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l.INTRODUCTION

'lhe numerical modeling of casting must takc into account the pliysical
phenomeua occurring from the beginning of mold filling to the final 

"asti¡g. he
mold filling with melt is rnodeled as a viscous flow with free boundary. TtLn tlie
cooling phase f'ollows, over which a distinct period is the solidifieation u""on 1r-nied by the latent heat release, The slrinkage occurs during the cooìing, leading to
different defects of the easting.

The most difficult problem is the existence of two moving boundaries, The
first one is the free b.oundary of the riquid rnetal during the äold filling, The
second moving boundary is the solidification front. So fu. no general nuinerical
rnethods to solve satisfactorily the free bounclaries evolution have boen elaborafed
[]' [4]. For casting r'odeling, specialized nurnerical models exist [g], [9],In this paper we present a three-climensional nurncrical lnodel baseã on the
SoLA-VoF technique [3]' We have brought some improvements to the evolutio'
of the rnelt free boundary and to the shrinkage modeìing. we have applied this
numerical rnodel to the steel ingot casting and the resulìs obtained aliów a new
i'terpretation of the casting tecrrnology. ln o* approach the superficial phe'o-
lllena are neglected.

2. ¡'ORI\ÍULATTON OF ]'HE ÌIÍATHENÍATICAL PROBLEI\Í

The description of the physical phenomena irnplied into the casting process
can be found in [10], III]. In this sectiou vre present the mathematicallxoblem
which lnust be solved numerically.

There are three s¡race donains in which different physical phenonena occur,
The bounded domai'of the ntord Ø,, c R3 is constani in tiÅe. l,he bounded
donrain filled with liquid metal is dönoted by Ø,(t) c R3 and that filled with



solidified metal by Ø,(t) c R3. These two domains depend on time. At the initial

tirne there is no melt in the mold cavity so Ø,(0) : Ø and implicitly Ø,(0): Ø'

The rest of the space contains air under normal conditions of pressure and tem-

perature. Si¡ce ihe density and specific heat of the air is much smaller than the

ãensity and specific heat of the metal and the nrold material, we rreglect the lne-

chanical and ìhermal phenomena occurring in the mold environment. Thus the

rnodeling is confined only to the three bounded domains defined above'

Tlie phe¡ornena occurring at the separating surfaces betrveen these clolnains

lrave a particular importance, If we denote by ÔØ,,, ôØ, and õØ,lhe domains

boundaries, then the separating surfaces are given by

(2.1) ß,,(t) - ôØtìôØ,; 4,,,(t) = ô41ô4; 4,,Q) = ô91,,0ôØ,

Obviously these surfaces depend on time. The boundaries of the dotnains rvith the

environurent at'e

4(t) = ôE \ @E,,U aE); ß,(t) = õE \ (ôEU ô4,,);

(2.2)

4,Q) = ôE,,\(ôEUaø,)

The mechanical state at a point of radius vector x : (x1, :c2, x3) at tlie tilne I is

given by the velocity fiekl v (x, t) = (v, v2, v3) and the pressure field p (x, l). The

velocity does not vanish and the pressure is different from the atrnospheric pres-

sureZ0onlyintotheliquidlnetal. Tlienforx eØ,,wehavethecontinuilyequation

(2.3) divv = 0

and the Navier-Stokes equation

(2.4)
I

+ v. grad v = g - --grad p + v|v
pt

where g is the gravitational acceleration, p, is the melt density and v is the rnelt

dy¡alrical viscosity. The thennal state of the three dornains is describetl by tlre

ternperahtre fìeld I (x, l) satisffing thc Fourier equation

tr^f I(z.s) Prl+ + (r''grad r¡l= knT + q'lôt 'l
where p is the mass densiff, c is the specific heat and fr the thennal colductivity of
the material in the dornain where (2.5) holds. The tenn 4 represents the heat sollrces

per unite of mass and time such as tlie heat released by chemical reactions.

Equations (2.3) - (2.5) have to be completed by the constitutive relations,

We use the sirnplest assumption that the lnaterial constants do not depend on tem-

perature. Their values for each dornain are denotecl by tlie indexes: rn for mold, /
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for the liquid metal, ancl s for solidified metal. So we neglect botþ the convection
clue to the non-hotnogeneous heating of the melt and the change of the metal che¡ri-
cal conrposition on a side and the other of the soridification surface gJ,r,,

The initial and boundary coriditions should be addetl to the'syster¡ of
equations (2,3) - (2,5). We have initial conditions only for the temperature fieLl

(2.6) T(x,O) = 7,,, for x e Ø,,

where f,,_is the initial temperature of the rnold, The corrdition at tlie bou¡dary
betrveen the liquid rnetal and the mold wall is the usual one

(2,1) v(x,l)=g for x€Qu.

