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1. INTRODUCTION

In 1965 S. Géhler [6] defined 2-normed spaces and studied their basic pro-
perties. Since then the field has considerably grown, the research being directed to
obtain a theory similar to that of normed spaces. A key result in developing such a
theory is a Hahn-Banach type theorem for bilinear functional on 2-normed spaces.
But, as remarked S. Gihler [7, p.345), a general Hahn-Banach theorem doesn’t
hold in this setting. Some extension theorems for bounded bilinear functionals
defined on subspaces of the form Z x [b] to X x [b] (X-a 2-normed space,
Z a subspace of X and [] - the subspace of X spanned by b € X\ {0}) were proved
by A. G. White [18], S. Mabizela [13] and I. Frani¢ [4]. In [2] it was shown that all
these results follow directly from the classical Hahn-Banach theorem for linear
functionals on seminormed spaces.

Inspired by some results of L. Nachbin [14], [15] and of J. Lindenstrauss
[12], I. Beg and M. Igbal [1] proved some extension theorems for bounded or
compact bilinear operators defined also on subspaces of the form Z x [b]. In this
paper we shall show that, again, all these results follow directly from the corres-
ponding results for linear operators on normed spaces. The key tool will be a result
relating the bilinear operators from Z x [b] to a semi-normed space (Y, ¢) and the linear
operators from Z to Y (Proposition 3.2 below). The extension results are applied to
obtain some duality results for best approximation in spaces of bounded bilinear
operators,

2. BOUNDED LINEAR OPERATORS ON SEMINORMED SPACES
Let (X, p) and (Y, q) be two seminormed spaces. It is well known that a linear

operator 4 : X — Y is continuous if and only if it is bounded (or Lipschitz), i.e.
there exists a number L > 0 such that
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2.1) gAx)< L p(x), for all xe X

A number L > 0 verifying (2.1) is called a Lipschitz constant for A. For a
bounded linear operator 4 : X — Y define by

2.2) 4] = sup {a(4x):x e X, p(x)< 1},

the norm of the operator 4. The following results are well known in the case of
normed spaces (see e.g. [3]). Since their proofs can be transposed with slight and
obvious modifications to the case of seminormed spaces we shall omit them.
Denote by L (X, Y') the space of all bounded linear operators from X to Y.

PROPOSITION 2.1 Let (X, p) and (Y, q) be seminormed spaces. Then the follow-

ing assertions hold:

1°If4 € L (X Y) then the number ”A
Lipschitz constant for A, i.e.

l, defined by (2.2) is the smallest

|4] = min{L > 0:L is a Lipschitz constant for A} .

2° The application ” . ” L(X Y ) - [0, ) is a seminorm on L (X Y)which
Is a norm if and only if q is a norm on Y.

3° The seminormed space (L(X S ” : ”) is complete if (and only if when
q # 0) the seminormed space (Y, q) is complete,

3.BOUNDED BILINEAR OPERATORS ON 2-NORMED SPACES

Let X be a real vector space of dimension at least 2. An application
X x X = [0,00) is called a 2-norm on X if

”.,.

BN 1) ”x, y” = 0 ifand only if x, y are linearly dependent,

BN 2) [v, | = |, ],
BN 3) [Ax, 3 = ]A|

Xy,

BN 4) [lx + 3,2 < lv, 2] + |,
forallx, y, z € Xand all A € R (see [6]).

A 2-normed space is a real linear space equipped with a 2-norm ”” If

(]

,”) is a 2-normed space and b € X then the functional Py - X = [0, ),
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defined by py(x) = |x, ], x € X, is a seminorm on X. The locally convex topology
generated by the family P = {p, : b € X} of seminorms is called the natral

» (see [6]).

