REVUE D’ANALYSE NUMERIQUE ET DE THEORIE DE L’APPROXIMATION
Tome 25, N°* 1-2, 1996, pp. 43-56

ON THE CHEBYSHEV METHOD FOR APPROXIMATING
'THE EIGENVALUES OF LINEAR OPERATORS

EMIL CATINAS and ION PAVALOIU
(Cluj-Napoca)

1. INTRODUCTION

Approaches to the problem of approximating the eigenvalues of linear
operators by the Newton method have been done in a series of papers ([1], [3], [4],
[5]). There is a special interest in using the Newton method because the operatorial
equation to be solved has a special form, as we shall see. We shall study in the
following the convergence of the Chebyshev method attached to this problem and
we shall apply the results obtained for the approximation of an eigenvalue and of a
corresponding eigenvector for a matrix of real or complex numbers. It is known
that the convergence order of Newton method is 2 and the convergence order of
Chebyshev method is 3. Taking into account as well the number of operations
made at each step, we obtain that the Chebyshev method is more efficient than the
Newton method.

Let E be a Banach space over K, where K=RorK=C, and T': E — E a linear
operator. Itis well known that the scalar A is an eigenvalue of T if the equation

) Tx—Ax=0

has at least one solution % = @, where 6 is the null element of the space E. The
elements x # © that satisfy equation (1.1) are called eigenvectors of the operator T,

corresponding to the eigenvalue A .
For the simultaneous determination of the eigenvalues and eigenvectors of T

we can proceed in the following way.
We attach to equation (1.1) an equation of the form
(1.2) Gx=1

where G is a linear functional G: E — K.
Consider the real Banach space F = E x K, with the norm given by
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(13) o = maxfs

JW,ueF,u=G)wm xeE and AeKk.

In this space we consider the operator f: F— F given by

-6

6 :
If we denote by 0, = (0) the null element of the space F, then the cigenva-

lues and the corresponding eigenvectors of the operator T are solutions of the equation

(1.5) fw)=6,

Obviously, f is not a linear operator.
It can be easily seen that the first order Fréchet derivative of /has the
following form [4];

(1.6) f'(uo)h i (Thl = Xohy — MXOJ

Gh;

X h
where 4, = (;J and /= [}: J . For the second order derivative of /' we obtain
0 1

the expression

17) O (—7»2/110— MJ ,

112
where & = .
Ay

The Fréchet derivatives of order higher than 2 of fare null.

Considering the above forms of the Fréchet derivatives of f, we shall study in
the following the convergence of the Chebyshev method for the operators having the
third order Fréchet derivative the null operator.

2. THE CONVERGENCE OF CHEBYSHEV METHOD

The iterative Chebyshev method for solving equation (1.5) consists in the
successive construction of the elements of the sequence (u,),5 given by

2
s

2.1) %Hl=un—r;f@%)—%r;ﬂ(%gayf@%» n=01,.., uy eF,

Eigenvalues of Linear Operators 45

3
where T, = [f"(u, )"
Letu, € Fand§>0,b> Obe two real numbers. Write S = {u € F| nu— “0“ <9 }

, then sup“ 7 '(u)”S”f '(uo)H+m26 and sueg”f(u)“suf (uo)”+
ues i

If m, = sup” ] "(u)l
ues
+6H /(o )“ +m,82 = myg . Consider the numbers

1 21,4 1 2)
== 14+ —mymyb
1 Zme( 4 yUL1

2.2) ! i
V= b(l + 571127710[7

With the above notation, the following theorem holds:

THEOREM 2.1 If the operator fis three times differe'ntiable with f™ (‘u) E'.G3
for all u € S (8, being the 3-linear null -operatoi.') and if, moreover, there exist
u, € F, 8> 0, b> 0 such that the followm'g relations hold :

i. the operator ' () has a bounded inverse for all u € S, an

ON
ii. the numbers p and v given by (2.2) satisfy the relations

Po = \/E”f(“o)” <1

and
—— < b

VPo
\/—FI(I ~ Po)
then the following properties hold:
j- (u,),5q given by (2.1) is convergent:
ji-if w=limu,, then ueS and f(u)=0y;
n—w

