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I.INTRODUCTION

Approaches to the problem of approximating the eigenvalues of linear
operators by the Newton method have been done in a series ofpapers ([l], [3], [4],

[5]). There is a special interest in using the Newton method because the operatorial

equation to be solved has a special form, as we shall see. We shall stttdy in the

following the convergence of the Chebyshev method attached to this problem and

we shall apply the results obtained for the approximation of an eigenvalue and of a

corresponding eigenvector for a matrix of real or complex numbers. It is known

that the convergence order of Newton method is 2 and the convergence order of
Chebyshev method is 3. Taking into account as well the number of operations

made at each step, we obtain that the Chebyshev method is more efficient than the

Newton method.
Let9bea Banach space overK, whereK= R orK= C, and T: E + E a linear

operator. It is well known that the scalar À is an eigenvalue of ?" if the equation

(l.l) Tx -),x: 0

has at least one solution î + 0 , where 0 is the null element of the space E, The

elements x + 6 that satisff equation ( I .l) are called eigenvectors of the operator 1,

corresponding to the eigenvalue À.
For the simultaneous determination of the eigenvalues and eigenvectors of I

we can proceed in the following way.

We attach to equation (l.l) an equation of the form

(1.2) Gx: I

whe¡e G is a linear functional G : E -+ K.
Consider the real Banach space F: E x K, with the norm given by
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(r.4)

(r.7)
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(1 3) ll,ll =-ax{lÞll,l!} , ueF, u= witlr xeE and )'eK
wlrere ¡,: lf'(u,))-r.

Letu.eF¿urtlõ >0,b> 0be two realruunben. Write S = {' 'Flll'-'Oll = 
¡ }

rr n4 =ì:lllr"(,)ll, u'e,' 
)*llr 

(,)ll 
= llr'(,b)ll +',,a 

",ø,,'l,lt@)1¡ 
< llr('t)ll.

*allf'(ø)ll + nt282 = zo. Consider the nunrbers

m¡nxb2

(2.2)

x
î.

In this space we consider the operator f : F -+ F given by

Tx - ì,x

Gx-l

If we denote by 0, = 
[;) "" 

null elemenr of the space F, then the eigenva-

lues and the corresponding eigenvectors ofthe operator Tare solutions of the equatio¡
(1.5) f@)=}t.

Obviously, / is not a linear operator.
It can be easily seen that the first order Fréchet deriyative of/has the

following fomr [4]:

(1.6) -f,(uòh = (", - t"oht - Àr¡o I
\ Går )'

" = r(t * j*r*or,')
With the above notation, the following theorem holds:

THronBv 2.1 If the operator f í.s three tintes differentiable v,i.l.h f "' (u) = 0,

for all u e S (0, being the 3-li.near null operator) and íf, moreover, tltere exísf

u. e F, ô > 0, b > 0 such that thefollou'ing relations hold
' i. the operaÍor'.f ' (u) has a bounded inversefor all u e S, attd

llrr,i-'ll=,,
ä. the nwnbers p" and v given by (2.2) satisfi the relaÍiotts

po=Jlllr(r)ll .t
and vPo_ < ¡

J[(t- po)

th en the fo IIov, i.tt g Pt'operti es ho I d :

i.(u,),.0 given by (?,1) Ir convergent:

ä.¡f u-lirnu,,, thett ueS and ¡(ø)=et;
n-)û

jll. 
ll,r,,*, - ",lls

v = |,r,Zt 
r(t+1

4

hr

?u1

thwhere and h , For the second order derivative of/we obtain

expresthe

.f" (us)ltk =
-7,2\ - X1h2

0

l4

?t2

The Fréchet derivatives of order higher than2 of/are riull.
Considering the above fomts of the Fréchet derivatives off, weshall study i¡

the following the convergence of the Chebyshev method for the operaton havilg the
third order F¡échet derivative the null operator.