) be a 2-normed sbace and X,, X, subspaces of X. A hilincar

topology of X induced by the 2-norm

>

Let (X et
operator is an application 7 from X, x X, to a seminormed space (7, g) such that:

BL)T(,y): X, > Yand T (x, ) : X, — Y are linear operators, for all x € X, and all
y e X,

A bilinear operator 7: X x X, — Y'is called bounded if there exists a number
L =0 such that

(3.1) d(T(x,y)) < L

A number L > 0 verifying (3.1) is called a Lipschitz constant for 7. A hili-
near functional is a bilinear operator F': X; x X, — R. As it was shown by A. G,
White [18] in the case of bilinear functionals, and by I. Beg and M. Igbal [1] in
general, the boundedness of a bilinear operator can be characterized by a kind of a
continuity condition, called 2-continuity by S. Gahler [7]. It turns that the 2-conti-
nuity of a bilinear operator at (0, 0) implies its 2-continuity on the whole X| x X,
A typical example of a (nonlinear) functional which is continuous on X x X is the

x, ¥, for all (x,y) e X; x X,.

2-norm |-, ||. As remarked S. Géhler [7] this notion of 2-continuity is different

from the continuity with respect to the natural product topology on X x X,
For a bounded bilinear operator 7': X; x X, — Y define

X, y“ < 1}

(3.2) v(T) = sup {q(T(x,y)):(x,y) e X X0

and denote by L, (X; x X, Y) the linear space of all bounded bilinear operators
from X; x X, to Y. As in the case of linear operators on normed spaces one can
easily prove:

PROPOSITION 3.1 Let (X, |-

and (Y. q) a seminormed space. Then the following assertions hold:

) be a 2-normed space X, 1 X, subspaces of X

1°0f Te L, (X, x X, Y)thenv(T)is the smallest Lipschitz constant for T, i. e,
(3.3) v(I)=min{L 20 : Lis a Lipschitz constant for T}.

2° Theapplicationv : L, (X, * X,, Y) — [0, o) is a seminorm on LX) x X, 1)
which is a norm if and only if q is a norm on Y.

3° The seminormed space (L2 (X, x Xz' Y), v) is complete if the seminormed
space (Y, q) is complete.
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Remark. The completeness of L, (X x X, Y) for the case of a Banach space
(Y, q) was proved by A. G. White Jr. [18].

For an element b € X \ {0} denote by [b] the subspace of X spanned by
b(i.e. [b]=R" b).If Zis asubspace of X let p, denote the seminorm p(2) = |z, B,
z € Z. The bilinear operators from Z x [b] to a seminormed space (¥, g) and the
linear operators between the seminormed spaces (Z, p,)and (Y, g) are related as in
the following proposition. Here ||A” and v (T) denote the norms of a linear operator

A (cf. (2.2)) and respectively of a bilinear operator T (cf. (3.2)).

PROPOSITION 3.2 1°If T : Z x [b] = Y is a bounded bilinear operator then
the operator A : (Z, p,) = (Y, q) defined by Az = T(z,b), z € Z, is a continuous
linear operator and

(3.4) |4v(T).

2° Conversely, if A : (Z, p,) > (Y, q) is a continuous linear operator, then the
operator T: Zx [b] > Y, defined by T (z, ab)= o Az, forze Zanda € R, isa
bounded bilinear operator and

(3.5) WT) = |4

Proof: 1° If T : Z x [b] — Y is a bilinear operator, it is immediate that the
operator 4 : Z — Y defined by 4z = T (z, b), z € Z, is linear. Since

z,b

q(4z) = q(T(z,0)) < W(T) =v(T)- py(2),

for all z € Z, it follows that 4 is continuous and “AH < w(T).
But

g(T(z,00)) = ¢(T(az,b)) = g( A(02)) <||4|- py(0z) =
=[] loz.8]| = 4]

forallz € Zand all & € R implying v(T) < ”AH and “A” = v(T).

2° Suppose now that 4 : (Z, p,) — (¥, q) is a continuous linear operator and
let T: Z x [b] = Y be defined by T'(z, ab) = Az, forz € Zand o € R. Itis obvious
that T is a bilinear operator and from

z,ab

>

¢(T(z,00)) = g - Az) = q(A(z)) < 4]} py(z) = | 4] [z, 6
we get v(T) < ”A"
The equalities 4 (az) = T (z, ab),

=l

z,ab”

oz, b

| = |z, ab[ , and the definitions of the
norms || || and w(T) (relations (2.2) and (3.2) respectively) imply
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||A|| = sup{q(4z):z € Z, py(2) < 1} = sup{g(4z).:z € Z, “z,b" <1}
< sup{g(A(az)):z € Z,a € R, "az, bn <1}
= sup{g(T(z,0b)):z € Z,0. €R, |z, 8] < 1} = w(T),
showing that v(T) = 4] O

