is proved. ®

Our main theorem is the following:

THEOREM 4. [11If f € FI([O,I]) is quasiconvex of order k, k = 0, then for
any n 21 the polynomial function B, [ f ] is quasiconvex of order k.

Proof. The following relation was proved in [6].

(14) (Bn(f,x))(r)=—L”Z_S[i,--~,i+r;f]27n—:;(x)’ x < [0]

(n Z r)!nr oL n

We shall take » = k+1 in (14). Let us denote:

! ; . Nin! n—k -1
a-=[i,...,l+k+’;fj|( (farl)in ,(0<i<sn-k-1)

; n n n—k— 1)!711“r1 7
and take x €[0,1) and y = 1 Y We have:
-x
k1 1 n—k-1
(B ()Y Sy gy
i=0
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Because the theorem is obvious for n < £+1, we suppose that n > k£ + 1. By

virtue of Lemma, one of the following three cases holds true: 1° ¢, <0 (0<i<n—fk-1)

or 2°¢;20, (0<i<n-k-1) or 3° there is p, 0<p<n—-k—-1 such that

4;<0, (0<i<p), mng <0 and 4,20, (p+1<i<n-k-1), max q>0.

0<i<p pHISisn—k-1
In accordance with a well-known theorem of Descartes the polynomial
n—k-1

- i - ,
P(y):= Z %Y’ can have at most a positive root. Moreover, P can have a posi-
i=0

tive root y, only in the case 3° and in this case we have P(y) <0 (0 <y < Yo
P@y) >0, (y, < y) since lim P(y) = +oo. Hence it is true one of the following
) —> o0

cases: 1° (B,(f, x))(k+l) < 0, (x e[0,1]) or 2° (B,(/, x))(kH) >0, (x [0,1]),
or 3° there is xq, 0 <xq <1 such that (B,(f,x)) U 0, (x e [0, x4])
and (B,(/, .17))(k+1) 20, (x €[x,1])-

By taking into account Theorem 3 it results that f'is quasiconvex on order k
on[0,1]. =@
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