REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

Tome 25, $\mathrm{N}^{05} 1 \mathbf{1 - 2}, 1996$, pp. 63-75

EXTENSION OF BILINEAR OPERATORS AND BEST APPROXIMATION IN 2-NORMED SPACES

S. COBZAŞ and C. MUSTÃTA
(Cluj-Napoca)

1. INTRODUCTION

In 1965 S . Gähler [6] defined 2-normed spaces and studied their basic properties. Since then the field has considerably grown, the research being directed to obtain a theory similar to that of normed spaces. A key result in developing such a theory is a Hahn-Banach type theorem for bilinear functional on 2-normed spaces. But, as remarked S. Gähler [7, p.345], a general Hahn-Banach theorem doesn't hold in this setting. Some extension theorems for bounded bilinear functionals defined on subspaces of the form $Z \times[b]$ to $X \times[b](X-a 2$-normed space, Z a subspace of X and $[b]$ - the subspace of X spanned by $b \in X \backslash\{0\}$) were proved by A. G. White [18], S. Mabizela [13] and I. Franić [4]. In [2] it was shown that all these results follow directly from the classical Hahn-Banach theorem for linear functionals on seminormed spaces.

Inspired by some results of L. Nachbin [14], [15] and of J. Lindenstrauss [12], I. Beg and M. Iqbal [1] proved some extension theorems for bounded or compact bilinear operators defined also on subspaces of the form $Z \times[b]$. In this paper we shall show that, again, all these results follow directly from the corresponding results for linear operators on normed spaces. The key tool will be a result relating the bilinear operators from $Z \times[b]$ to a semi-normed space (Y, q) and the linear operators from Z to Y (Proposition 3.2 below). The extension results are applied to obtain some duality results for best approximation in spaces of bounded bilinear operators.

2. BOUNDED LINEAR OPERATORS ON SEMINORMED SPACES

Let (X, p) and (Y, q) be two seminormed spaces. It is well known that a linear operator $A: X \rightarrow Y$ is continuous if and only if it is bounded (or Lipschitz), i.e. there exists a number $L \geq 0$ such that

$$
q(A x) \leq L \cdot p(x), \text { for all } x \in X
$$

A number $L \geq 0$ verifying (2.1) is called a Lipschitz constant for A. For a bounded linear operator $A: X \rightarrow Y$ define by

$$
\begin{equation*}
\|A\|=\sup \{q(A x): x \in X, \quad p(x) \leq 1\} \tag{2.2}
\end{equation*}
$$

the norm of the operator A. The following results are well known in the case of normed spaces (see e.g. [3]). Since their proofs can be transposed with slight and obvious modifications to the case of seminormed spaces we shall omit them. Denote by $L(X, Y)$ the space of all bounded linear operators from X to Y.

Proposition 2.1 Let (X, p) and (Y, q) be seminormed spaces. Then the following assertions hold:
1° If $A \in L(X, Y)$ then the number $\|A\|$, defined by (2.2) is the smallest Lipschitz constant for A, i.e.

$$
\|A\|=\min \{L \geq 0: L \text { is a Lipschitz constant for } A\}
$$

2° The application $\|\cdot\|: L(X, Y) \rightarrow[0, \infty)$ is a seminorm on $L(X, Y)$ which is a norm if and only if q is a norm on Y.
3° The seminormed space $(L(X, Y),\| \|)$ is complete if (and only if when $q \neq 0)$ the seminormed space (Y, q) is complete.

3. BOUNDED BILINEAR OPERATORS ON 2-NORMED SPACES

Let X be a real vector space of dimension at least 2. An application $\|\cdot, \cdot\|: X \times X \rightarrow[0, \infty)$ is called a 2 -norm on X if

BN 1) $\|x, y\|=0$ if and only if x, y are linearly dependent,
BN 2) $\|x, y\|=\|y, x\|$,
BN 3) $\|\lambda x, y\|=|\lambda|\|x, y\|$,
BN 4) $\|x+y, z\| \leq\|x, z\|+\|y, x\|$,
for all $x, y, z \in X$ and all $\lambda \in \mathbf{R}$ (see [6]).
A 2-normed space is a real linear space equipped with a 2 -norm $\|\cdot \cdot\|$. If $(X,\|\cdot, \cdot\|)$ is a 2-normed space and $b \in X$ then the functional $p_{b}: X \rightarrow[0, \infty)$,
defined by $p_{b}(x)=\|x, b\|, x \in X$, is a seminom on X. The locally convex topology generated by the family $P=\left\{p_{b}: b \in X\right\}$ of seminorms is called the natural topology of X induced by the 2 -norm $\|\cdot \cdot\|$, (see [6]).