4. NORM PRESERVING EXTENSIONS OF BILINEAR OPERATORS

Let (X, H, ) be a 2-normed space and X, X, linear subspaces of X. A norm-
preserving extension of abounded bilinear operator T jrom X/ xX,t02 seiminormfd
space (¥, q)isa bounded bilinear operator T X XX, > Y, (where X, and X,
are linear subspaces of X containing X, respectively X,), such that

i) T(xp, xp) = T3, xy), forall (3, %) € Xy x X, and

ity w(T') = w(T).

For two seminormed spaces (X,p) and (¥,q) a norm-preserving extension of

a bounded linear operator 4, defined on a subspace Z qf X and taking values in. ¥,
is a bounded linear operator 4 defined ona subspace Z of X, Z < Z , and taking

values in Y, such that

i) Az = Az, forallz € Z, and

i |4 = 4l

A normed space (¥, g) is said to have the extension property if for any normed
space (X, p), every continuous linear operator 4, .deﬁxgued on a subspace Z of X and
taking values in Y, has a norm-preserving extension A.: XY, A normed space
(Y, g) is said to have the binary intersection property if every family of 111.utually
intersecting closed convex balls in ¥ has a nonvoid intersection. By a famous re-
sult of L. Nachbin [14] (see also [15]) a nonnffd space (Y, q) has_the extension
property if and only if it has the binary intersection property. The blngry intersec-
tion property, and the extension property can be defined in a similar way for
seminormed spaces, yielding a seminormed version of Nachbin's resu_ltl.

1. Beg and M. Igbal [1] transposed the sufficiency part of Nachbin's theorem
to bilinear operators defined on subspaces of the form Z x [b]. We shall show that
this result is an immediate consequence of Nachbin's result and of Proposition 3.2.

First we prove the following result:

PROPOSITION 4.1 Let (X, ,H) be a 2-normed space (¥, q) a seminormed

space. Let Z and 7 be subspaces of X such that Z < Z and let b € X\ {0}.
Suppose that the operators T : Z % b] > Y, T:Zx[b)—> Y and A : Z — Y
respectively 4:7 — Y, are related as in Proposition 3.2.
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Then T is a norm-preserving extension of T if and only if the corresponding
linear operator A is a norm-preserving extension of A.

Proof. The proofis an immediate consequence of the relations T (z, ab) = adz,
@0) € ZxR, W(T) = |4l and T(Z,ab) = a- 47, (Z,a) € Z x R, () = M
relating the operators T"and 4, respectively T and 40

Let us agree to say that a seminormed space (Y, ¢) has the restricted exten-
sion property for bilinear operators if for any 2-normed space (X, -,-“) every
bounded bilinear operator T': Z x [b] — Y (Z a subspace of Xand b € X\ {0} hasa
norm-preserving extension T: X x [b] — Y. Using these terms, Proposition 4.1
can be restated as follows:

COROLLARY 4.2 A seminormed space (Y, q) has the restricted extension pro-
perty for bilinear operators if it has the extension property for linear operators.

Observing that the proof of sufficiency part of Nachbin's theorem [14, p.31]
remains valid when all spaces are supposed to be seminormed we get:

COROLLARY 4.3 ([1, Th. 2.1]). If a seminormed space (Y, q) has the binary
intersection property, then it has the restricted extension property for bilinear
operators.

Remark. We do not know whether the necessity part of Nachbin's theorem

remains valid for bilinear operators too: Must a seminormed space (7, q) verifying
the restricted extension property for bilinear operators have the binary intersection

property ?7
The extension result for operators defined on condimension one subspaces, proved
by J. Lindenstrauss [12, Lemma 5.2], can be transposed to bilinear operators too.

PROPOSITION 4.4 Let (X, ”, “) be a 2-normed space, Z a codimension one
subspace of X and b € X\ {0}. A bounded bilinear operator T from Z X [b] to a
seminormed space (Y, q) admits a norm-preserving extension T X x [b] > Y if
and only if there exists u € X\ Z such that

4.1) (B, (T(z,6), WT) |u — 2,8]:2 € 2)} = @.

