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FRICTIONAL CONTACT PROBLEM
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1. INTRODUCTION

The new models of friction and contact, in the last decade, are often based on
friction laws which recognize the compliant microstructure of contact interface,and
that were not only more physically realistic than classical theories, but which were
also mathematically tractable.

The existence of a solution for quasistatic frictional contact problems with
normal compliance law was proved by Anderson [5] using incremental formula-
tions and, in presence of a time regularization, by Klarbring et al.[6] in a different
manner. Rabier et al. [7] proved the existence and local (for sufficiently small
friction coefficients) uniqueness of solutions for cases in which sliding contact
occurs in a prescribed direction.

The present paper is a continuation of the analysis presented in [4], which con-
sists in a numerical analysis of a quasistatic contact problem in linear elasticity with
dry friction, The problem is intended to model the physical situation of two elastically
deforming bodies that come into contact with friction obeying the normal compliance law.

First we give a classical and variational formulation of the continuous con-
tact problem. After obtaining the continuous contact problem we derive the result
and obtain an incremental formulation obtained by time discretization of the problem.

Then we consider a discrete variational formulation of the incremental pro-
blem using a perturbed Lagrangian functional.

' Also, in the present paper is described a contact finite element in the three
dimensional case, generalizing the two dimensional case considered by Ju and
Taylor in [3] and by Wriggers and Simo in [8].

2. CLASSICAL AND VARIATIONAL FORMULATIONS OF THE PROBLEM

Let Q% < R¥,a.=1,2, N=2, 3, the domains occupied by two elastic
bodies that come into contact with friction.
Let us denote by I'* the boundary of Q* and let T'§*,I'*,I'$ be open and

disjoint parts of I'* so that I'* = I'y" UT{* UL} witha =1, 2.
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Assume that the bodies Q¢ are subjected to volume forces of denblty
JE= (fl ,...,fN) on Q¢ , to surface tractions of density > = (!“ I\r) on
¢ and are hold fixed on 1"8L We shall use the following notation for the normal
and tangential components of the displacements and of the stress vector:

o 1 o _ 0O ,ala_aula_ql_ a!
= U n u,l_ = U —u,n;,0, Gy”, 11 G‘f —_GUII/ G, .

es
u”
where i,/ =1,...,N. n* = (Iif‘,...,nj‘\‘z) is the outward normal unit vector on I'* and
the summation convention is used for i and j.

Find the field of displacements #% (ula, u‘{‘,) for a time interval [0. T],
defineds on Q¢ which satisfy the followmg equations and conditions:

— the equilibrium equation

(1) of (u)+ £ =0 in Q" x(0.7)

— the constitutive equation

o _ @ L al s o
(2) oy = agy sw(u”)in Q

; , Ca\
where ajy, = djy, = apyand @&l = ¢ ‘él, & = (éi}-), and 8,‘.,,(‘11 )—

sy o[, Ctie Li-10
aX,.  oXy

to be sufficiently smooth functions of x = (x,,..., X
— the boundary conditions

) , /.= the components of body force per unit volume, assumed

* = 0onl{ x(0,T)

3) c;(ua>nj =1 onTy x(0,7)

— the initial conditions

(4) u”(x.0) = i (x,0) = ' in Q% at 1=0
with . 4% given smooth functions of x:
— the normal interface response

m,

) 0, () = ~,(u ~ 18 = &)+ onTF % (0.7)

with ¢, and m, material parameters (see [2]),
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(1617646152 6/m)? 1400711,
170.0711c EXPl 5 d
5589 : (1363c)°

or S,y =

where £ is the initial mean plan distance d=§ g, ¢, and ¢, are mechanical constants
expressing the nonlinear distribution of the surface hardness, o and m are statisti-
cal parameters of the surface profile, representing respectively the RMS surface
roughness and the mean asperity slope.

