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OPTIMALITY CONDITIONS FOR MULTIOBJECTIVE
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1. INTRODUCTION

In this paper for a class of nonlinear multiobjective programming problems
with symmetrically differentiable pseudo-monotonic objective functions we present
optimality conditions of Weber type [24].

We establish also a sufficient optimality condition and a weak duality theo-
rem for a max-min problem involving symmetric pseudo-convex objective func-
tions and symmetric quasi-convex constraints. For this aim, we transpose some of
the results of Weir and Mond [25] to this symmetric pseudo-convex max-min
problem.

2. SYMMETRIC (GENERALIZED) CONVEX FUNCTIONS

In this section we will briefly summarize some basic definitions and properties
of symmetrically differentiable functions. Beyond this, some results conceming the
so-called symmetric pseudo and quasi-concave (convex) functions are considered.
These clastes of functions are generally nonlinear nonconcave and nondifferentiable.
For further details we refer to Minch [12]. Various properties of the usual pseudo
and quasi-concave (or pseudo and quasi-convex ) differentiable functions have
been presented by Mangasarian [10], Martos [11], among others. Interesting results
was obtained in the pseudo-monotonic case, from which we refer a Dantzig-Wolfe
decomposition method for quasi-monotonic programming [15], linearization
procedures for pseudo-monotonic programming [1], [2], [13], [16], optimality and
duality properties [9], [19], [20], [22]. Some applications of these classes of functions
in the max-min programming are given in [17], [18].

Other extensions of the quasi-convex and pseudo-convex functions are given
by R. Pini and S. Schaible [25], and S. Komlosi 7], by using the generalized
monotonicity. Also, G. Giorgi, A. Guerraggio 5], G. Giorgi and E. Molho [7] and
G. Giorgi and S. Mititelu [6], present several observations on generalized invex
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functions and their relationships with other classes of generalized convex func-
tions including the quasi-convex and pseudo-convex functions.

In [23], we considered symmetric invex functions and we extended some of
the Giorgi and Molho [7] results for this more general class of generalized convex

functions. . ' _
First we recall that for a real function f of one real variable the symmetric

derivative of fat x is defined as:

F4(x) = lim (f(x + h) = [(x = h)) /zh ,

h—0

provided this limit exists (see, e.g. [12]).
This idea was extended by Minch [12] to functions of several variables.
DEFINITION 2.1 (Minch [12]) Let x be an element in an open domain A4 in R’

and let f: A — R. If there exists a linear operator f(x) from R" to R, called the
symmetric derivative of fat x, such that for sufficiently small 4 in R”

S5+ B) = [ = h) = 2 () + (s R

where u(x,k) is in R and u(x, h) — 0 as ll h n — 0, then [ is said to be symmetri-
cally differentiable at x. If fhas a symmetric derivative at each point x in 4, then f
is symmetrically differentiable on 4.

The notions of symmetric gradient and symmetric derivative are analo-
gous to those of ordinary gradient and directional derivative. For convenience
we shall denote the symmetric gradient of a symmetrically differentiable func-
tion fat x by f(x).

Minch [12] has shown that fis symmetrically differentiable at x, in A, then
the symmetric gradient is of the form:

L) = (DS (x; €),...Df (x;.¢7),

where e, ..., " is the natural basis for R" and D'f(x;h) denote the symmietric deriva-
tive of fat x (in A) in the direction / (in R"), that is:

@1 D f(xs ) = Tim L th) = f(x -~ th)

{—0 2t

Let f:A — R and g :4 — R be symmetrically differentiable functions at
x € A. From Definition 2.1, it follows easily that:
{) f+ g is symmetrically differentiable at x and

(2.2) ‘ (f +g)(x) = /(x) + £°(x);

ii) if fand g are continuous at x and g(x) is not equal with zero, then flg is
symmetrically differentiable atx and
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2.3) (f/e)'(x) =

The following definition generalizes the pseudo-convexity concept.

DEFINITION 2.2 (Minch [12]) Let B be a subset of 4 and x' apoint in
A. The function fis said to be symmetrically pseudo-convex or s-pseudo-
convex at x' (with respect to B) if fis symmetrically differentiable atx' and
for all x in B, f5(x") (x-x) = 0.implies f{x) = fx').

