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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution x* of the equation

1) Fx) + G(x) =0

where F, G are nonlinear operators defined on some convex subset D of a Banach
space E, with values in a Banach space E,. The operator F'is assumed to be Fréchet-
differentiable on D, whereas the differentiability of G is not assumed.

We will study the convergence of the Steffensen method

-1
(2) Xpt1 = Xy = [xn’ g(xn); F] (F(xn) T G(xn)) (” 2 O)’ Xy € D
to a locally unique solution x* of equation (1). Hear g:D < £, — E,,

[x,7,F] € L(E,, E,) and satisfy the condition
(3) [x, 5, F](y - x) = F(y) - F(x) for all x,y eD.

-1
Let x, € D, we assume that [xo, g(xy) F ] exists and

4) [xo,g(xo);F]_l([x+hl,y+112;F]—[x,y;F]) <A (5, +|h 1 )+ Ay (1, +H|o 1),
(5) [xo,g(xo);F]_l(G(v+h3)—G(v)) < 4,13+ 13 )= Al ) - A(),
and

1)

(6) leiz +he) - g(2)] < A.(1 + |
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for all x eU(xO,tl):{x eElH|x—x0||St1},y eU(xq,1,), v €Uyt ), 2 €U(x014)s

"hiH <SR-, ”hzﬂ <R-1,, Hh3|| SR-1, 1_14” < R-1, for some R > 0.The
functions 4, 4,, 45, and 4, are continuous in both variables, and such thatif one of
the variables is fixed then 4,, 4,, 4,, and 4, are continuous in both variables, and
such that if one of the variables is fixed, then A,, 4,, 4;, and A4, are increasing
functions of the other on the interval [0, R], with 4,(0,0)=4,(0,0)=4,(0,0)=4,4(0,0)=0.
The function A4 is nondecreasing on [0, R]. —

The case when G = 0, A](t1 + “h1 ,tl) = 01“/1]‘

1) = ¢,

: /‘12(I2 + H/i«ll

A4(t4 + Hh4

been studied in [5], [6] and the references there. Here, we provide an error analysis

,f4) o C4||h-4H for some positive constants ¢,, ¢,, and ¢, has already

R *
as well as error bounds on the distances “x,,+1 - x,| and “x,, - X ” for atl 1=0.

We also show how to choose the functions 4,, 4,, 4, and 4,.

2. CONVERGENCE ANALYSIS

We will need to introduce the constants

) ' Yo i O AN ”xl Xl d = ||x(, m g(xo)”,
(8) a=1=-[4(R.0)+ 4(R0) + 4(d,0)], R <R,
© ag = Ry ~[d + 44(R,0)],

the sequences

) =1 4y .0)+ 4y (d+ Ay 1,00} Ay (d,0)],

(11) by =1, =50 0)+ Ay Ay, ~ 20 ,0).0)+ A (40)],

1
(1 2) Tkl =Ty + {[ZAI (rn—l >0) + A2 (’;1 90) + A2 (d + A4 (rn—l 70)’0)]<’;1 ~ -1 ) +A("n )_ A(rn—l )}’

a)l
and the functions
N ]
(13) \ Tr)=n+ Z{[ZAl(r,O) + 4y(10) + Ay (d + A,(r0)0)]r + 4()}

where

(14) b= b(r) = 1= [4,(r.0) + 4,(d,0)+ A;(d + 4,(r,0),0)]:
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We will now state and prove the main result:

THEOREM 1. Let F, G; g:DC E|\—E, be nonlinear operators salisfying con-
ditions (4), (5) and (6). Assume:

(i) for xy€D the inverse of the linear operator [xo, y(xg ), F ] exists;

(i) there exists a minimum positive number R, such that

(15) T(R) £ R;
(iii) the numbers R, R, are such that R, <R and the constants a and a; given

by (8) and (9) respectively are a>0, and ay > 0;
and

(iv) the ball '
(16) U(x.O,R)_c; D

Then

(a) the scalar sequence {r,} (120) generated by (12) is monotonically
increasing and bounded above by its limit, which is number R,

(b) the sequence {x,} (n>0) generated by the Steffensen method (2) is well
defined, remains in U(xy, R,) for all n=0, and converges to a solution x* of equa-
tion F(x) + G(x) = 0, which is unique in U(xg, R) if G=0on D).