Tlre solidification of the metal on the surface ß,ris accott'tpanied by the increase of
the lnass density. So, there is a mass flux frolìr the liquid state to the solid one
througlr tlre surface ß,,inplying the condition

(2.8) v(x,r) = V(x,/) for x efr¡, .

Tlre velocity V can be detennined in tenns of tlie displacement of ß,rbut we shall
not use this expression in the follorving. Condition (2,8) expresses ihe shriirkage
lrrocess. The freeboundary ß,hastwo parts. oneis theingate ofthemelt gc ß,,
for which u,e have

3
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U(/) if t<t*
(2,e)

(2.10)

V(.x, t) =
0 if r>l*

õv
^.Õt

where U(/) is a given function of tirne and represents the pouring velocity and l* is
tlre fillirig time of the mold. For x e 91,\ 9, the condition represents the conti-
nuity of tlie interaction force and has the fonn

Prt¡ - ptl õu¡

ô*t
ôut
ô*i

+ t|¡ = pgn¡,
k=1

wlrere n : (nr, n, n3) is the exterior nonnal.

For the temperafure field, the conditions on e, e,,, and ßr,,, represent
the equalify of the heat fluxes

(2n) k,# - o,* = n,

rvhere indexes lefer to the media separated by the surface with the non¡al vector n.
The tenn q' is uonvattishing only for x e fl,r,where it represents the heat releasecl
per tiure unit and per surface unit by the metal solidification. It can be expressed i¡
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tenns of the displacement of ß,,but we shall llot use this approach. In addition to

(2.1I), tlrc coltìnuity of temperature lnust also be imposed. Fot xegl,,UfrrU(qï\9) ,

the boun<Iaty condition expresses the lieat flux towards the envirotunent

(2.12) k{ = _-c:(T - Ts)
ôtt

where s is the global coefficient of the heat transfer and Io is the air temperature.

Condition (2.12) also holds îor I if t > l*. Duri¡g the casti¡g filling

(2.13) T'(x,t) = 7o for x e I and t' < Í*

where I,, is thc ¡lotrring tettlperature.
Tlíe separating surface úJ,,between the liquid rnetal aud the solidified one

has a very intricate fomr. The phases are intetpenetrated by lengthened fonna-

tions with dimensiolrs extended o\¡er some rnagnitude orders. The calculation of
the shape of tliis surface in lnacroscopic volutnes, like those of castiugs, goes

beyond the capacity of the existing computers. In order to elininate the tnicro-
scopic details of 9),rwe use a spatial averaging analogous to that used for turbulent

flows [2]. If tlie microscopic stntcture of ß,,is homogeneous in the averaging

volume, then a new variable representing the volulne fraction occupied by the

solidified metal is defined as

(2,14) s(x, t) =

T, Tt

T,<T<Tt

T <Tt

where t is the liquidus temperature and d the solidus temperature, By averaging,

equations (2.3) - (2,5) l<eep their fonn but they ¡efer to averaged fields denoted by
7,þ and T .

The averaging, also induces the change of tiic .onstitutive relations. For
s(x, r) e (0, t) , about the point x there is a mixture or liquid and solidified metal

called mushy region. The lnechanical properties of this lnixfure are complex but
we have adopted the usual simple solution. If s > 0,3 , the mixfure is considered

a rigid solicl, For r < 0.3 the melt uray t'lorv through the microscopic structures of
tlie solidifierl metal and an additional drag is included in an averaged viscosity [7]
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averaging only the rnelt velocities, u,ithout taking into account the solidified rnetal,

In the averaged ecluation (2.5), the material constants have averaged values.
For example for mass density we have

Þ=(l-s)p¡+Fp.,..

Tlre sanre expression is used for c andk. By averaging the heat soulce q, in
(2.11), it is changed into an intemal heat source

(2.15) q,,= PrL+
õt

where I is the latent heat of fusion.
The initial condition (2,6) is not rnodified by averaging, but the boundary

conditions are, because now the averaged tlolnains are defined as

(2.r6)
Ø¡(t)= {*.4UØ,ls(x,t) < 0,3}

Ø,(t)= {x eQUØ,,1s(x,t)> 0,3},

Using Øt and Ø, in(2.1) and (2.2) instead of Ø, and Ørthe averagedboundaries

are obtained. The only urunodified boundary is the ingate surface L Excepting
sonre situations discussed below, the averaged conditioris (2.7) - (2.13) have the
same fonn if the averaged fields, domains and boundaries are usecl, Tlie tenn q, in
tlre averaged conclition (2,1I) tanishes, The condition (2.8) takes the fonn (2,7)
and the shrinkage has to be modeled in a global way. The variation rate of the rnelt
volune

(2.1i) v'(t) =- P' 9 L : s(x,l)¿x
P, dtJØ,UØ, " '

is conrpensated by the displacentent of ß,. Therefore we add to condition (2.10) a

velocity nonnal to fr¡, derived frorn (2.17).