2. THE CONVBRGENCE OF CHEBYSHEV ]\{ETHOD

The iterative Chebyshev niethod for solving equation (1.5) corrsists in the
successive constructiorr of the elelnents of the sequerr"" @)rr,-given by

(2'l) un+t =u,, -f,f(un)-)r,f,,çu,,)(r,,f(u,))', lt= 0,1,...,,uo *F,

Proof, Denote by g : S + F the following mapping

s(,) = -r(u)¡(u) - Lrr(")t" çu¡lrlu)¡(u))'z ,

s,here f(u) : lf ' @))-l

n = 0rl,

. r- ,, vP3"
¡". lp - u,,llt6trÐ, /, = o,r,

(2.3)
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It can be easily seen that for all u e ^s the folrowing identity holds

.f(") * f'(u)s(u) + 
)f,'(u)sr(u) =

= :r" ø(lr'øl)-' r(u),|r,(,)l-'/' (ù{lr,(òl-' r(,)}').

. ! r', al{Lr, (u)l-' r,, (ù{lr, (,)l-' r (,)}' 
}

and from relation ilk*t - uo: S(u¡)

(2.8) ll"o*, - "rll. ,llt@)ll.

The inequalities b) and (2.7) lead us to

(2,e)
I

J' (Jtll/(,')ll)'',, = t,k. I

We have that øo*, e S:
k+1

llro*, - r'll< Illrr - ur-'ll=
i=l

llr(,,)ll .

whence we obtain

(2,4)

or

k+1

I "llr(,,-,)ll =
l= I J'

lløl. r (u)s(u). )r (")r,(ùll= 
|,a0,(, * 

!,n,,ul) r(u)' , Now we shall prove that the sequence (u,),ro is Cauchy. Indeed, for all
tn' n e N we have 

,--r ,n-1

llu,*, - 
",,11 = Ellu,*,*, - ,,*,11. uI llf(r,., ¡ll =(2.10) i=o í=o

nt-l n-lv \l^3n*t_ v 
^3,T^3,.'-3". 

vPó<: ) oi, =:oi, ) t:,,= Jl ,.*'o - JfYo /¿Yo =.F(t-p¿')'

whence, taking into account that po < 1, it follows tl':.a;t(ur)r20 converges. Let

i = lim u,,. Then, for nr -> æ in (2.10) it follows jv. The consequence iìì follorvs

from (2.8) and (2.9). tr

3. THE APPROXIIÍATION OF THE EIGEN\/¡ILUES AND EIGEN\/ECTORS
OF THE il{ATRICES

(2 s) 
llrø 

. r'(u)s(u) * i¡" @)r,(òll= d[(,)ll', ror ar u e s

similarly, by (2.3) and taking into acount the'otation we made, we get

(2,6) 
ll"(,)ll = 

,ilr(,)ll, ror an u e s.

^.. .uring the hypotheses of the theorem, inequalify (2.5) and the fact trrat
-f "' (u):0r, we obtain the following inequality:

ll¡@)ll=llrø,1 - .f @ù - -f,(uo)s@") - |f,,(uòs,(*,)ll .
il

.llrt^l + r,(us)g(uo) * ir' {nlr,{ùll = 
piir(,,,)|,

Since z, - uo: g@),by (2,5) we have

ll", 
_,oll= 

"llr(r)ll = "Jlllr("' vpo

Jrr(r - po)
ô

p

In the following we shall apply the previously studied method to the
approximation of eigenvalues and eigenvectors of matrices with elements real or
complex numbers,

Let p e N and the matrix l=("r),,r=;, rvhere a, eK ,i,i =\,p.
Using the above notation, we sliall corrsider E : Kp and F : Kp x K. Any

solution of equation

(3 r) r(i) = [ï _i) = (:) , io e {r, ,p} being r-rxed,

wherex = (x,, ..., x o) e Ã? and 0 : (0,,.., 0) e KP, will lead us to an eigenvalue of
A andto a correspoirding eigenvector. For the sake of sinrplicity write À .Þt, so

that equation (3, l) is represented by the system

whence it follows that z, e S.