— the friction and contact conditions:

1

when y, — u; <g:>c;T( ):0,

and when u,l, = u,z, > g,
‘GT(u“)

/ o, X 1
‘GTW )‘ o CT(un 7]

Where ¢, m , ¢, m, are material constants depending on interface properties,

niy .2
—g) +=> 4~ =0

1 2
< CT(un — Uy,

(6) -
w-g) += 3\ 20 @ - =-Aoy

b, = max(0, b), u is the tangential velocity of material particles on ;" and g is

the initial gap between le and F22 measured along the outward normal direction
to le.

The friction law (6) is a generalization of Coulomb's friction law, which is
recovered if m = m,. Insuch a case, u = ¢,/ c, is the usual coefficient of friction.
Law (6) also describes a dependence of the friction coefficient on normal contact
pressure.

The classical formulation of the quasistatic contact problem is as follows:

ProblemP1. Find the displacement field u* which satisfies (1)-(6)V 1€ [0 T]
where f* and t® are taken time dependent.

It is known (sce [9]) that a variational formulation of the problem P1 is the
following inequality '

Problem P2. Find the function u = [ul, uz} - [O, T] - Vst

a(u(t), v = i1)) + j, (W), v - i2)) +
+j, (1), v) = j(u(t),i(t)) = (v—ul), VveV

with the initial condition:

(7

(8) u(x,O) = U, 1'4(x,0) =y
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The following notation and definitions were also used:
N
9) V= {v“ e[Hl(Q“)] :v® =0 ae on 1“5’“}

the space of admissibile displacements

a(u,")‘—‘ Z JQaE-‘kh 83('4)8%}1(")‘1’5“

(10) a=1,2

the virtual work produced by the action of the stress ¢, (u) on the strains €,

"'M
(i) julv) = [ culih ~ 18 - g) s

2

_ the virtual work produced by the normal contact pressure on the
displacement v:

mr
(12) i v) = [ ool = 8 = g) vk - R 8

_ the virtual power produced by the frictional force on the displacement V.

(13) Lv)= 2, J-Qu fovidx® + 21:2'[”‘ 1y (v )ds®

a=12
— virtual work produced by the external forces.

N N
Here y is the trace operator mapping (H 1(Q)) onto (H y 2(9)) which

may be decomposed into normal componenty, (v) and tan gential components v, (V).
For simplicity of notation, the latter are denoted as v, and v, respectively. We also

observe that the boundary integrals on Iy are well defined for 1 < m,, my < 3if

N N
N=3and for 1 <m , m,if N=2, because, for v; & [HI(Q)] ,7(v) € [L‘](I“g )] :
with1 <g <4 forN=3,and with 1< g for N=2.Inthecase N=2 m, € [203.33],
these restrictions on m_, ;. basically come from the embedding theorem (see [2]).

3 INCREMENTAL FORMULATION

Now we derive a time discretized approximation of the quasistatic problem P2.

Let us consider a partition (2%, ¢, ..., t") of the time interval [0,77; and an
‘neremental formulation, obtained by using the backward finite diference approxi-
mation of the time derivative of u* .

5 Frictional Contact Problem 211

If we set uk = u(lk), Akl =gkt = u",Atk SPLIOY tk,Lk = L(zk),

ALF = [F+¥1 — [F | =0]1,...,n—-1 and if take '(t"“) = Au¥[AtF then we
obtain, at each time %, the following quasi-variational inequality:

Au* eV and

a(Auk,V—Auk)+j,,(uk +Auk,V—Au")+jt(u" '+Auk,v)—
(14) . Vvel
—Jz(u"+Au",Auk)2AL"(V—Auk)—F(u",V—Auk)

where F(uk,v — Au") = a(uk,v = Au") — Lk(v < Au")
The time discretized approximation of the problem P2 is as follows.

Problem P3. Find ', ... u" € V defined by u"=u, , " = u* + Auf, where
At e V is the solution of inequality (14). Thus for a given load history the
quasistatic problem is approximated by a sequence of incremental problems (14).
Although every problem (14) is a static one, it requires appropriate updating of
the displacements, and the loads after each increment.

4. FINITE ELEMENT APPROXIMATIONS OF THE CONTACT PROBLEM

We consider a discrete variational formulation of the incremental problem
P3, using for the contact area a three nodes contact element for the two dimensional
case (see [3), [8]).

