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There is a sufficiently large number of works concerning the foundation of
the direct methods of solving singular integral equations S.L.E.) (see, for example,
[1-3] and references in them). But in this works S.L.E. are considered on the standard
contour (unitary circle with the centre in zero or the segment of a straight line or
the real axis; the case of other contours is not enough researched. Note that the
attempt to ground the direct methods for solving S.1.E. using the reduction to the
standard contour leads, for example, to the loss of the smoothness of coefficients
of equations which changes for the worse estimation of the rate of convergence of
the method. Moreover, this way complicates essentially the computing scheme of
the method and in the case of mechanical quadratures method, generally speaking,
makes it impossible.

Below we propose computing schemes for the collocation and mechanical
quadrature methods and give the theoretical foundation in Lebesque spaces L for
S.I.E. given on closed contour satisfying some smooth conditions without reduction
of these equations to the unitary circle. In this case there appears the necessity of .
obtaining a series of new results from the general theory of approximate methods
and approximation theory of complex variable function, given closed smooth
contours, by the norm of Lp.

1. COMPUTER SCHEMES OF COLLOCATION AND MECHANICAL
QUADRATURE METHODS

Let I be a smooth Jordan boundary bounding a simply connected domain
containing the point £ = 0. Let z = flw) be a function which maps conformly

{| w| > 1} on the exterior of I such that y(ew) = oo, y'(e0) = L.

In the complex space L,(I") (1 < p < ) of functions g(z) with the norm
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1/ p
() ] = [}jlg(r)ip]drlj :
:

there / is the length of I", consider the complete S.LE.

(Mx 2)A(1) (Px) (1) + B() (Ox) (1) +

@) +L'J.K(t, Dx(t)dr = f(1), 1 €T,
2mi z

where A(7), B(r) and K(z, 1) (the last relative to both variables) are functions with
elements from C(I'), /(1) is a function from C(['), P = (I+S)/2, Q = (I-P)/2, I is the
identity and S is the singular (with Cauchy kemel) operators, x(¢) is an unknown
function. It is well known [4] that if [ is an arbitrary closed smooth contour, then
P and Q are bounded operators in L_ (I') and hence so is tho operator A.

According to the collocation method, the approximate solution of (2) is
secking for the polynomial

n
3) x,(t) = Zocgc")rk, tel,
k=—n
the coefficients of which are unknown complex numbers ag{” ) = o p (k= —Zi_l);

we find these coefficients from the system of linear algebraic equations (S.L.A.E.):

g -1 n
1
A ak’f + B(1)) Zakzjf e Zaij(tj,t)rkdr L
k=0 k=—n k=—n T

E Vi Dan)

where 7; (j = 0,2n) is a set of pairwise distinct points on I,
If equation (1) is solved by the mechanical quadrature method, then we find
the coefficients o, (k = —E) from S.L.AE.

(4)

n

n —1 n
A1) o] +B(;) D agth + D o Y k(11 A =
k=0

k=~n k=-n  s=0

() 7
=/(#) (j=0.2n),

in which the number A(,f) are determined from the relations

n n
(02 @ Y [ = Y AP e
(6) r=0 LG aaln k=—n

S#E
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THEOREM 1. Let the following conditions be fulfilled:

1) the Riemann function z =y (w) is continuously differentiable in ﬂ w l > 1}
twice and y"(w) satisfies on \ w l = 1 the Holder condition with some exponent
e [0,1) (afterwards we shall say that \y belongs to the class C(2,1));

2) the functions A(t) and B(1) satisfy on T the Holder condition with exponent
o € (0,1];

3) A(r)-B(t) # 0, t €I}

4) ind A(t) - B'(1) =0, 1 eT;

9f(t) and K(t,7) € C(I');

6) dim Ker M = 0;

7) the points t; (j = 0,2n) form a system of Fejer nodes on T

l‘ —

(j-n), j=02n

v n
(7) t; = y(w;), wj = €Xp T

Then for all n, beginning with some n; (n 2 n;) the S.L.AE.(5) has a unique
solution o, (k = —n,n). The approximate solutions (3) converge as . —» « by
the nourm (1) to the exact solution of (2) with the rate

(®) - x| =0@")+0 (w(f : %D + O(m’(k(t, r);’%)),

where o| f, l) and co'(k(t, 1); l) are the continuity moduluses of fand K(t, t)
n n
(relative to the variable 1).

THEOREM 2. Let all the conditions of the theorem 1 be fulfilled. Thenf9r_
n = n, 2 ny all the assertions of theorem 1 are true chainging there S.L.A.E. (5)

1
by S.L.A.E. (6) and adding in (8) the summand O(m 4 (K(t,r);;)).