Proof 1fu € X\ Z then X = Z+ Ru and any bilinear extension T X x ] > Y
of T'is completely determined through the formula

(4.2) T(z + ow, Bb) = T(z,Bb) + aPy,,

by its value y, at (u, b). Consequently, T is a norm-preserving extension of 7" if
and only if
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):

(4.3) g(T(z + o, Bb) < V(T) - |z + o, Y

forallz € Zand all o, € R. Supposing o  f # 0 and deleting by o - B|> 0, one
obtains successively:

g(T(z + o, PB)) < V(T) - |z + o, B &
o'z + w.0)) < W(T)- ”of]z 4y, b” =
9(yo = T(2', ) < W(T) - Ju - 2, 8],
forall z'= — a1z e Z. This last relation is equivalent to:

Yo € WB,(T(2,0),v(T) - |u~zb)):z € 2}.

Since, for & = 0 (T (z, b)) = q(T(z,pb)) < v(T) - |}z, 4| and for B = 0
T(z + ow, 0) = 0, the proposition is proved [1.
Remark. 1° From the proofitis clear thatif relation (4.3) holds for an element

u, € X\ Z, then it holds for any other element u € X\ Z.
2° Proposition 4.4 appears in [1, Proposition 3.3] in a slightly different form.

5. COMPACT BILINEAR OPERATORS

The aim of this section is to show how some extension results for compact
operators on normed spaces, proved by J. Lindestrauss [12], can be transposed to
bilinear operators on 2-normed spaces. The basic tool used in doing this will be
again Proposition 3.2.

Roughly speaking, a compact bilinear operator is a bilinear operator map-
ping bounded sets into relatively corapact ones. We shall consider three boundedness
notions in 2-normed spaces and three corresponding compactness notions for bi-
linear operators.

Let (X, [-,-“) be a 2-normed space and b € X\ {0}. A subset ¥ of Xis called
py-bounded if sup p, (V) <oco. The set Vis called bounded ifit is p,-bounded for all
b e X\ {0} (and obviously forall b € X). This is nothing else than the boundedness
of V with respect to the natural locally convex topology of X induced by the
2-norm ”,“ Finally, we call a subset W of XxX 2-norm bounded provided

sup {
quences in X orin X x X are defined in an obvious way.

[x, y”:(x, y) € W} < oo. The corresponding boundedness notions for se-
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Let X, X, be linear subspaces of a 2-normed space (.Y, ]-,- ) and let (Y, g) be
a seminormed space. A bilinear operator T : X, , X X, = Y, is called separately
compact (s-compact for short) if {T (x,.y,)} contains a convergent subsequence for
every bounded sequence {x,} in X| and every bounded sequence {r,} inX,. The
operator T'is called compact if {T’ (x> ¥,»)}, contains a convergent subsequence for

every 2-norm bounded sequence {0, )} in X, x X,
We have:

PROPOSITION 5.1 Every compact operator is bounded.

Proof. Let T: X, x X, — Y be a compact bilinear operator. Supposing T not
bounded then, by (3.2), we can choose a sequence {(x,, y,)} in X| X X, such that
“x,,, y,,” < land g (T(x,, y,))>n, foralln € N. It follows that the sequence {7'(x,, y,)}
has no convergent subsequences I

Consider now the case of a bilinear operator T : Z x [b] » Y, where Z is a
subspace of the 2-normed space (X, -,-”) and b € X\ {0}. We call the operator T
py-compact if {T (z,, o, D)} contains a convergent subsequence for every p,-bounded
sequence {z,,} in Z and every bounded sequence {o,} inR. In this case these three
notions of compactness are related as follows:

PROPOSITION 5.2 Let T: Z x [b] = Y be a bilinear operator:
Then

T compact = Tp, — compact = Ts — compact.

Proof. T compact = T, Py~ compact

If {z,} is a p,-bounded sequence in Z and 1o, } is a bounded sequence of real
numbers, then the equality ”z,,, o ,,b" = [ot,,[ -”z,,,b” implies sup, ”z",a,,b” < o0.The
operator 7'being compact it follows that {T (z,, o, b)} contains a convergent subse-
quence.