Moreover, the following estimates are true for all n20;

(17) “xn I xn—l“ = Ty = Th-1>
(18)
(19)

X X*H = Rl ~
[XO s g(.l‘.o );/F]—I(F(xn) 2K G(xn ))
0)+ AZ(d + Ay (||x,-1 = %0

),

(21) Bn T [ZAI("n—bO) it Az(l‘",()) & AZ(d + A4("n—1>0)’0)] (’;I s rn—l) + A3(7‘”, rn—-l) >

<a, <B,, with

|

ct, = [24((ppes — 50}0) + (s — %o

(20) +A3(”xn—l - xO” +I“xn i xn—ln’ ”xn—l — X

o

ERE o (241 = %01b0) + Aol — x}40) +
22) ay(d + Ay, - % 0)0)| s, = x| (G =0 0n D)
(23) =1 [Al(”x* ~100) + Ay(fx, ~ xo0) + Az(d,O)},
24) oo = 3 < s = | aiie
;
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and
Dy = [2/11(”};” S x(,”,O) + A.Z(nx* ok .170”,0) + Az(d + A4(Hxn = )«70“,0),0)} “x* - x,,” +

(25) +A3<||xn i x(l” + ||xu e x* s HX" " x()H)"

Proof. By (7), (12), (15) and the monotonicity of the functions A4, 4,, A,
and 4,, we deduce that the sequence {r } (n=0) is monotonically increasing and

nonnegative. Using (7), (12), (15) we can easily get that r, r, and r,<R,. Letus
assume that 7, <R, fork=0,1,2, .., n Then by (12) ’

Tl Sy %{[2/‘11(’3;—1,0) + Ay(1;,,0) + Ap(d + A4("n—1>0)>0>]("n —r)+
+A(r,) — A(r )} <
< Ty +%{[2A1(R1>0> + Ay(Ry,0) + Ay(d + A4(R1a0)’0)]<’31—1 ~Ty)*
+A(r-) = A2 )} +
+%{[2A1(R1,0) + 4y(Ry,0) + Ay(d + Ag(R,0).0)|(5, = 7m0 +
+A(r,) = A1)} =
= I é{[zAl(Rl,o) + 4y (R,0) + Ay(d + A(Ru0L0)](r —rma) +
+A(r,) = A=)} <
<<+ %{[2A1(R1,0) + Ay (RL0) + Ay(d + A,(RLO)0)|R + A(R))] =
=T(R)< R by (15).
Hence, the scalar sequence {7, } (7> 0) is bounded above by Ry. By (if), R, is

the minimum zero of equation 7(r) — = 0 in (0, R, ], and from the above R, = lim ;.

Using (7), we get x, € U(x,, R,), and (17) is true for 1=0. Let us assume that
x,€ Ulxy, R)), and (17) is true for i=0, 1, 2, ..., n. We first show that [x,, g(x,); F]is
invertible. In fact, by the induction hypothesis,

k
SZ(‘J. ‘J._])=rk—r0:rk§R,.
j=1

~
~

k
@6) = x| < X - x|
=1

Also, we have
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on X g(xk )H el on T g(xo)” S Hg(xo) e g(xk)H s
< d + Ao — x].0) € @ + 44(5.,0) <
<d+ A(R0) <R,

since a,>0. That is g(x,)e U(x,, R,). Hence by (4), (5) and (6)
[XOag(-’Co); F]_] ([xk ,g(xk ); F] - [xo,g(xo ); F]) <