Suppose now that the following properties hold:
a) u, e S, ¡ =[¡.
¡r ilr(,,)ll = 

pii/(,,-,)ll'. r= '*By the fact that ur e S, using (2.5) it follows

(2 7) ll¡@r.)ll= pllr@òll' ,
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(3.5) r'(x)h =

0

(3.7) î, = p,,(r,)u,1 
=

Cãtinaç, Ion pãvãloiuEnil
6 7 Eigenvalues of Linear Operators 49(3.2) f(rr,..,,xp,xp+t)=0, i=l,p*l

where

(3,3) .f,(*r,...,xp+t)= aitxt+...*(o,, - xr*1)x¡+...*aipxp, i =\p
and
(3.4) fr*r(r) = ",; 

_ l.
Derrote byP the mapping p : Kt*t -+ KÈt defined by relations (3.3) and (3.a),
Let Í,, = (xl' ,' ' ', x')+t) e I< r+t, Trren trre first order Fréchet derivative of the

operator P at Ì,, has the following fonri

ott - x'lr+t a12

a2t or, - x')+t

From tliis ¡elation \\'r can easily deduce the equalities

vu =-2u,)*fl!,, í=ú;
v')*1=0'

Writirig w, = (wl',w!,...,*i,*r) = f(¡,)4, and supposing that x-,, is an
approximation of the solution of system (3.2), then the next approxi'ratio' !,*,given by method (2.1) is obtained by

(3.9) Ìn+t =i,, - ù,, - !r,,, ri = o,l,.,.

consider Kp with the norm of an erement.r: (r¡, ..., -rr) given by the equality(3'10) 
il"il = ,ig{i",|} ,

and consequently

(3,11) T
j=1

Itcanbeeasilyseenthat 
ffP"(-r-,,)lf =2, for a1l x,, eKp+I. Let ïo e Kp+r be

a'i'itial approxi'ration of the solution of system (3.2). consider a rear number

. wrire rue = jjr(;1)ll+,.llr'1r¡)l+zr2 
.

where ¿ =.rpllr(")ll , r¡"; being rne

Taki'g i'ro accounr rhe resulrs 
"#Ï:í;1)s."tio,,2 rhe following conse-quence holds:

CoRoLLaRy 3.1 If xs eKp+t and r e R r.> 0, are chose, suclt r,lzat the
ntatrix aflached to the operator p,(x) is nonsíngularþr all.r eF, and rheþllov,ingittequalities hoÌd:

n,, .JFllr(;¡)lJ.r

=Y.P'= 
. <,

Jr, (t - pî)

then thefollou,ing propet.ti.es are lrue

(3.8)

_ ,,)*

olio

Cl¡:

i

Qpio

I

h1

h2

;,

atp

a2p

_x,1,

-xi

, -ri
0

h,.

hp*t

4
h"

p

apl Q^¡

0

-kp+l

,kp*t) e KP+l flren for

0

k p*t

0

-u'1,+t

;
0

0

0

t--np+l
0

ow

-kl
-k2

-uj'

0 A aürnax
<i<where ì = (rr,..,,lrr*r) e Kp+|, If we wnte E = (kt,

the second order Fréchet derivative we get

(3 .6)

-ke
0

Denote by f (;;, ) trre inverse of the matrix attacrred to the opera tor p, (t:,)
and u,, = l(rn) r(¡,) = (ui, ,ur,. ..,u,i,*t) . Let v,, = p,,(x,,)(r(xr)r(x,,))2 

=
= P"(x,,)i,1. We obtain the following representation

P (x,,)E h =

0

0

0

0

0 hp*t

-tt)+r
0

0

I
ui
ui

ui
,')*

-ui

;
0

-t/)t -ui
00
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i, the sequence (xr)n>, generated by (3.9) is convergenl;