In the three dimensional case a four node contact element consisting of three
‘master’ nodes and one ‘slave’ node, is employed.

In all numerical applications we derived a perturbed Lagrangian formulation
for the case of frictional stick and for the case of frictional slide. For the case of
frictional stick the perturbed Lagrangian functional for bodies in contact has the
following form: ’

1
A%, 2, 2,) = Ea(u, u)— L(u) + £1G, + Z[G, + £1G, -

(15) 1 1

N L Ty il M

201 En 201 B 201 2o 2
where u is the vector of nodal displacement, £_, X, Z_ are the vectors of normal
and tangential nodal contact forces, respectively, G, G, G, are the vectors of
normal and tangential nodal gapsand o, ®,, ©_ arethe normal and tangential
penalty parameters respectively.
The Newton-Raphson method was applied to the discrete variational

formulations that can be derived from these perturbed Lagrangian functionals.
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The normal vector on defined plane by the nodes 1, 2 and 3 and respectively
vectors, defined by directions of the node 1-2 and 1-3 will be:

(% - xl)(x3 -x)
(e = 21) (35 = 31)

Xy — X X3 =X

(16) n= =

PR

where X} = X1 +uy, X, = Xyt , X3 = X5 + 3 signify the current positions of
master nodes; X, X ,, X, are reference coordinates and u,, u,, u, are current nodal
displacements of points 1, 2 and 3.

In addition, we define the current ‘surfaces coordinates’ as following:

X=X, X, — X
L]

' A, = T
b2 =

(17 a = Ixs_x1|

in which x, = X + u_denotes the current position of the slave node s. The normal
and tangential gaps g , g, 4, are defined as:

D1

(18) 8 = (xs Ll xl)”’ 8 = (at - ato)|x2 s xll’ & = (a‘: — ag)‘x3 - X

>

where ato and a? are the old surface coordinates at the last time step known.
Note that the gap g depends on the slave node s as well as on the master
nodes 1, 2 and 3. Thus, the variation of the gap is obtained according to

d
(19) g= d—ag(xs + 0, Xp + Oy, Xy -+ QMy, X3 + AT3)
where
(20) n(nla M2, N3 ns‘) = 6u(sul’ 5142, 5143, 6“5')

With respect to finite element implementations, explicit matrix expressions
for the Lagrangian multiplier formulation and the penalty formulation are derived

as follows.
The discrete variational equation associated with (15) take the form:

1) 8,1(u) + £18,G, + »'5,G, +218,G, =0

nTu

22) 525[-—1—2,, +G,,] ~ 0
7 (O]

n

1
14
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T 1
(24) 3Ti| ——Z,+G, |=0
@ T
1 A ! L1 I
where IT(u) = Ea(u, u)— L(u) is the total potential energy of the bodies in

T 7
contact, ouG, = (Sug},,Sug,%,...,Sug:) , duG, = (6ug,1,6,,g,2,...,6ug,") 5
T .
duG, = (6,,gl,8ug$,...,8ug§) , S = total number of slave nodes in contact
s=1,2, ..., S, analogous for 8%,, 8%,, 6%, .

The variational of a typical nodal normal gap g, € G, take the form:

3 3

3 A
0g, i ag. | ;
8gn=21_n-' 115"‘2 —"'ﬂzj
o1 0ud parmelle TH

. . dg, 0Og, O 9 og,
with the notation (20) and ¢, =( S OB 28 A _g'_],

H
oul’ aut’ sl aul' T a3
n=(n}, m2, m ni ..., ni), we obtain:
8g, =n'c,

Similarly, the variation of a typical nodal tangential gap g, € G, g, € G, can
be obtained according to

8g, =n'c, 8g. =n'c,

Moreover, the residual vector R, and the tangent stiffness K, associated ,
with the total potential energy of the contacting bodies simply read, result

8T1(u) = n¥ Ry and 8Ry = n' K

-

With, the convention: (ul,...,ulz) = (u},, Ty b R ug’) Eq. (21) become:

N
25) | Ry + " (ohcs +oie) + oici)|=0
s=1

and analogous for Eq.(22)-(24) where
c,€X, 0, €X, 0, €X,.