[xo,g(xo);F]_l([xk’g(xk)?F]"[xo’x‘);F])‘

<

+

< Ay — %0 0) + 45([xo — £(x)]0

< 4,(13,0) + Ao Jeg — g(x0)] + ] (x0) — & )].0) +

< 4,(r,0) + 4, (d + Ay(1,0),0) + 4,(d,0) <
0) )

+ A4,(d,0) <1

27 < A(R,,0)+ 4, (d + 4,(R0),

since a> 0 by (iii) and (8).
It now follows by the Banach lemma on invertible operators that
LY ‘ 1 144
[x,\_,g(xk); F] [xo,g(xo); F] < i £—<—
’ ak a

(28)

where a, a,, [ are given by (8), (10) and (11) respectively for all k20
Using the estimates (2), (3), (4), (5), (6) and (28) we obtain in turn for all £>1

<

[xo, g(xo); F]_I(F(xk) + G(xk»

ot = %l < | [0 80 ) F]—l[?“ba g(xo); F]
[0, &(x0); F]_l{[F(xk) — Fxgy) = [%p-1> &1 F(x = xk—l)] +

+HG(xy) - G(xk_l))}“ <

1
< -
'k

-1

Si [xo,g(xo); F] {[[xk_l,xk;F]_ [x0>370;F] +[x0,x0;F] 3
@) el bl )+ (005~ £ 55

where a, is given by (20). But
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(30) O = [ZAI( Ti-1s )+ AZ( )+ Az(d + A4( Ta-1s ) )](’)l —I‘”_])+ A3(rnarn—l) = Bk
Hence by (29), (30), and (12)
”xkﬂ _kaS Yot — 7 s

which shows (17) for all n>0.

It now follows from (26), (28) and (17) that the Steffensen iteration {x,}
(n=0) is Cauchy, well defined and remains in Ulx,, R,) for all n=0. Hence, it
converges to some x in such a way that (18) is satisfied. For n=0, (18) gives
x*€Ux,, R)). By taking the limit as n— oo in (2) we obtain F1 (x") +G(x") = 0, which
shows that x* is a solution of equation (1).

To show uniqueness, when G = 0 on D, we assume that there exists another
solution y* of equation (1) in U(x,, R). Then as before we obtain

[x0:8Ci ) F] (35" F ) =[50, £ ) F))
sk £ (57,573 F) = [ras ) +
{EMED: F] (%0, 8050 ) F] = [0, %01 F])
< A (g = 27]0) + Ay (o = ' [,0) + 4,(d.0) <
(31) < A4(R,0)+ 4, (R0)+ 4,(d,0) <1 since a5 >0

<

<

<

-

by (ii) and (9).
It now follows from (31) that the linear operator [x', y*; F] is invertible.
Using the approximation

F(y')- F(x) =[50 F)(0 - ")
provided that G=0 on D, we get x'=y", which shows that x” is the unique solution
of equation (1) in U(x,, R).
Using the approximation

Xy —X, =X —X, +([x”,g(xn); F]_l[xo,g(xo); FD [ 08X ); FJ—] .
{[[x,,,x F] [x0,%0; F ]+ [%0,%0; F] —[x,,,g(x,,); F]](x‘ - x,,)+(G<x*)— G(x, ))},

(3), (4), (5), (6), (26), (28) and the triangle inequality as above we get
| P

a
where p is given by (25), which shows (24) for all n>0.

—x"” S”x* - x”‘ +

X

n+l
n
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Moreover, using (4)-(6), we obtain
o8 ) ([ F)- [, 8 )
[xo,gro i B (5501 )= [ F) | +
[rosg ) ] (50s 50 B )= [ 505

< 4(lx - x,.0) + A, ([Px, = x0.0) + 4,(d,0) <
< A(R,0)+ 4, (R;,0)+ 4,(d,0) <1 since a>0,

<

+

Therefore, we get

=iy

= 2

(32)

5,3, F] [0, 8(x0 ) F]

where ¢, is given by (23) for all n>0.
Furthermore, using the approximation (if =0 in D)

F(x,,)—F(x ) [x ,x,,,F]( - *),
(20) and (32), we obtain

n

-1

[.l. ,1,,,F 1[ 10);F]

“X” - ”< l:xo’g('x'O);F] F(xn) s
< E_ for all n>0,
where o
&, = |2,y = 0l 0) + o, = o} 0) + o(@ + Ay, — %0, 0).0) e, 3,

which shows (22) for all n=0.
That completes the proof of the theorem.