3. THE NUil{ERICAL ,{LGORITH[{

4 5

0

T, - T(x,t)
if
if
if

.|
tl Ts

(1- r)'
rvlrere n e 15,30]. It is assumed that the solidified metal does not participate to the
florv ancl the clensity in the averaged equation Q.\ is equal to p¡ not to the mixture
densify. This interpretation also implies that the mean velocity V is defined by

We use the finite difference technique applied on a staggered mesh rectan-
gular cells C,r*. These cells are the averaging volumes defined in the previous

section, Since in the following we shall refer only to the mean fields, we renoullce

to the bar above them.

According to VOF technique [3], an additional fieldf,.,ris introduced to de-

scribe the anrount of metal in the cell C¡x, Iîfut,: l, then the cell is conrpletely

v
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filled and iff¡¡*:0, tlie cell is ernpfy. lf 0 <.[ük< l, theu the rlretal occupies a domain
acéut conilleteli' fìllcd cell The domairr

t filled cells ancl its thickness is constant.
he cell volutne, lhe fieltl t,,t . 10,.f¡¡x]
occupied by sr;lidilictl nretãl. We also

introduce a field the rnaterial in C,,r is solid or fluid. lf o,,r: l,
tlren tlre cell C,,r ld or s* > 0.3 fur. Otherwise o ,k-- 0. Now rve

can define the di f the avelaged domains (2.16) a:nd Ø,,,

Dn, = {x eC¡¡lo¡* = I and fr¡* = 0}

(3.1) D¡={xeC¡¡lo6=0 and 4* =l}U{x eC'¡ùo¡r=0 and 0.f,ft.1}
D,, = {x eC¡¡lory = 1 and f¡r =l}U{x eCi¡¡lory = 1 aud 0. f,¡r .1\

Using these domains in (2.1) and (2.2) we obtain the corresponding bounclaries.
We note that the boundaries B r, B n, B,nr, and 8,,, are fonned only by faces of the
celTs C,¡, whereas B,and Brare fonned by thc internal faces of C',,0.

The velocity components are defined at the ceuter of the con'es¡loncling faces
of the cells ancl the temperature and pressure at the center of the cells, To tiescribe
the pressure and velocity fields ill all the mesh we have to use the averaged bound-
ary coniiitions (2.7) - (2. 10). The velocify components on the faces in B ,, and 8,,,,

vanish accordiug to (2.7) and the average of (2.8), The velocity components on
tlre faces nonrral to.B,, or B,,,rand incluiled into Dn orD, are equal to the cornpo-
rrerrts on the acljacent cell in D, rnultiplied by numerical coefficient y ll2). The
cells haviug a face included in the ingate surface have a special treatruent, Not
only the velocity conllonents corresponding to faces in g,bttt also those corres-
ponding to the opposite faces are given by (2,9). In additiou, the pressure of tliese
cells is all the time equal to the atrnospheric pressurep0 ancl their temperature is I
for I < /*, accordingto (2.13). Condition (2.10) has to be applied to obtain thê
velocity components on the faces of the rells with -f,,¡ e (0,1) which are not corn-
mou with a completely filled cell. But tlie estimaticrn of the nomral vector n is
difficult in the general case arrd condition (2.10) has tt-i be fomrulated separately
for differerit types of flou's,

For temporal integration \rye use the explicit finite difference approxilltation
of Euler type. In the following u,e describe how tlie fields at time ste¡r r are
obtairied if the fields at the previous step n-l areknown. To simplify the formulae rve
corrsider the bidimensional case, i.e. v : (u,0, w) and the independent variablcs are
denoted by -rr: and z. We also assume that tlie cells are squares of side Ai,

The Navier-Stokes equation (2.4) has been integrated using the "rqtstream"
approxirnation [6], The velocify field obtained cloes not satis$r the contimrity equa-
tion (2.3). According to SOLA technique [3] the fields v(,) andp(, l) are iteratively
modified for the cells withfo:l such that the contirruity equation (2.3) should be
satisfied belou, an lirnit elror s0. We denote by

tlre diverge'ce of the cell c,r. If there is at least a cell for which 
lot",(i 

rl ) e6 , then
for each cell which is not adjacent to a rigid obstacle the velocity components and
the pressure are changed by the arnounts

õ4iì* = -aufP = a*$)*, - - - g¡a,(,r) = -lo¿. otug,,
(33) ". '" 4

õpÍi,') =- I P¡ o¡z¿1ur,lr rK 4 At-' ""ik

If Cu is adjacent to a rigid obstacle on which the velocity vanishes, then the varia-
tiolt of the mponent is assigned to the opposite face of
the cell. T all the cells withfi:l haveiùe,1ir,",grn""
srnaller tha ions is greater than'ä given maxirrlr,r, iulr".
In this way we obtain the solution of the Poisson equatiorifor th" p.er.ur" f,reiJ.