2. AUXILIARY SENTENCES

The proof of the theorem is essentially based on a series of results of
constructive theory of complex variable functions, which will be obtained below
for the functions, determinated on the curves of the class C(Z; W) (e_stlmatlon of
norm of the integration operator, estimation of derivation of interpolating Lagrange
polynomial from its generating function, a.0.) as well as on some theorems about
the belonging of elements to the lineal of convergency on unbounded projectors.
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2.1. Let U be the operator which maps any function g(#) € C(I') onto its
interpolating Lagrange polynomial:

2n
Up8) () = ), gl;)5), t €T
j=0
on points 7; (J = 0,2n); functions ¢;(#) are determined in (6).

THEOREM 3. Let T € C(2, 1) and {1 j}%” are computed acording to (7). Then
9) HU,,HC_)LP <my(p), 1< p<o.

THEOREM 4. For every function g(t) € C(I') the inequality

(10) | Vg =gl < |1 = U |y, Bn(e: T,
holds, where E,(g,T) is the best uniform approximation of g(1), 1 € T by
polynomial of the form (3). !

The proof of theorems 3 and 4 is done on the basis of a series of statements
from the constructive theory of complex variable functions.

2.2. Here theorems of belonging of elements to the lineal of convergency are
established in the case when the sequence of projectors by which the approximate
method is constructed consists of unbounded (on norm of the basic space) projectors.

Let X be a Banach space with the norm “ i Ht and {P}, n=1,2,... asequence
of, generally speaking, unbounded projectors in X. Suppose that
A X — X is a linear bounded operator and that for 5 > n; the operators
PAP:X, — X,, X, = BX are inversible. Let us denote by #(4, P,) the set of
elements y € X such that, the sequence x, = (P,A4F, )'1 converges by the norm of
X to some elements x € X, the equality Ax = y holds

The set Z(4, B,)(< Im A4) is called the lincal o1 convergence of 4 on the
system of projectors P,.

THEOREM 5. Let the following conditions be fulfilled:
1) operator A: X — X isinversible and s X
2) for n = ny operators B AP,. X, — X, are inversible and
lcpap) | s <oo,
X 4 !

3) Banach space Z is continuosly embedded in X:Z < X and ” : Hl < "1” : ”Z
and 7 is invariant relative to 4;
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4) P:Z - X and |B,_,, < (<) BiX = X areunbounded;
5)|4- RAR|, <ré, limé =0, (g >0).
Then for everyy € Zand everyy, € X,

|4ty - (B4R Py

x = HA_lH{(rl ie )n Y=y Hz + 7‘07‘2"3(9(7,

L}

If for every y € Z exists y; € x, , then:

aoy ool = it -l € £ ) and lim E,() = 0
z /"” Ex” T "_> Lo

then Z — $(A4,P,) and Yy €Z

A, -

THEOREM 6. Let conditions 1)-5) of theorem 5 be fulfilled. If operator B
satisfies the conditions
6) operator A=A + B is inversible,

yil -1
HA 'y —(P,4F,) R,yH < RE,(y) + 156,

<rd,; lims, =0,
N >

7) ” [PMAPn)_an i A_I]B

then for n = n(= ny) operator B AF, is inversible in X and

2) H (P,,ZP,,)-IN Sy <o,

"

b) (4 P,) = £(4. P}

1 i
(12) C) Rzy (PHAPM) IPM.V B A—ly

<

Ay - (B4R,

+ "106:1“ y Hz (
x X

Let 4, (n=1,2,..); B, X — B,X and suppose that for 1 > ny, A, areinversible.
Denote by Z (4, P,) the set of vectors y € X having two properties:

1) the secquence A,TIP,, y converges by the norm of X to some element x (€ X);
2) the equality Ax = y is true.

In the case of 4, = P, AP, the definition of %(4, B,) coincides with the

definition of lineal of convergency %(4, F,).

Solvability and convergence of the approximate method, constructed by a
system of operators which are not projectors, is established by:
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THEOREM 7. Let conditions 1) -5) of theorem 5 be fulfilled and let the operator
A, P, X — P.X satisfy inequality

(12) || (PnAPn - An)zn e

it rllﬂu” Zy Hx’ Z, € PHX‘

where lim m, = 0. Then for n=n, the operators A F,X — FX are

n—>w
inversible and

-1 .
a) ”An H = 12,
x"

b) for everyy € Z and every y, € X, the inequality:

(’o’ T2 1707 1’12“;:)“)’ )’n“ +

HA y=A7 )
(13)

+"07‘]2“y“2 Ny + "5 “n

holds.
If for every y € Z the left hand side in (10') exists and

lim E,(y) =0, thenZ c ¥(4, F,).
n—>x

The proofs of theorems 5, 6 and 7 are not difficult, they are obtained by the
well-known methods of functional analysis.

