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SPLINE APPROXIMATION FOR SYSTEM OF TWO THIRD
ORDER ORDINARY DIFFERENTIAL EQUATIONS, II

Z. RAMADAN
(Cairo)

DESCRIPTION OF THE METHOD
Consider the system of nonlinear ordinary differential equations:
(1) "= f1(x,,2), y(xg) = Yo, ¥' (%0) = ¥4, ¥"(%0) = ¥g’

(2) z" = f2(x’ Y, Z)a Z(XO) = 20, z' (XO) = 26’ Z”(xO) = ZE)’

where f}, f, € C"([0,1] xR?).
Let A be the partition

A:0=xp<x <...<Xp <Xpyp <...<x, =1
where x;,, —x, = h<land k = 0()n - 1.

Let L, and L, be the Lipschitz constants satisfied by the functions fl(q) and
i (2") respectively, i.e.,

3) ‘fl(q)(x, V15 21) = fl(q)(x, Y25 Zz)l < Li{ln — »lHz - z,l}
and
@) 4905 7,20 = A205 72, 2)| S Lollon — yaltlz - 2}

for all (x, y,, z;) and (%, y,, z,) in the domain of definition of f and f, and
all g = 0(1) r.
The functions f} @) and f; (9) | ¢ = 1(1)r are functions of x, y and z only and

they are given from the following algorithm:
set

9= ity 2), A9 = f1(x3,2)
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and if £9") and fz(q'l) are defined, then

aﬁ(?-ll h afl(q—l) o afl(q-l) ;
ox Oy 0Oz

fl(q) —
and
-1 -1 -1
O A R L il
. Ox oy oz
Then, we define the spline functions approximating y(x) and z(x) by S,(x)
and S, (x) where

A
Sp(x) = Sp(x) = Spoq(x) + Sp_q () (x — x5) + 5§ l(xk)'(*;i #
(5) 7 : - e GelNTH3
+}Z=(:) SOM0% s () Speq ()] p(ji—g)),
and
2
5306) = 54000 = SaCon) + SsCo) =)+ T E220
(6) ’ il
+j§0f] [Ces 51 (g ), Sga k)]—(_:_r#;)I

s_1(x0) = o, sL1(x0) = yo, s/1(x0) = ¥g,
5.4(x0) = zg, (%) = = and §_y(xg) = 2.

By construction it is clear that s5(x), 55(x) € c?[0,1] .

where X S x < x, k=01n-1

ERROR ESTIMATIONS AND CONVERGENCE

Forall x € [x;, x;,1], k=0(1)n—1, the exact solutions of (1) and (2) can be
written, by Taylor’s expansion, in the following forms:

42 (J) (r+3)
. _NCYE N (ék) ny
) yﬁ%z;ﬂu B+ )
and
r+2 (j) ] Z(r+3)
® f0)= ) e+ T ey
j=0 J* !

where &;, ;. € (g, Xpq1), £ =0Dn -1,

——
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The following natation will be used along the discussion of the convergence
of those spine approximants:

e(x)=
e =|yr —=Sa(xp)ls
©9) &(x) =|2(x) =S, (%)),

e =lzg = Sa (xi)l;

S = APl s (o), ()]
and

fz(,i) = 51, Speg O )y S ()]

where j = 0(1)r and £ = 0(1)n-1.
Along this work, we will deal with the general subinterval

Iy =[x, x4], k= 0(1)n—1.
Now, we are going to estimate | ¢ = Sg(¥)].

Using (5), (7) the Lipschitz condition (3) and the notation (9), we get:

IJ’(JC) = S ()= v = Sk 1(xk)|+| Ve = Si—1(x)l[x — xl+

y |x - J»kl { (J+3) (;)| B
+ yy — P + E +
| i Ol — - N G+3)]

|x =% [
r+3)!

(10) () - [P

[ ZACEE
< e, + he; +—e + |(1+3) (J)l +
% k % EJ’ A TEEY
hr+3

r +3)!

4W“@n—ﬁ?

Now, let
o= - )

then using the Lipschitz condition (3), we get:
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(1 1) U < Ll(ek + Ek)
Also let

v= e - £
then, using (3), we get:
v<porE,) -y |+ ’ﬁ(")(xk VisZk) f1(,/rc)‘ S
<o(YU )+ Li(e, +€,)

(12)

where o(yU+, k) is the modulus of continuity of the function »(+3).

From (10-12) and noting that
r=1 j+3

Rre-1) < i’
(13) j;)(j+3)!<z(e )< h'e

we can see that:

_ h2 r+3
(14) - eX)S (reoh®ley +eoh®e +hef + el + oo

o (y*3),h)

where Cy = L; (e + ( 13) ') is a constant independent of 4.
r+3)!

Similarly, using (6), (8), the Lipschitz condition (4) and the notation (9), we

can see that:
2 r+3

] o = h =
(15)  e(x)<SCh’e +(1+Ch? e, +he +—e'+

2! (r+3)'co(z("+3),h)

1
Where € = Lz(e+m) , is a constant independent of 4 and

0 (z(r+3) ,h) is the modulus of continuity of the function z("*3)
We are going to estimate | y'(x) — Si(x)|. For this purpose we use equa-

tions (5), (7), the Lipschitz condition (3), the notation (9) and the inequalities (11),
(12) and (13) and we get:

r+2

A

(16) e’(x)S CZhek +C2h-éx +e'k +he;(’ +

where C, = Ll(e + (—:-—2-;), is a constant independent of 4.
r !
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Similarly, we estimate |z'(x) — 5A (x)l. Thus using (6), (8), the Lipschitz
condition (4), the notation (9), it can be easily shown that:
r+2

(r+2)!