3"
VPq n="0,1

e ferer = ol < ol

3"
. — VpO =0.1
vollu —u|S———7, 1 19 ey
iv-| | \/;(1 —o7)

Proof. Denote by g : S — F the following mapping:
1 ; 2

(23) A@=—W@ﬂ@—5FWU(MFWM@ﬂ,

where T'(w) = [/ W)]™.
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It can be easily seen that forall u € S the following identity holds

S+ £ (W)g) + > 1 (u)g(w) =

= <“>([f @ 6L @] ) f@)}zj ;

ol refrerof |
whence we obtain

QA 1)+ S (W) + 5 /(W) <

or
' 1

2.5) f(u) + f (u)g(u) + Ef” (u)g2

Similarly, by (2.3) and taking into acount the notation we made, we get

(2.6) ”g(u)” < V| (), for al wes.

o1+t 1

u)| < p”f(u)”3, for all u €S.

Using the hypotheses of the theorem, inequality (2.5) and the fact that
S" (u) = 0, we obtain the following inequality:

6] < 7 6a) = 1) = (o) = 5. ) +

—+

1) + (0 (o) + - ()& ()] < ()

Since u, — u, = g(u,), by (2.5) we have

ol

\{— \/— 1-pg) ,
whence it follows that u | €S
Suppose now th_at the following properties hold:
a)uieS, i=0k,;
b) ()] < (), i = Tk,
By the fact that u, € S, using (2.5) it follows

amn [Cean)] < ]

e = wol| < V] )] =
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and from relation u, ., — u, = g(u,)

(2.8) it =0 < ()],
The inequalities b) and (2.7) lead us to
@9 bl =l 0 =T

We have thatu,,, € §:
VPo

||uk+1 I Mo” < iil“u,- s u,~_1|| < k+lv T “ Z oy VBGL .
L 5 \/_ ~ Po )\/E

Now we shall prove that the sequence (u,),, is Cauchy. Indeed, for all
m, n € N we have

m-1 m-1

|Iun+m — Uy ” = z Hun+i+1 = un+iH = VZ Hf(un+i)|| =
=0 i=0

(2.10)
g Lmz—:lp3"+i = Lp3"mz:_lp3"*"—3" < L?JH
\/E,-=0 & \/E ; i=0 - \/;(l—p?)")’

whence, taking into account that p, < 1, it follows that (u,),, converges. Let

# = lim u, . Then, for m — oo in (2.10) it follows jv. The consequence jjj follows
n—» o

from (2.8) and (2.9). O

3. THE APPROXIMATION OF THE EIGENVALUES AND EIGENVECTORS
OF THE MATRICES

In the following we shall apply the previously studied method to the
approximation of eigenvalues and eigenvectors of matrices with elements real or
complex numbers.

Let p € N and the matrix 4 = (u) —, where ¢; e K ,i,j=1p.
j=tp’

ij

Using the above notation, we shall consider E = K? and F = K? x K. Any
solution of equation

(3.1) f(i) = (A; __);xJ = (2) , iy e{l,.,p} being ﬁxed,

lo
where x = (x, ..., x ) e KPand 6= (0, ..., 0) € K¥, will lead us to an eigenvalue of
Aandtoa corrcspondlng eigenvector. For the sake of simplicity write A = X,y SO
that equation (3.1) is represented by the system
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(3.2) j;.(xl,...,xp,xp+l)=o, i=1p+1

where

(3.3) f,-(xl,...,xpﬂ) = ,-]‘x1+...+(a,-,. - xpﬂ)x todayx,, = G

and

(3.4) fp+1(x) =x —L

Denote by P the mapping P: K7+l _y g1 defined by relations (3.3) and (3.4).