3. THE FOUNDATION OF COMPUTER SCHEME
The S.L.A.E. (3) is equivalent to the operator equation

(14) ( n H _)UnMxn T U’? /"

considered as an equation in the space X, of polynomial of the form (3) with norm
(1). By conditions 2) — 4) the function B1(£)4(f) admits the canonic factorization

BN (DA(r) = C,(1)C_(1). C¥ € PH,,, C*'(1) eQH , + {const}. Obviously, (14)is
equivalent to the operator equation

(Rpx, SU,[PC_ + 0C + 0C_P + PC]Q + C'B7'T ]y, =
= U,[c; @B 0 f ),

T'is the integral operator with the kernel K(7, 7).
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Let CY(1), (1) be the polynomial functions of the best uniform
approximation of functions C_(1), C;] (2) respectively. Then for sufficiently large
nCM@)#0, 1 el and by stability of index for the functions C{")(#) the indices

are equal to zero. Therefore for such n the operator

R =0, [ PCt) +0cilo,

is inversible in X, and

(RY”

Using now theorems 3, 4 it is easy to find that

[~

Then by Banach theorem for sufficient large n > 1y operator R is inversible in
[X,], and (R(Z)) = 0(1).
\‘l
Using now theorems 5, 6, we get that if conditions 1), 5)-7) are fulfilled, then

= 0(1).

x”

~RP| =0(m®), where R() =U,[PC_+QC;' I,

operator R, and together with it also M, for sufficiently large n > n, is inversible
in X, and || M, "]], = 0 (1).

So the solvability of S.L.A.E. (4) is established.

The estimation of the rate of convergence follows from (11). Theorem 1 is
proved.

Let us prove now theorem 2. S.L.A.E. (5) is equivalent to the following
operator equations
(15) Fyx, =)U,[PC_ + QC;' + QC_P + PC;'Q + A, Ix, = U, f;,

where A is an operator defined by the formula

Ax, = Ci@)B™! (r) J. STK (@, ]x,(t)de, £ e T

non
h() = CII(t)B‘l(t)f(t).
Let us verify the fulfilment of conditions of theorem 7, putting there

X=L[I),1<p<w,z=CT), F,=U,,
A=V + K] + KZ’ An = Fn(= Un(V + KZ + An)Un)-
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Conditions 1)-5) of theorem 5 have been verified when theorem 1 was proved.
So verify condition (12) and relation lim n, = 0. Let 2,(?) € % . Then

H—>c

YO) di”(PnAPn N An )Zn“p = ”[UH(V + K] + KQ)UM [F] UH(V + KZ + AHUH)}ZH P 41

1
— “U;:(Kl - An )Zu”p = Un EEJ‘ K([- T)ZH(T)dT B
T

. 2_1:;. %U,f[tK(t, ‘t)]x"(T)dT il
P
1 1 .
U, El?{f[{(u 1) E Uik, r)]}zn(f)dT

P

Using theorem 3 we get

|
1

v <my ()5 [ H{eK (D) - Us [k (]}, (0
2mi a

o
hence by Holder inequality for integrals we find

]
D <my( P3¢ | & (1) - Uz [k (1,1)] H,, 2.,

From here and from Jakson theorem we obtain

I

g 1 =l
yg,l) <c(l+m(p)E) (Kt ),T) < c(l+ ml(p))’?mt(l((’);—).

From the definition of Yf,l) and the last estimation onc can see that condition
(12) and lim n, = 0 are fulfilled and
n—>c
= o (K1 /) /.

Thus it is proved that all conditions of theorem 7 are fulfilled. Then by this
theorem and inequality (13) the following are true:

1) beginning with numbers n > n; operator F, = U, (V + K| + A,)U,, is

inversible in [X,] and |F;'|=0(1); so equation (15) and S.L.A.E. (5) together
with it are uniquely solvable;
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2) for every function g(¢) € [C(I")] are fulfilled the inequality
|0 + &+ K)e - UL < (@ + e B @) + el n g

9 1 |
Jol. + -0 752 )+ Lot kL)
¢ n n n' n

ol 1
Cq —
77., +o

D CD) c £(F,.U,).
Putting g(7) = f,(1) in (16) and taking into acount that

W+ K+ K)7 N = x(), FJ'Uf = x,

and fi(1) € [C L (L )} by Jakson theorem we obtained the demanded estimation.
Theorem 2 is proved.
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