The function fis s-pseudo-convex on A4 ifit is s-pseudo-convex at each point
of A. The function fis s-pseudo-concave if -fis s-pseudo-convex.

Analogous to the ordinary notion of differentiable quasi-convexity can be
considered the notion of symmetrically quasi-convex function.

DEFINITION 2.3 (Minch [12]) Let B be a subset of 4 and x' a point in 4. The
function fis said to be symmetrically quasi-convex or s-quasi-convex at x', (with
respect to B) if fis symmetrically differentiable at x' and for all x in B, S < fix)
implies that f(x') (x-x") < 0.

The function fis s-quasi-convex on 4 if it is s-quasi-convex at each point of
A. Also the function fis s-quasi-concave if -f'is s-quasi-convex.

Examples: 1. The function f: R — R defined by
fix)y=x, forx<1,
fix) =1, forx e [1,2],
fx)y=x-1,forx>2,
is a s-quasi-convex function but it is not s-pseudo-convex.
2. The function f| : R — R defined by
fi(x) = x, forx <1,
£,(x)=0.5(x+ 1), forx € [1,3],
f,(x) =x~ 1, forx >3,
is both s-pseudo-convex and s-quasi-convex but it is not pseudo-convex.
3. The function f; : R € R defined by
S,(x) =x, forx <1,
L) =0, forx=1,
S,x)=0.5(+1), forx e (1,3],
f(x)=x-1, forx>3,

is s-pseudo-convex but it is not s-quasi-convex.
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Next, it will be assumed that s-pseudo-convexity ( or s-quasi-convexity) ata
point is with respect to the definition domain of the furiction unless otherwise

stated. - ‘ -
DEFINITION 2.4 (Minch [12]) Let B be a subset of 4 and let x' be a pointin 4.

The function fis said to be 's-pseudo-monotonic (s-quasi-monotonic) at x' (with '

respect to B) if is symmetrically differentiable at x' and both s-pseudoconvex and
s-pseudo-concave (s-quasi-convex and s-quasi-concave). :
Since, if fhas an ordinary derivative at x, then fhas a symmetric derivative at

x and they are equal, the following property holds.

PROPOSITION 2.1 (i) Iffis pseudo-convex (pseudo-concave) then f is s-pseudo-
convex (s-pseudo-concave).

(ii) Iffis differentiable quasi-convex (quasi-concave) then f is s-quasi-convex
(s-quasi-concave). ' 1 : ]

(iii) If f is pseudo-monotonic (differentiable quasi-monotonic) then fis
s-pseudo-ntonotonic (s-quasi-monotonic).
It is easy to see that the converse assertions of those stated in Proposition

2.1 are not true. |
Next we give some useful properties of the symmetrically quasi and pseudo-
convex functions. '

PROPOSI’i‘ION 2.2 (Tigan [22]) Let f be a symmetrically differentiable and
continuous function. If f is a s-quasi-convex function on a convex subset B of 4,
then f is quasi-convex on B.

PROPOSITION 2.3 If f'is s-pseudo-convex and continuous on a convex subset
B of A, then f'is quasi-convex on B.

Proof. Let x', x" be two points in B such that fix) £ fix"). Suppose there
exists x* in the interval (x', x") such that fix*) > fix"). Then, since fis continuous,
there exists '

K=+ (1-1)x",0 <2’ <1,
such that
S (xo) = max{ if (x)lx € [x',x”]}.

Therefore, by s-pseudo-convexity off; because f (x' ) <f (xo) it follows that

(x’ —xo)fs(x°)<0,
so, we have

24) (1= 2')x' = x")f5(x0) < 0.
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Also, the inequality f(x") < f(xo) implies that

(2.5) (x”—xo)fs(xo)z—t’(x’—x”)fs(xo)<0,

But (2.4) contradicts (2.5). Therefore fis quasi-convex on B. B

CONJECTURE 2.3.1 Iffis s-pseudo-convex and continuous on a convex subset
B of A, then f'is s-quasi-convex on B.