To applly Newton's iteration scheme, consistent linearization of Eq.(25)
and those corresponding Eq.(23)-(24), at (u, 2, , X, , Z_)is performed and leads
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to [ 4 Az L4 A5 A\ du ) R
A B, 0 0 ||AZ R,
[, 8Z;.8 %1, 5z | 1 A R 4
A 0] G; o || AZ, R,
A 0 D, || AZ, Ry
where
S ‘S S S
A= Kg+ ) (ki + K i) gy UL lgys D ety Silzs,
s=1 s=1 s=1 s=1
1 1 2
By=——1, Cy=—"1 Dy ==—T, Ri5 Ry + (onen +0ic +aicl)
n (Dt @t s=1
1 1 1
R2=————Z”+Gn . R3:_—_Zl+Gl’ R4=———-EI+GT 5
w O, (p

H

is the matrix zero, and

ocsi g (k?v)jiz@?i_ﬁ?éf_ (k:

(Rl = 50 = G, T
ou 3 Ou; 0u g au}' Ou; ou;

Finally after the discrete formulation within the framework FEM, a standard
assembly procedure can be used to add the contact contributions of each contact
element to the global tangent stiffness and residual matrix and thus we obtain:

(26) KU=R

S S
where K = Kp +ZKé, R= —[RB + ZR&), K, R, are mechanical global
s=1

s=1
tangent stiffuess matrix and residual vector, Ké, RS are mechanical contact

contributions of contact nod s, U = (Au, AZ,, Ay, AZT)T, Sis the total number of
the slave nodes. And for ® =0 =@ =0, and o, =0g, O,~0g,0, T 0L, result

N
= s KA (1S T .5 sT .8 4 ST o8
@7 Ko= o(gsks+giki +gnki+er ener ci +ciled)
s=1
S
s sT .8 sT .8 T .8
28) Rc—zm(&i cs+glci+gr ct)
s=1
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For the case of frictional slide the relation ]Ewn| = p‘E,, , where 1 is the
coefficient of friction and Z,_ is the result force of the Z, and X' forces in the
tangent plane of the contact surface. :

Note with B the angle between the sides x, —x; and x; — x; ; we obtain

cos =1t and

7~mn‘=p\/g,2+g$+2a|gt||gtlcos[3 where & = sgn (g, g.). As a

direct cons 's fricti i
equence of Coulomb's friction law, it results pm‘gn‘ = or, where

on

F= \/gf T 2s|g,| ‘gr‘cosﬁ therefore A, = ?»tan&wg,, = —psgn(g,)&o)u =
r 2

2|

v g
=—HT 08, hox :-—“’—rt—’mgn p
e Jai g g ad,

’ If we write d, = ==, d; = |——L|, D —u’, by DF; , from liniarized
inematics (i i i ‘ Xl

Sle (i.e., by negleting nonlinear terms k and k), we obtain:

iy s s

Ke = 2 (S +513)  with

s=1

SI = o(giks - ng,dik - ngidiks + ey - udie)’cy)

s sT s

S A . 9 3 3
SLZ n 0)(— tCn o T l‘lgylb;Tcts T pg"biTCi), and

N
. T8 T s v il s
R = Sz_lw(ugndf ¢ +ng,dile - g'c)

CONCLUSIONS

fo ;)&;egil\ig nlzu\l):]'flx;lct?l el)éemple[s1 8]1 [%]1 and [ 11], the numerical solution is in
od ) he Raous . The computations have been carri
va'lthig the environment of the Finite Element Analysis Program (FEAPe)d Sél;
ien Telwwz_ [.12],‘1'131ng the contact finite element in 3D, presented in this pa,per
L t}e crlltlcal situations arise in transitions from sliding to adhesion because it
}% ¢ tﬁgbelgg g ﬁle ul}.tl'OSt }111tp0(;1a11t chal;ges in the solution occur. One simple remedy
r thes culties is to decrease the time ste il two s ssive solutions
e i e step until two successive solutions are
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