To prove the second implication we need a lemma:

LEMMA 5.3 Let b € X\ {0} and {a,} © R The sequence {a,b} is bounded in
X if and only if the sequence {a,} is bounded in R.

Proof: By definition, a 2-normed space has dimension at least 2, so that there
exist a € X with “a, bﬂ > 0 (Axiom BN 1). The boundedness of {“aub’ all} | and the
equality ”anb,a‘ :[a" f-”a,b” imply the boundedness of the sequence o, }.

Conversely, if {,} is a bounded sequence of real numbers then the equality
"a,,b, c” = ]ot,,l . ”b, ¢| implies that the sequence {”a,,b, c“} is bounded for every
¢ € X. Lemma is proved.

Prove now that:

Tp,~ compact = Ts — compact
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Let {z,} = Zand {a b} be bounded sequences. It follows that the sequence
{z,} is p,-bounded and, by Lemma 5.3, the sequence {a,} is bounded too. Since T
is p,-compact, the sequence {T (z,5 &,b)} will contain a convergent subsequence,
proving that Tis a p,-compact bilinear operator .

Concerning the compactness properties of a bilinear operator 7'; Z x [b] > Y
and of the associated operator A4 : Z — Y (in the sense of Proposition 3.2) one can
prove:

PROPOSITION 5.4 A4 bilinear operator T ; Z x [b] = Y is py-compact if and
only if the associated linear operator 4 : (Z, Py) > (Y,9) is compact.

Proof. Suppose that the bilinear operator 7: Z x [b] — Yis Py-compact and
let {z,} be a bounded sequence in the seminormed space (Z, p,). It follows that
{z,} is a p,-bounded sequence in Z and, consequently, {T (z,, b)} will contain a

n

convergent subsequence {7 (an’ b)}. Since {T(Z,,k,b)} = Az, it follows that

{Az,,k} is a convergent subsequence of {Az,,k}, showing that the operator 4 is
compact.

Conversely, let 4 : (Z, p,) — (¥, g) be a compact linear operator. If {z } is a
py-bounded sequencein Zand {o } is a bounded sequence in R, then {Az,} contains a

convergent subsequence {Az,,k}. Taking a convergent subsequence {OF,,,‘J} of

{ank} it follows that T(an, i % b) =, Az"ﬁ; » J € N, is aconvergent subse-
/

quence of {7 (z,, o.,b)}. Therefore the operator 7'is p ,-compact .

The following result was proved by J. Lindestrauss [12, Th. 5.4], in the case.
of linear operators on normed spaces and by I. Beg and M. Igbal [1, Th. 3.5] in the
case of bilinear operators on 2-normed spaces. A normed space (Y, ¢) is said to
have the finite 2-intersection property (F.2.1.P.) if any finite collection of mutually

intersecting closed balls in ¥ has nonvoid intersection.

PROPOSITION 5.5 Let (Y, ) be a Banach space with the (F.2.LP,), (X, i a
2-normed space, Z a codimension one subspace of X, b € X\ {0} and T : Z x
[b] > Y a p,-compact bilinear operator. Then, for every € > 0 there exists an
extension T: X x [b] = Y of T verifying v(f) <(+¢)-v().

Proof. Let A : (Z, p,) — (¥, g) be the linear operator associated to T accord-
ing to Proposition 3.2. By Proposition 5.4, the operator 4 is compact and, by J.
Lindenstrauss [12, Th. 5.4], there exists an extension A: (X, pp) = (Y,q) of A4,
verifying "A” S(l+8): ”A” . Appealing again-to Proposition 3.2 it follows that the

desired extension of 7 is given by f(x, ab) =a - Zx, xeX,aeRO
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Remark. 1° 1. Beg and M. Igbal [1, Th. 3.5] proved Proposition 5.5 for compact
bilinear operators following the ideas of the proof given by J. Lindenstrauss [12]
for conipact lincar operators. By Proposition 5.2, a compact bilinear operator 7: Z x
X [b] > Y is p,-compact, so that the result of 1. Beg and M. Igbal follows from
Proposition 5.5.

2° We have used a seminormed version of Lindenstrauss’ result which can
be proved in the same way as in the case of normed spaces (The space Y could be
also supposed to be only seminormed t00).