ärtf ¡= limx-¡ , t.hen P(x)-0r =(0,,.,,0) eKp+t;
,l-)€

lljr llx-,,*1 - 
"-,,11 

< 
-+, 

, = 0,t,... ,

r/ t'

in, llr - ",ll < -r"rd=r- , t1 = 0,1,,,,
r/ttlt - o' ,

Retnark. If the radius r of the ball 5 is given and there exists [P '(.r,,)]-l and

z,]l[r' t",)J-'ll . r,,n"n

systen, So, we shall adapt the Gauss method in order to perform as few as possible

multiplications and divisions. When comparing the two methorJs we shall neglect

the number of addition and subtraction operations.

The solving of a given linear system Ax: b, A e M^(n, b, x e Kn, (where

we lrave written m: p + 1) using the Gauss method consists in two stages. In the

first stage, the given systen is transformed into an equivalent one but with the

matrix of the coefficients being upper triangular, In the second stage the unknowns

(*,),=r,,n are detennined by backwarrl substitution'

The first stage. There are performed m -l steps, at each one vanishing the

elements on the same column below the main diagonal.

We write the initial system in the form

al ol,, xl bl

"'(', )]-'ll
oln a,t ,n xnt b,t,,

llt" r"rf'll p'('o)]-'
Suppose that al, + 0, al, being called the first pivote. The first line in tlie

system is multiplied by cr = - þ unais added to the second one, which becornes
aìt

1-

for all .x e ,S and in the above Corollary, taking into account the proof of Theo-
retn2.l, we can take

0,oîr, ú.r,,..,ú.n , ü., after performing ¡z + I multiplication or division (MID)

operations. After m -l such transformations, the system becomesl["'t",1]-'ll
L_ il tl
tr--

1 _ rllt",r"ll-'ll ol, olz ol,,

0 o3, o?.,,

.f1 bl

ü

ii,

X2

4. A, COÀ{PARISON \I/ITH THE NEWTON N{ETHOD 0 o'rr. a?,,n xrn

Note that if in (3.9) we neglect the term - |r,, then we get the Newton

method:
Ìn+t = Í, -ún - Ín -f(1,)f$,), n = 0,I,...

In order to cornpare the Newton method and the Chebyshev method, we
shall consider that the linear systems which appear iri both metliods are solved by
the Gauss method.

Wúle the Newton rnethod requires at each step the solving of a system l.r: D,

the Chebyshev method requires the solving of two linear systems Ax -- b, Ay : ç
witlr the same matrix A and the vector c depending on the solution.r of the first

Hence at the first step there were performed (m - l) (m + I)M I D operations

In the same nìalllter, at the k-th step we have the system

"h "1,o o3r.

olr

"3r

ol,r*t

o3.,r*t

olu,

o3,

a'fu

ot*r,,,

o!,,,n

x1 bl

X2 bî

0

0

0

0

olt

oÍq,t

-.kuk,k+l
t-

"k+l,k+l

x¡
Ík+l

bf

bt*,

b!,,0 0 "kt afn**t X,,



52 Emil Ion Pãvãloiu l0 11 Eigenvalues of Linear Operators 53
supposi'g rhe Æ-thpivote 

"f* * 0 and perfonning(nt-k) (m- k+ z) M/D
operations we get At this stage there are perfonned I + Z+...+tn - nt(tn+ 1) M/D opera-

2
tions. In both stages, there are totally perfomredol, ol,

o oïz
"h
o3t,

o'fr

0

ol,t *t
oîft*t

oL,

o3u,

X1

)í2

bl

b] ttt3 ¡ lrl

-+ntL 
__

33 M lD operations

0

0

0

0

o|,t *t

"[Tl,t *,

L
a"'

K
'il|

)t¡

x k+r

bI
bÍil

In the case when we solve the systems Ax: b, Ay : c, where the vector c
deperrds on the solution x, we first apply the Gauss metúod for the system Ax: b
a'd at the first stage we keep below the main diagonal the coefficients by which
the pivotes were rnultiplied.