3. MULTIOBJECTIVE SYMMETRIC PSEUDO-MONOTONIC
PROGRAMMING

Letf (kel= {1,2,...,p} ) be arbitrary objective functions defined on the
open subset D of R" and let X be a nonempty subset of D. Then we consider the
following multiobjective programming problem:

VP. Find

(3.1 Vmax(f1 (X)seeer fp (x )) :

subject to x € X.

Iff, (k€ I) are s-pseudo-monotonic objective functions then VP is said to be
a symmetric pseudo-monotonic multiobjective program. In (9.1), “Vmax” means
that efficient points are regarded as optimal solutions to VP.

DEFINITION 3.1 4 point x* € X is said to be effcient solution for VP if and
only if there does not exist another point x' € X such that :

S > f(x*), for all ke I and
Sfula') > f(x*) for at least one kel

The set of all efficient solutions to VP is denoted by £(X).

DEFINITION 3.2 A point x* € X is said to be weakly efficient solution for ¥P
if and only if there does not exist another point x' € X such that :

[x) > fi(x*), forall k € 1.

Clearly, every efficient point for a multiobjective program VP is weakly
efficient but not conversely

As it is done e.g. by Bitran and Magnanti [3] (see, also [24]) we will relate
the problem VP under the assumption of symmetric differentiability to a linear
approximation at a point x” € X of that problem, namely

P(x°). Find :

v max( fls(xo )x, ity lf(xo)),

subject to x € X.
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The following Theorem 3.1 gives a fully symmetric relation between V2 and
P(°). A similar result has shown to be true by Weber [24], who, however, restricted
to the differentiuble pscudo-monotonic case, and which generalized a result obtained
by Tigan [21] tor the lincar fractional multiobjective programming.

TIEOREM 3.1 Let f, (k € 1) be s-pseudo-monor-nic and cantinous functions.
A point x* € Xis efficient for the synuneiric pseudo-monotoric program VP if and
only if x* is effcient for P(x*).

Proof. First, let x* € X be efficient for VP. Then, there is no x' € X such that:

S &) = f,(x*), for all k € Tand
Solx) > f,(x*) for at least one k' € 1.

Let us suppose there is x' € X, such that
(3.2) Ji(x) = fi(x"), forall k e Tand

(3.3) folx') > f;fr(x*) for at least one &' & 1.

But since f, (k € I is s-pseudo-convex and hence it is s-juasi-convex, it
results from (3.2) and (3.3) that

Sx) = f(x*), forall k € T and

Sox') > f.(x*) for at least one k' € 1.

But this contradicts the fact that x* is an efficient solution for P(x*).
Conversely, let x' € Xbe efficient for P(x*). Then there is no x' in X such that

(3.4) Si(x') = f,f(x*), forall k € Tand

(3.5) fo(x) > f/f;(x*) for at least one &' e .

By s-pseudo-concavity of f; (k € 1), from (3.4) aiii (3.5), we conclude that
there 1s no x' in X such that

S & = f,(x®), for all k e [ and
S > f.(x*) for at least one &' € /,
i.e. x* is efficient for VP. &

THEOREM 3.2 Let f, (k € I) be s-pseudo-monotonic and continuous func-
tions. A point x* € X is weakly efficient for the symmetric pseudo-monotonic
multiobjective program VP if and only if x* is weally efficient for P(x*).

Proof. The proof of this theorem is similar to that of Theorem 3.1 . E
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4. OPTIMALITY CONDITIONS FOR SYMMETRIC PSEUDO-CONVEX
MINIMAX PROBLEMS

In this section, we consider the following minimax problem:
MP. Find o ' '

Min Max{fl ()C), .. ',f;' (x)}
X
subject to

gx) <0,

where f,: R” — R, (i=1,2,...,r) and g : R" = R" are symmetric differentiable func-
tions (see, e.g. [11]).

The principal purpose of this section is to establish a sufficient optimality
condition for problem MP involving symmetric pseudo-convex objective func-
tions and symmetric quasi-convex constraints. We also define a dual problem
to MP and establish a weak duality theorem.To this effect, we transpose some
of the results of Weir and Mond [25] to the symmetric pseudo-convex maximin
problem MP.