6. UNIQUE EXTENSION AND UNIQUE BEST APPROXIMATION

The aim of this section is to prove some duality results relating the exten-
sion properties for bilinear operators and best approximation in spaces of
bilinear operators. In the case of linear functionals on normed spaces the problem was
first studied by R. R. Phelps [16). For other related results see 1. Singer’s book [17].

Recall that, for a 2-normed space (X, ”-,-”), a normed space (¥,¢) and two
subspaces X, X, of X, we denote by L, (W, Y) the normed space of all bounded
bilinear operators from W=X xX,toY.If ji;] > X, and )?2 S X, are other two
subspaces of X then the normed space L, (W. Y) and W are defined similarly. The

norms in L, (W, ¥) and LZ(W, Y) will be denoted by the same symbol v (see (3.2)
and Proposition 3.1). For T L, (W, Y) denote by & (T) the set of all norm pre-

serving extensions of T'to W | i.e.

(6.1) ET) =T e LW, Y):Tly =T and w(F) = v(T)}.
The annihilator of W is LZ(I/IN/, Y) is defined by

(6.2) W = (s e L(, Y).S(W) = {0}}.

As usual, for a nonvoid subset ¥ of a normed space E and x € E, denote by
d(x,V) = inf{"x -~ V”Z v €V} thedistance fromxto ¥, An element vy € Vsatisfying
I - Vol = d(x,7) is called a nearest point'to x in V (or a best approximation
element). The sct of nearest points to x in ¥ is denoted by P, (x) and the set-valued
operator P, : E — 2" is called the mepric projection operator of E onto V. The set
Vis called proximinal if Py, (x) # D and Chebyshevian if P, (x) is a singleton, for
allxe E.
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We say that W has the extension property with respectto W if every bounded
bilinear operator 7': ¥ — Y has a norm preserving extension T e L,W,Y). The
following proposition shows that the extension properties of W and the best
approximation properties of its annihilator are closely related.

PROPOSITION 6.1 If the subspace W has the extension property with respect
to I/IN/, then its annihilator W is a proximinal subspace of L, (W, Y) and the
Sfollowing formulae hold

(6.3) d(S, W) = (Sl )
and
(6.4) By (S) =8 - &S| w),

Jor any operator S € L, W,y ).

Proof If S € L, W, Y) then (S-T) |,= S|, and, by the definition of the
norm v (formula (3.2)), we have

V(SIW)=V((S_T)IW)SV(S'T),

for every T'e W, implying v (Sly) <d(S, WH). If S e L, (W »Y), is a norm-pre-
serving extension of Slyp then Ty = S~ S, € W* and since So =8~ T, we can write

v (Sly) = v (S,) =v (S~ T,) = d(S,wt) ,

showing that formula (6.3) holds and that S - Sy 1s anearest point to S in W- for any
Sg € E(Sly), i.e.

(6.5) S = &Sy ) < By (S).

Suppose now that 7, is a nearest point to S in #* and let So=8~T, It
follows Sg|,,= S|,,,and by (6.3)

v(S|;)=d(S, W+) =v(S-Ty)=w(S,)
showing that S, is a norm-preserving extension of Sy, ie.

S = Ppi(S) € €Sy )

or equivalently

which together with relation (6.5) give (6.4).00
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LetA(X, “,”) be a 2-normed space, Za subspace of Xand b e X\ {0}. Fora
normed space (Y, q) let

Zy ={T < L(X x[BLY):T(Z x [5]) = {0})}

denote the annihilator of Z x [blin L, (X x [b], Y). In this case Proposition 6.1 and
Corollary 4.3 give:

COROLLARY 6.2 Let (7, q) be a normed space with the binary intersection

property. Then Z,;L is a proximinal subspace of L 2 (XX [B], Y) and the Jollowing
Jormulae

(6.7) (S, Zy) = V(Slzusy)
and
(6.8) Pp(S)=5- é“(Sl2x[b])

hold for every S e L,(Xx [b] Y.
Furthermore the annihilator Wt is 4 Chebyshevian subspace of L,(Xx [b], V)

fand only ifevery T e I 2(Z % [b), Y) has a unique norm preserving extension 1o
X% [b].
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