Then we apply to the vector c the transformations perfonned to the vector /,r
wlren solvingAx: b.

Write c = G/).\ / I=l,nt

At the first step

of1l.,,,

0 0 0
b!;+txrt

At each step Æ, the elenents below the È-th pivote vanishing, they are riotneeded any more in the solving of the system.

"""r'l,tlirïrresponding 
memory in ihe computer is used keeping in it the

-ú-Lt af,,t,

a?,
KIC

c]:= arrcl + c\

"It
u,lriclr, of course, will.be.needed only for solving another system Ay: c,with cdepending on -r:, the solution oî Ax ='b.

At the first stage there are performed

(m - l)(nr+ l)+.,.+1. 3 = 
Znf + hn2 - Stn

?- M lD operations.

The second stage. Given the system

cln:= a,,,rc] + c),

At the Æ-th step

c[¡l:= at,*t,F[ + ct*t

"k*
art cf + c!,

oL olz ol,,
o o3z a3,,

x1 b|

b3

b,;i

At the rl-th step

c!]:= a,r.rr-rcä_l + c,fi-t .

Tlrere wereperform ed m-l+ nt- 2+...+l - 
nún-- l) 

M I D operatio¡s
2

Now the second stage of the Gauss method is applied to

x2

0 0 aß^ xnt

the solution.-r- is computed in the followirrg way

xo, = b# I a'fl^,
"lt "ï,I':,) 

[;]xo = (tt[ - (o[¡,*r*r*r+...+o[,,x,,,)), 
"[o ,

0

In addition to the case of a single linear system, in this case were perfornietl

nt(m - 1\

ï M/D operations, getring
tr = (ói -(o]rx2+...+ol,,,r,n)) / ol,
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E(C) =

I -l

55

tn3 3 25
326

qlt[k]l:: auxi;
end;

for i :: k+ I to m do c[q[i)]:: clqfil)+ A[qli], kl+ clq[k]l
end;

{the solution y is now conputed}
for i :: ¡z down to 1 do

begin
sum::0; .

forj := ¡ * I to m do sum:: sutn + A[plí1, í] * yUl; {now p: q}
ytil :: ("[pÍ¡)] - sunt) I Alp[i], il;

end,
We adopt as the efficiency neasure of an iterative method M the number

E(M) - trrq 
','

where q is the convergence order and s is tlie number of M / D operations needed at
each step.

We obtain

E(N) =
3ln2

m3 + 3nt2 - ttt

for the Newton method and

-+_nl
tn M/D operations,

and taking into account (3.8) we add Qn-l) ntore MID operations, obtai'i'g

M/D operations
nf3"nl
-+-rnL*ã-t

Remark. At the first stage, if for some Æ we have afo x 0, then an element

4,0 * 6, rio e {k+ 1,...,'n} must be found, and the lines io and kin A and b be

swapped.
In order to avoid the error accumulations, a partial or total pivote strategy is

recomnrended even if onr * 0 for Æ = \ tn_ l.

For pafial pivoting, the pivote is chosen such that o!,,0 = ,ù,þfrl
The effective interchange of lines can be bypassed by using a pemrutation

vectorp : (P),=r.,^, which is first initialized so thatp, : i. The eleme¡ts in A and tt
are tlren referred ,o 

^ :, .:: oo!q,,ulrd !,,: brr,¡, and swapping tlie lines Æ and i, is
done by swapping the Æ-th an,i ?i+n elernenirìirp

For the chebyshev methoã, the use of the vecto r p carltbe avoided by the
effective interchanging of the lines, because we r,ust keep track for the pemruta_
tions made, in order to appry them in the same order to the vector c.

Moreover we need two extra vectors t and q, in r stori'g the transpositions
applied to the lines in Ax: b, and which are successively applied to q. Atthe first
stage of the Gauss method, when the ft-th pivote is c¿f t and i, * k, the k_thand i ,_thelements inp are swappe.d, a'!_we assign to: : ioto iiiäi.ut" ìhut u, the Æ-th step we
applied to p the transpositio tt (k, iç).