Summing up (3.2) on the cells with f,t:1, we obt¿i¡

(3.4) ot Ðdivli 
) = ^{2. E'l þ!ïl o - uli) * ,{,.f., - u,Íi,))

f=t \r B,)

where the two suurs in the right hand side refer to the velocify compo¡ents 
'omralto tlie cell faces fomring the ingate surface g andthe free bolnclary 8,. rrr" irr.,r*

corresPonditYlo 
!,u an! B,*are zero because of the condition at the .óli¿ t orn¿u.i.r.

Wernultiply ß.Ðby the tiíre step Al. Th
the lnold during a tirne step. The sum for
filled cells (0 <-f < 1), i.e, ìt gives the
these two fluxes should be equal.
approximation eo. Therefore the left ha
loss of mass. To eliminate this error, the I
B,by changing the velocify on the cells

. Using the velocify field v(,,) we compute the rnelt flux in the cells with
lyt) < I and then the nerv values of ¡dù . < 0 or if,, , ,-
Tlris means that the free bo rndary B, is dis nd the nLlA ¡y;lrnust be modifietl. First the fluid in excess orn the cells 

"u.ith

f >l to the adjacent cells rvith/< L Then the rnissing fluid in the cells witfr¡< o is
extracted frorn the completely filled adjacent cells. Finally the fluid in 

"eí1, 
wiU,

./< I wlúch have not adjacent completely filled cells is redistribute<i. Tliis airpfa"r-
ment technique of the free boundary conseryes the rnass but not tlie monrånfu'r
and the energy, This is the reason wliy it is applicable only to the flols with
strealnlines ahlost uomral to the free boundary, like the filling of the mold .rultv.
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(3 2) div,!i )= jl":lÌ.r -,'i/1').f,("{lt, -,n,1í'))
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The liumerical computation of the ternperature field is based on the equalih,

of the hcat lluxcs on the cell faces [5]. Accorrling to (2.l4) a rictv fìeld s,.f') corre-

sponds to T,l') and the volume of the liquid rnetal is <lirninishcclby (see (2.17)):

¿u = &¿/2l(r#-t, -',1',).pt ,"À,

Thisvoluneiselirninatedfromthecellswith ¡.f') <l and t!! .o.zy,l').Fromeach

cell of this f¡zpe a volnure proportional to the rnass in that cell O(f #ù - ",Í') ) 
+ prrÍ')

is elirninated.

4. A SIN{ULATION OF A\ INGOT CASTING

We applied the numerical model described in the previous sections to steel
ingots castiug. Weused anesh of 7 x'7 x 20 cubical cells with side of 0.112 m.
The ingot rnold has the wall thickness equal to one cell, The dornain D,,, is fomred
by the cells in the mesh boundary without the cells of the superior side of the mesh
and without the lnelt ingate cell Co,o,, in the center of the illferior u,all. The illfe-
dor face of this cell represents the inþate surface L Theupwards directecl pour-
ing velocity was comtant U: 0.098 mls, so that I7 rows of cells were filled in t* : 9
min, The free boundary B, of the melt vvas quasihorizontal. Then condition (2.10)
was verified taking the pressure and the velocify components continuous on B, |2\

A vertical, tpwarcls directed jet is a very unsteady flow, therefore the tìrst
low of cells was filled with melt at rest and the temperature varied only because of
thennal conduction. Thcrr the whole numerical procedure was used ancl a flow
with a constaut pattenr during the process of filling occurred. It is a vortex
cornprising the whole volume of tnelt, fonned by an ascendirig vertical stream in
the middle of tlie irtgot mold above the ingate and by four descending streams at
the corners of the ingot mold.

The results obtained allow an effective optimization of the ingot castiug
technology. Usually the melt in the ingot mold is considered at rest, but our simu-
lation shows that tlie tetnperature distribution is essentially affected by the melt
flow. Using the numerical simulation, the optimum values of the technological
parameters (the pouring velocity and temperature, the initial mold tempera-
ture, the variation of tlie pouring velocity, etc.) can be determined such that
the ingot quality should be improved (e,g.the volume of the shrinkage fault),
The use of the thermoreactive powder can also be improved such that a rnaxi-
ll1lut1 atnourlt from the released heat should remain at the ingot top. A tletailed
description of the simulation results and of their technological impoÍance rvill be
rnade in other articles.
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