Remarks (a) Let us denote the right hand side of (4) by Aﬁ(t1

oty ).

Then we can choose

As(fl 1 1,z ,t.2+H/72”,t2): sup [xo,g(xo);F]_l([tzl,y+hQ;F]—[Aj,y;F])H,
-‘d](xosll)ﬂ’d](xmtz)
(33) | s Rt )b, |<R-t,
(34) Ay(tHhy|t3)= sup [x(,,g(xo);F]_l(G(V+h.3)—G(V))
X,y
||’1 fkre,
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and
(35) A (1, + |l )= sup |O(z +h,) - g(z)'.

it/14|| ‘RO ::)

Estimates (4), (5) and (6) will now follow {rom the above choices of func-

tions A, 4,, A5, A, and 4.
One can 1efer to [3] for some applications of these ideas to the solution of

integral operators.
(b) Let us assume that instead of (4), (5) and (6), the following conditions are true:

(36) | 50 &5 ) F] (w3 Fl = [z F]) | < a0l = 2l + @)y -
G7) [0 () F]'(6() = G| < ()~

and

(38) [0, &(x0); F (2(x) - g(y))| < ()| = 5]

forall x, y, z € U(x,, ) and g¢,, ¢,, g, and g, nondecreasing functiors on [0,R]. For
example, we can choose

|

(39 q(r)=g(r)= sup

e el (30) b =2 +y -4
%o, 8(xo); F] (G(x) - G()
40)  g(r)=sup [ ] ( )
x el (xq,1) HX i yH
and
 g(x0) )] (g(x) g
(41) qa(r) = sup H[Xo chaciiitl WL g(v))H

x,yeU(x,r) “x i y"

PROPOSITION. Let :U*(x,, R)—E, be a nonlinear operator satisfying

g 1) - )] < 6=+ B -

for allx, y, z e U(x,, r)r <R, and for some nondecreasing functions k, and
k, on [0,R].
Then

@3) £ (x + by + b)) = £ 2) < viln + B]) = valn) + vt + [

)”' vy(ta),
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<R-1t, with vi(r) = J'(Z k,(1)dt

h,

forall x €U(xy,1,),y €U(%,15), lm|<R-4,

and v,(r)= J'(; ky(1)dz.

Proof. Let x eU(x,? )yeU %o 438 “/11||<R t, and “/17“<R 1,.Using
(42) for meN, we obtain

LY+ m."]jhz) -

VSV SZISENICS) EDY
J=1

—f(x +m (= Dhy,y+ m () - l)hz) <

m !
k1<tl + 711._1j||h1||)rn_luhl“ + Z kQ(tz + nflj||/12H) m—IHhQH <
1 j=1

J=
< vi(ty + |l) = va( (1) + va(ty + [Il]) = va(ta) as m — oo,

by the monotonicity of k;, k, and the definition of the Riemann integral.

That completes the proof of the proposition. .
By (4)~(6), (36)—~(38) and (42)—-(43) we now deduce that another choice for

the functions 4,, 4,, 4y and 4, can be
A
At + |, ’1)=J q,(1)de,
t2 +|./12“ L} i J"z’f"/’z'l

Aty + o) j sy,

m

and
2+l
Aty +he]1s) = f g, (1)dr.