Let x, = (x{’,....,x;jﬂ) € KP*1. Then the first order Fréchet derivative of the

operator P at X, has the following form

)

Q1 = Xpi ) oAy e a, -1 h
— xN e E oo N

@1 D27 X @i, ) 2 hy

W= . . 0 4 I .
(3.5) P(x)h= : b Jo

Ve AR5 L /] -1

ap p2 i, App = Xpny =X5 (| Ay

0 0 Faiples e 0 0 )

where i'= (, ..., hpa1) € KP*1 If we write T - (kl,...,ka) e KP*! then for

the second order Fréchet derivative we get

~kper 0, w0 -k H
e 8 07 = 0 = 0 ~ky ||
(3.6) P'(xX)eh=| : i : :
~kpa1 ~kp || By
0 0 ... 0 0 )l A,

Denote by I'(x,) the inverse of the matrix attached to the operator P (x,)

9 T = TP = (.8, ). Lot 5= (5 )1 (r, ()

=P"(x,)i2. We obtain the following representation

o n

W 0wy 0o @

AN ] S /] n

i i 0 Uyt 0 Uy U

6N -rEm- -
) —on n o

Uper —Uy || Uy
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From this relation w= can casily deduce the equalities

:_2uu n i:G.
P+] ’ ¥ o]
3.8)
{ =0.

p+l

Writing w, = (w{’, wﬁ',...,w}")H) =I'(x,)V, and supposing that X, is an

approximation of the solution of system (3.2), then the next approximation bl
given by method (2.1) is obtained by

j—

(39) fn+1 ='fn _1_4;1 _E‘T)n s =0

Consider K? with the norm of an element x = (C xp) given by the equality

(3.10) el = max{x} /

and consequently

3.11) 4l = maXZ! %|.

I<i<p

It can be easily seen that “P"(f,, )“= 2, for all X, eK#*! Let ¥, e kP pe

an initial approximation of the solution of system (3.2). Consider a real number
r>0andtheset § ={x EKP‘”H’?( ).0”<r} Write m, —”P (%o ”+1“P (%) “+2;
n= 2b4[1+51m0b and v= b(l+mﬁb2) where b —sup”F ” I"(x) being the

inverse of the matrix attached to the operator P'(x).
Taking into account the results obtained in Section 2 the following conse-
quence holds:

COROLLARY 3.1 If Xy €K?Pl andre R r> 0, are chosen such that the

matrix attached to the operator P’ (x) is nonsingular for all x €8, and the Jollowing
inequalities hold:

po <P <1
Vo,

\/ﬁ(l—ao)_

then the following properties are true
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iy the sequence (X, )”> 4 generated by (3.9) is convergent,
ii, if x=limX,, then P(X)=6,=(0,..,0) e K»*1;
n—>w

——3n

vpg

ji]l “fn+1 il fn“ =

g
VPg

Fli-77)
Remark. If the radius r of the ball S is given and there exists [P '(x,)]! and

[P ' (xo )]‘1

iv “55~)‘cn”s , n=015""

2¥ < 1, then

forall x €S and in the above Corollary, taking into account the proof of Theo-

rem 2.1, we can take
-1
> cor]

1 —-21‘"[}" (g )]_1” |

S

4. A COMPARISON WITH THE NEWTON METHOD

A\ 1
Note that if in (3.9) we neglect the term — EW,, , then we get the Newton

method: -
Xye1 = X, — U, = %, -T'(%,)F(x,), n=01,....

In order to compare the Newton method and the Chebyshev method, we
shall consider that the linear systems which appear in both methods are solved by
the Gauss method.

While the Newton method requires at each step the solving of a system Ax = b,
the Chebyshev method requires the solving of two linear systems 4x = b, Ay = ¢
with the same matrix 4 and the vector ¢ depending on the solution x of the first
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system. So, we shall adapt the Gauss method in order to perform as few as possible
multiplications and divisions. When comparing the two methods we shall neglect
the number of addition and subtraction operations.

The solving of a given linear system Ax=b, 4 € M, (K), b, x € K™, (where
we have written m = p + 1) using the Gauss method consists in two stages. In the
first stage, the given system is transformed into an equivalent one but with the
matrix of the coefficients being upper triangular. In the second stage the unknowns
(%)= 1 are determined by backward substitution.