After computing the sorution of Ax : ó, we iriitial ize the vector c by (3.7),
tlre pen'utation vector qbr Qi:: i, i:= r,t,î,a'd then we successively apply the
transforms operated to ó, taking into accout the eventual transpositio's.

The algorithm is as follows:
for/c:ltom-ldo

begi
ift[k]<>k

then {at the Æ_th step the trarrsposition}
begin {(k, tlkl) has been applied to p}

auxí :: q[k];
qtkJ:= q[tLk]);

for the Chebyshev method.
It can be easily seen that we have E(Q > E(N for n > 2, i.e. the Chebyshev

method is lnore efficient than the Newton method.

5. NUMERTCAL EXAI\{PLE

Consider the real matrix

A_
I

I

I

I

I

I

I

I

I

1

I

I

I

1

which has the followiug eigenvalues and eigenvectors

Lt,z3 = 2, rl = (1, 1,0,0), xz = (1,0, l, o), x3

L4 = -2, l;¿ = (1,- 1,- l,- l)

= (1,0,0, l) arrd
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Taking the initial value r0 - (1, -1.5, -Z; -1.5, l), and applying the two
methods we obtain the following results:

Nervûon method ON THE APPROXIMATION BY FAVARD-SZASZ
TYPE OPERATORS

-1.0000000000

-1.6000000000

-20500000000

-2.4006097561

-2.0000000929

-2.0000000000

-t.5000000000

-0.90000000000

-1.0125000000

-t.0001524390

-10000000232

-1.0000000000

x!

-2.0000000000

-080000000000

-r.0250000000

-1.00030487S0

-1.0000000465

-t0000000000

-1.5000000000

-0.9000000000

-1.0t25000000

-t.0001524390

-1.0000000232

-1.0000000000

ALEXÄNDRA CIUPA

(Clu¡-Napoca)

Chebyshev method
hr 1969, A. Jakimovski arid D. Leviatan [4] introduced a Favard-Szasz fype

operator, by ureans of Appell polynomials, One considers S(") = Lo,,"' arr

arralytic function in the rJisk lrl. n, .R > 1, where 8(1) + 0 ' It is m,ll" that the

Appeil polynornials ¿i.(¡) , lc >- 0 can be defined by

(1) g(rr)e,,* =tou|)uo
k=0

To a functi on f :[0, *) -+ -R one associates the Jakirnovski-Leviatarr operator

(z) (p,f)(*):äËrrOør(i)

B. Wood [6] has provetl that the operator {, is positive in [0,oo) if and o¡ly if

!+ , 0, It = 0, l, . . . The case g(z) :l yielcls the classical operators of Favard-Szasz

8(l)

(s,,/Xr) = e-'r'ì'; l"t)o ,¡{"¡
?^ kt '\n )

I¡ [4] A. Jakiuroyski and D. Leviatan have obtained sever¿l approximafion propefiies

of these operators. Let us mentiou some of thesc.

We will de¡ote by,E the class of functious of exponential type, rvhicli have

tlie properfy rhat l/(/)l < eAt ,¡or each t. > 0 antl sonre finite numberl. Their basic

tlreorenr can be state<l as follows: If .f e C[0, æ) î E then 
,t1n 

(,9,/)(-u) = /(t) '

l.he convergence behtg tnifonn ín each conlPacl l0, ol.

xs=1Y

-1.0000000000

-1.8880000000

-1.9998000075

-2.0000000000

-1.5000000000

-0.97200000000

-0.999950001s9

=1,0000000000

.t!

-2.0000000000

-0.94400000000

-0.99990000377

-1.0000000000

x2

-1.5000000000

-0.97200000000

-0.99995000189

-1.0000000000

x)

1.0

1.0

1.0

1.0

tt

0

I

2

3
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