Remarks ¢) Let G=0, ¢,(r) = q,(r) = e, and q,(r) = e,, ¢, e,>0. Then our
results can be reduced to the ones obtained in [4]—[7]. Moreover, the choices of

Ay, Ay Ayand 4, given in (a) and (b) above show that Al(tl + Hh] H, tl) < 61“/11“,

i )Se4Hh4H , which means that our esti-

- ,;) < 32H/72H_ and A4(14+Hh4

A1)

. * - .
mates on the distances Hx”” —x”“ and“x,,—x “ can be sharper than the ones in

[4]-{7] (and the references there) for all n>0.
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(d) Estimates (22) and (24) can be solved explicitly for “:\'” —x'“ , when for
example q,(r) = ¢ q,(r)=c,, q4(r) = ¢; and q,(r)=c4on [0,R] for some ¢, €y, C5
¢,>0. Estimate (22) will provide an upper bound on Hx” = f',! _ whereas (24) will

provide a lower bound on Hx,, —x’“ forall nz0.

(¢) The uniqueness of the solution x* of equation (1) in U(x,. R) was esta-
blished only when G=0 on D. We assume that G0 on D. and define the iterations

] —1 R
Pur1 = n _[x(i’g(x()); F] (F(yn) & F(%l))) for any yy € U(X(). R) (11 2 O)

201 = 20 = [0 g5 F] (Fa)+ Flz)s 20=% (120)
Sper = 8 + [ A(R,0) + Ay (R,0) + Ay(d,0)] (s, = su-1) + Alsy) = Als,.) (n=z1)
50 =0, 8= “)’1 N J’OH
sy = by +[A(R,0) + 4(R,0)+ Ay(d,0)](t, = ta-1) + A(t) - At,) (nz1)
£ 0= Ry \sPEEpk Ry
5, = (t, = 5,) + [A(R,0) + 4,(R,0) + A(d,0)] (8,21 = 1yy) + Als,_;) -
—A(t,,_l) +1, — 8, (nz 1),

and the function

T,(r) =5 + [4(r0) + A4, (r,0) + Ay (d 0] + A(r).

Moreover, we assume that in addition to the hypotheses of the above theo-

rem, there exists a minimum positive number R; x:ch that

and
5,20 (n > 1) .

n

Then as in the theorem above, we can show:
(i) The sequence {s,} (n=0) is monotonically increasing, whereas the
sequence {7 } (n=0)1s monotonically decreasing and

lims, = lims, = Ry < R, and T,(R)< R -

n—w n—o
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(ii) The sequence {z,} (n>0) is well defined, remains in U(xo, R :) for all

n>0, and converges to a solution z* of equation (1), which is unique in Ulx,, R),
with 2= x".
Moreover, the following estimates are true:

”Zn = Zn—l” =N Al (n = 1)
|2, - x"| < R =5, (220)

and
“Zn ol y”“ S tn = SH (n 2 O)'

The condition on the sequence {s, } can be droppedif we define the sequences

Sy = [A(R0) + 4,(R0) + 4,(d0)]5, + 45,), 5% =0

n+l %

= [Al(Rl’O) + AZ(RDO) + Az(d’o)] Iy + A(fn)’ fp =R

In+1

instead of the sequences {s,} and {1} respectively. The conclusions (i) and (i1)

will then also hold for the new sequences {5, } and {7,}.
Moreover, the following estimates are true:

o < - T
n n-1 — Sy Sp-1

and

t —s, <1, -5, for all n=0.

(f) In the derivation of estimate (29), condition (3) was used to replace
F(x, )~ F(x,,) by [t %5 F]- (g = g ) - Imstead, we can use the approximation

Jﬂo F'(xgq 42 — Xy )Xy = Xpe) = [xk_l 2 = Xy Xy 0 — X ); F],

i1 which case a similar theorem can be proved if we just replace the sequence {r,}
and the function T by the new ones given by

rn+l - "n + _I_{J-r” (Al (7‘”_] ’O) + AZ (I‘” ,0)>df + (Al (];171 ’0) + AZ (1‘11 ,O))(l‘” i rn—~1 ) +
(l” 11
ed(n)- A} (2D, Fo =0, =l - o)
and !

J;(Al(r‘,0)+A2(r,0))dt+<A1(1‘,O)+A2(d+A4(r,O),O))r+A(r)}.

T(r):rl +l{
b
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