(17 g'(x) < Cshey, + C3he,, + ] + hejl + Y CAREN !

1
where C3 = L, (‘2 T (’—47)') , 1s a constant independent of /.

We now estimate ‘ y'(x)-38 ,’(’(x)] and lz”(x) ~ E,'(’(x)‘. Thus, using equa-

tions (5-8), the Lipschitz conditions (3-4) and the notation (9), we get:

r+1
r .
and
r+1
(19) 2"(x) < Cshey + Cshe,, + & + R AN
r+ 1!

1
where C4 = Ll(e + o) !) and Cg = Lz(e +

dent of A.
To complete the convergence proof, we use the matrix inequality which is
given in the following definition:

are constants indepen-
(r+1!

DEFINITION 1, Let 4 = [ai/.], B= [bl.j] be two matrices of the same order, then
we say that A < B iff
(1) both a; and bi/. are nonnegative,
(i1) a;<b, foralli j.
According to this definition, and if we use the matrix notation:
E(x) = [e(x) &(x) e'(x) e'(x) e"(x) &"(x)
and
E - (e E' el EI el/ EH)T
k k k k k k k

then, we can write the estimations (14-19) in the following form:

(20) E(x) < (I + hA)E, + Ko (h)B
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1
i r +3)!
C(, CO 1 0 51; -‘ ( 1 )
Tl (r + 3)!
€y 2Gy 4O It 0 .
|
whers | Ca 1EG 0" 00 T 0| p- (r+12). ’
CapoCay 01107 5 050 1 T2
Cass Cary OO 0050 !
r+ 1!
Cs Cs 0 0 0 0] 1
| (r + 1! ]

I is the identity matrix of order 6 and

o(h) = max{o (YD, h), (7P, B},
Then, we give the following definition of the matrix norm.

DEFINITION 2. Let T = [t,.j] be an m x n matrix, then we define

n
“T" = mglelt,-jl.
i 3
According to this definition, we get:
@1) |E(x)] = max fe(x), 2(x), €'(x), &(x), €"(x), 2" ()}

Since (20) is valid for all x € X% Xx41]» &= 0(1)n—1, then the following
inequalities hold true:

|G < 1+ RlaDEe] + 7t @ (R) ]
(1+ kAN B = 1+ ] |Ee-il + 1o (B (1 + 2 4)

(1 WAD I < (1 ] ol + 0 (1) B + Al

(1 WA i (14 1A ol + o) B + LA

Adding L .H.S. and R.H.S. of these inequalities and noting that "E(J“ =0,

we get:
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|E@)| < Cshralh)

4 :
Where Cs = ” H ( = 1) , is a constant independent of /.
Then applying (21), we get:

e(x) s Celo (k) = (W),
2) e'(x) < Cli"o (k) = O(h"**),

e"(x) < Cela(h) = O(h”“)

and
2" (x) s Celo(h) = O(H**)

(9 (x)—s,(cq) (.l)‘ where g = 3(1)r + 2.
Using (3), (5), (7), (9), (11), (12), and (22), we get:

Now, we estimate

r-1 J+3-gq
@iy ey o G43) )|l
Y (%) =537 (x) = | i ;LIS
; J/-_-Zq-3 b - (j+3 Q)
r3—
(23) (e, ) - et
Lk (r+3—gq)

< C7hr+3—q0) (h) = O(ha+r.+3—q)

where C, is a constant independent of 4.
For the case ¢ = r + 3, we use (5), (7), (12) and (22) we get:

A - ] = p e - A7) <
< Cgo(h) = O(ha)

where Cg = 142 L, Cy, is a constant independent of /.
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In a similar manner, using (4), (6), (8), (9) and (22), it can be shown that:
29(x) - 57(5)| < G () = O[h7)
and

29(x) = 57 () | < Cpp0 () = O(R*)

where g = 3(1)r+2 and C,, C|, are constants independent of A.
Thus, we have proved the following theorem:

THEOREM. Let S,(x) and Sa(x) be the approximate solutions to problem
(1)-(2) given by equations (5-6), and let f,, f, € C"([0,1] x R?).

Then for all x € [x,, x,,,], k= 0(1)n—1, we have:
y(i)(x) - s,((i)(x) <CHo(h) ,i=0(1)2

z(i)(x) & §£i}(x) <CHo(h) ,i=0(1)2

P (x) = sO(x) < ko (h)

and
D) - 50 ASES))
2(x) -5 (x) < KK o(h)

where j = 3(1)r+3, ¢, k and k* are constants independent of h.

NUMERICAL. EXAMPLE
Consider the following system of differential equations:
Y= y—z+2x+e)00)=1y(0)=0,»"(0) = 1,
M =y—z+2x+e",2(0)=12(0)=02"(0) = 1.

The method is tested using this example in the interval [0, 1] with step

size h=0.1 where = 0.
The analytical solution is:
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The tabulated results, appearing in the following table, are evaluated at the
point x = 0.25.

Table

analytical value numerical value absolute error
y 1.03403 1.03392 1.05417E-04
z 1.028800783 1.028698843 1.0194007E-04
y' 0.2840254167 0.28258275 0.0014426667
z' 0.2211992169 0.2199325875 0.001266629424
y" 1.284025417 1.27159 0.012435417
z?¥ 0.7788007831 0.7685835 0.0102172831

|
" 1.284025417 1.22140 0.06262541668
zi! —0.7788007831 -0.81873 0.0399292169
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