The first stage. There are performed m —1 steps, at each one vanishing the
elements on the same column below the main diagonal.
We write the initial system in the form

1 3.9 4371 1
ap : ay, X1 bl

1 1 1
Gyt Gy )\ K bm

Suppose that al; = 0, al; being called the first pivote. The first line in the
1

system is multiplied by o = — 3%—1 and is added to the second one, which becomes
a4

0, agz ; 0«53 SRty a%,,, : b22 , after performing m + 1 multiplication or division (M/D)
operations. After m —1 such transformations, the system becomes

1 1 1 1
ap Ay o Ay R bi .

2 2 2

0 ap - ag,||%|_|h

2 2 2

0 A2 By KXo bm

Hence at the first step there were performed (m — 1) (m + 1)M/ D operations.
In the same manner, at the k-th step we have the system

1 1 1 1 1 4 1
4y 9 Ay A k41 A,y \( by
% 2 P , 2 ) 2
0  ap - agy a3 k41 1 ay, || *2 b3
k k k =Ntz
0 0 = Ak A 41 Qe || Xk |F| Dk
k k i) k k
A1k i1 k+1 ' A || Xes1 Dg
k k k k
\ 0 0 Dk A+ Ay J\ X bm
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Supposing the &-th pivote a,’c‘,( # 0 and performing (m — k) (m — k + 2YM/D
operations we get

1 1 1 1 1 ) 1)
(an a4y A A k+1 A X b
2 oA 2 2 = 2 x 2
0 ay) 7 a4 k+1 Aom %) p)
k k k L k
Qg g G || Xk |=]| bE
k+1 . k+1 k+1
0 Devlp+1 " Devim || Xr+1 b
k+1 k+1
0 0 0 am,k+l Dim Xm b,l,‘,"'] J

At each step £, the elements below the k-th pivote vanishing, they are not
needed any more in the solving of the systern,

The corresponding memory in the computer is used keeping in it the
coefficients :

& k
11 e+1,k _ Y
k OED k
ek D

which, of course, will be needed only for solving another system Ay = ¢, with ¢
depending on x, the solution of Ax = b.
At the first stage there are performed

3 2,
(m - 1)(m + 1)+...+1 E3l= 2l Sl M /D operations,

6
The second stage. Given the system

1 | e || 1 1
41 4 Gm || M1 by
2 2 2
07 agy ™ Axivigg M x, _ | 5
1% m "
0 0 ag INx,, b

the solution x is computed in the following way:
xm = bi;;z /ar';zlm >

o= (pk _( k k k
¥k = (bk (al(,lc+1xk+l+'"+akmxm)) / D s

. m I _ (.1 1 1
A155 (bl ((112.7C2 +.. '+a1mxm)) / A1

11 Eigenvalues of Linear Operators 53

m(m + 1)
At this stage there are performed 1+ 2+.. +m = e M/D opera-

tions. In both stages, there are totally performed

3
m 2

T+m —%1 M/D operations,

In the case when we solve the systems Ax = b, Ay = ¢, where the vector ¢
depends on the solution x, we first apply the Gauss method for the system Ax = b
and at the first stage we keep below the main diagonal the coefficients by which

the pivotes were multiplied.
Then we apply to the vector c the transformations performed to the vector 5

when solving Ax = b.

Write ¢ = (c,-l). .
i=kLm

At the first step
C%:: aZICII + C%
oty 1 A1
CI%I‘ = 404 + S
At the k-th step

k+1. _ ko Ak
Cri1°= Qi1 4Cr + Cryy

k+1, _ k k
Cn = Ak Cy, it Cn +
At the m-th step
m. _ m=1 m=1
Cpe= am,m—lcm——l + m -

mm — 1
There were performed m — 1+ m - 2+, +1 = % M /| D operations,

Now the second stage of the Gauss method is applied to

1 | 1
Ay o Gy M 5]

i m m
N 0 Qum J\Vm Cin

In addition to the case of a single linear system, in this case were performed

M M/ D operations, getting
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3
m 5 |
—+=m*=Zm M/D operations,,
S 2 6

and taking into account (3.8) we add (m— 1) more M/D operations, obtaining

3
Ll ém2 +Z 1 mmp operations.
3 2 6

Remark. At the first stage, if for some & we have af, ~ 0, then an element

al,k ¢ 20,5 € {k+1,.., m} must be found, and the lines iyand k£ in 4 and b be

swapped.
In order to avoid the error accumulations, a partial or total pivote strategy is

recommended even if a]fk #0 for k=1m-1.