If the general minimax problem MP has a finite optimal value, then it may
be expressed as following equivalent problem: '

EP, Find
min g
subject to
Sx) <qge
g() <0,
where

S&) = (i), L), g(x) = (g,(x), ..., g, (X)),
e=(1,1,.,1) e R and g € R. . o
The main result of this section is:

THEOREM 4.1 Let f,(i=1,2,...,r) be s-pseudo-convex and g s-quasi-convex. If
there existx" € R", g* € R, v* € R, u* € R, such that :

4.1) v E(xT) +urgs(x) =0,
(4.2) v(1(x*)-q"¢)=0,
4.3) u*g(x*) =0,

(4.4) v¥>0, vie=1, u* >0,
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where f= (f, . f) ande= (1,1, ., 1) € R, then x* is ai optimal solution for

problem MP. Iy
In this theorem f* denotes the symmetric gradient of the function /.

This theorem generalizes a similar result obtained by Weirand Mond [25] in
the case of pseudo-convex ob] cotive functions and quasi-convex constraints.
Proof. Suppose that (x*, g*) is not optimal solution for EP. Then there exists
4 feasible solution (x, g) for EP with ¢ < g*. Thus
f(x) £q<g* i=1,2,..,71

and hence
vk fi(x) < vk og*, 1= | TR s
with at least one strict inequality, since by (4.4), v* is not the null vector. Hence,
by (4.2),
* 5 * -k = .
vE [{x) v RN q) PR 125,900, 1
with at least one strict inequality.
Since f;i8 assumed s-pseudo-convex, then, for each i=1,2,...,rand v = 0, v.f
is s-pseudo-convex and

(x=x*) (whef (1)), & 0, i=1,2,..,7r

with at least one strict inequality.
Hence

(¥ (¥ f1(6%)) < 0.
Then it follows from (4.1 ) that

(4.5) (x - x*)l(u*’g“‘(x*)) > 0.
From (4.3), since x is feasible for EP, it results
u* g(x)—u*, gx*) 0, i=1,2,..,m
But symmetric quasi-convexity of g implies
(x=x") (v, g} (x)) <0, =], 270
and hence
(=) (@ g () < 0,

which contradicts (4.5). .

Thus (x*, g*) is optimal for EP and x* is optimal for MP. E

In relation to MP, which is equivalent to EP, we consider the following dual
program:

DMP. Find

max z
subject to
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(4.6) vil fi(p)-2)20,7i=1,2, .., r
4.7) vifi(y)+utgi(y)=0

4.8) u'g(y)z 0

(4.10) v20,vie=1, u=20, zeR

THEOREM 4.2 (Weak Duality) Let (g,x) be a feasible solution for EP and let
O, V u, z) be a feasible solution for DMP. If f is s-pseudo-convex and, for all
feasible (g, x, y, v, u, z) the function u'g is s-quasi-convex then q 2 z.

Proof: Suppose q <z. Then
VALY I AR o B AR o
and, tl1er¢fore
v.(f(®)-2)<0,. =L 2,0, "

with at least one strict inequality, since by (4.10), vis not the null veétor
Bt (A Al ihaanty

v®<v o), =L2,.,r
with at least one strict inequality. '

Since each f; is s-pseudo-convex, it follows

(=) (v,.f3(») £0, i=lw2 anei 1

with at least one strict inequality.
* Therefore

(=)' (V' £(37) < 0
and from (4.7) '
(4.11) (=) (u' g'(y)) > 0.
From feasibility of x for EP and from (4.8) and (4.9)
u' glx) - u'gly) <0
and since u/'g is s-quasi-convex
(=y) (' g'(») <0
which contradicts (4.11). &
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5. CONCLUSIONS

For o class of multiobjective programming problems with symmetrically
differentiable pseudo-monotonic objective functions we present optimality condi-
tions of Weber type.

We generalize also some results of Weir and Mond [25), cstablishing a suf-
ficient optimality condition and a weak duality theorem for a max-min problem
involving symmetric pseudo-convex objective functions and symmetric quasi-con-
vex constraints.

Finally, we note that some of Weber's results [24] concerning the lineariza-
tion techniques for finding efficient solutions of pseudo-monotonic multiobjective
programming with linear constraints can be extended to the symmetrically pseudo-

monotonic case.
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