For partial pivoting, the pivote is chosen such that al.’:’ = im%,a/,‘\_l.

The effective interchange of lines can be bypassed by using a permutation
vector p = (p,.)l.=1)m , Which is first initialized so that p;=1i. The elements in 4 and b
are then referred to as a; = a,, and b, = bp(l.), and swapping the lines & and iy 1s
done by swapping the k-th and i;-th elements in p.

For the Chebyshev method, the use of the vector p can’t be avoided by the
cffective interchanging of the lines, because we must keep track for the permuta-
tions made, in order to apply them in the same order to the vector c.

Moreover we need two extra vectors 7 and ¢, in  storing the transpositions
applied to the lines in Ax = b, and which are successively applied to ¢g. At the first
stage of the Gauss method, when the k-th pivote is al!: P and i, # , the k-th and i-th
elements in p are swapped, and we assign 7, : = i, to indicate that at the &-th step we
applied to p the transposition (%, iy)-

After computing the solution of Ax = b, we initialize the vector ¢ by (3.7),

the permutation vector ¢ by g;:=1i, i:=1,m, and then we successively apply the
transforms operated to b, taking into accout the eventual transpositions.
The algorithm is as follows:
forki=1tom—1 do
begin
if k] <> %
then {at the k-th step the transposition}
begin  {(%, 1[k]) has been applied to p}
auxi : = g[k];
qlk] = q[1[k]);
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ql[K]] : = auxi;
end;
fori:=k+1to mdo c[q[i]] := c[q[i]] + A[q[i], k] * c[q[k]]
end; |
{the solution y is now computed}
fori:=mdownto 1 do
begin
sum =0, . _
forj:=i+ 1to mdo sum := sum + A[p[i], /] * y[j]; {now p = q}
yli] := (clp[i]] - sum) / Alp[i], i];
end.
We adopt as the efficiency measure of an iterative method M the number

In
E(M)==4,
S .
where ¢ is the convergence order and s is the number of M/D operations needed at
each step.
We obtain

3In2

B m +3m? —m

for the Newton method and

E(C)

iz 61n 3
3+ 9 +m—6

for the Chebyshev method. :
It can be easily seen that we have E(C) > E(N) for n >'2, i.e. the Chebyshev )

method is more efficient than the Newton method.

5. NUMERICAL EXAMPLE

Consider the real matrix

il i e
1y Nl aliet ineik
ST s O
ik vl o]

which has the following eigenvalues and eigenvectors
A’]23 5 29 X = (1,150a0)5 X =(1’O’130)3 X3 = (170503 ]) and
My =2 xy=(L,-1,-1-1),
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Taking the initial value x, = (1, -1.5, -2, ~1.5, 1), and applying the two
methods we obtain the following results:

Newton method

n | x Xy X, X X=X
0| 10 | -15000000000 —2.0000000000 -15000000000 | =1.0000000000
1110 | -09000000000 | -0.80000000000 | -0.90000000000 | —1.6000000000
2 | 10 | —-10125000000 | -1.0250000000 ~1,0125000000 | -2.0500000000
3 | 10 | -1.0001524390 | -1.0003048780 -1.0001524390 | --2.0006097561
4 | 10 | —1.0000000232 | -1.0000000465 -10000000232 | -2.0000000929
5 | 10 | -1.0000000000 | -1.0000000000 -1,0000000000 | —2.0000000000
Chebyshev method
n | x x, x, =7 xs= A
0| 10 | -15000000000 -2.0000000000 -15000000000 | -1.0000000000
1 (10 [ -0.97200000000 [ —0.94400000000 | -0.97200000000 | —1.8880000000
2 | 10 | -0.99995000189 | 099990000377 | —0.99995000189 | ~1.9998000075
3 | 10 | -10000000000 -1.0000000000 =1,0000000000 | -2.0000000000
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