Let $(X,\|\cdot, \cdot\|)$ be a 2 nomed space and X_{1}, X_{2} subspaces of X. A bilinear operator is an application T from $X_{1} \times X_{2}$ to a seminormed space (Y, q) such that: (BL) $T(\cdot, y): X_{1} \rightarrow Y$ and $T(x, \cdot): X_{2} \rightarrow Y$ are linear operators, for all $x \in X_{1}$ and all $y \in X_{2}$.

A bilinear operator $T: X_{1} \times X_{2} \rightarrow Y$ is called bounded if there exists a number $L \geq 0$ such that

$$
\begin{equation*}
q(T(x, y)) \leq L\|x, y\|, \text { for all }(x, y) \in X_{1} \times X_{2} \tag{3.1}
\end{equation*}
$$

A number $L \geq 0$ verifying (3.1) is called a Lipschitz constant for T. A bilinear functional is a bilinear operator $F: X_{1} \times X_{2} \rightarrow \mathrm{R}$. As it was shown by A . G. White [18] in the case of bilinear functionals, and by I. Beg and M. Iqbal [1] in general, the boundedness of a bilinear operator can be characterized by a kind of a continuity condition, called 2 -continuity by S. Gähler [7]. It turns that the 2 -continuity of a bilinear operator at $(0,0)$ implies its 2-continuity on the whole $X_{1} \times X_{2}$. A typical example of a (nonlinear) functional which is continuous on $X \times X$ is the 2-norm $\|\cdot, \cdot\|$. As remarked S . Gähler [7] this notion of 2-continuity is different from the continuity with respect to the natural product topology on $X \times X$.

For a bounded bilinear operator $T: X_{1} \times X_{2} \rightarrow Y$ define

$$
\begin{equation*}
v(T)=\sup \left\{q(T(x, y)):(x, y) \in X_{1} \times X_{2},\|x, y\| \leq 1\right\} \tag{3.2}
\end{equation*}
$$

and denote by $L_{2}\left(X_{1} \times X_{2}, Y\right)$ the linear space of all bounded bilinear operators from $X_{1} \times X_{2}$ to Y. As in the case of linear operators on normed spaces one can easily prove:

Proposition 3.1 Let $(X,\|\cdot \cdot\|)$ be a 2 -normed space X_{1}, X_{2} subspaces of X and (Y, q) a seminormed space. Then the following assertions hold:
1° If $T \in L_{2}\left(X_{1} \times X_{2}, Y\right)$ then $v(T)$ is the smallest Lipschitz constant for T, i. e.

$$
\begin{equation*}
v(T)=\min \{L \geq 0: L \text { is a Lipschitz constant for } T\} \tag{3.3}
\end{equation*}
$$

2° The application v: $L_{2}\left(X_{1}, X_{2}, Y\right) \rightarrow[0, \infty)$ is a seminorm on $L_{2}\left(X_{1} \times X_{2}, Y\right)$ which is a norm if and only if q is a norm on Y.
3° The seminormed space $\left(L_{2}\left(X_{1} \times X_{2}, Y\right), v\right)$ is complete if the seminormed space (Y, q) is complete.

Remark. The completeness of $L_{2}(X \times X, Y)$ for the case of a Banach space (Y, q) was proved by A. G. White Jr. [18].

For an element $b \in X \backslash\{0\}$ denote by [b] the subspace of X spanned by b (i.e. $[b]=\mathbf{R} \cdot b$). If Z is a subspace of X let p_{b} denote the seminorm $p_{b}(z)=\|z, b\|$, $z \in Z$. The bilinear operators from $Z \times[b]$ to a seminormed space (Y, q) and the linear operators between the seminormed spaces $\left(Z, p_{b}\right)$ and (Y, q) are related as in the following proposition. Here $\|A\|$ and $v(T)$ denote the norms of a linear operator A (cf. (2.2)) and respectively of a bilinear operator T (cf. (3.2)).

PROPOSITION 3.21° If $T: Z \times[b] \rightarrow Y$ is a bounded bilinear operator then the operator $A:\left(Z, p_{\mathrm{b}}\right) \rightarrow(Y, q)$ defined by $A z=T(z, b), z \in Z$, is a continuous linear operator and

$$
\begin{equation*}
\|A\|=v(T) \tag{3.4}
\end{equation*}
$$

2° Conversely, if $A:\left(Z, p_{b}\right) \rightarrow(Y, q)$ is a continuous linear operator, then the operator $T: Z \times[b] \rightarrow Y$, defined by $T(z, \alpha b)=\alpha \cdot A z$, for $z \in Z$ and $\alpha \in \mathbf{R}$, is a bounded bilinear operator and

$$
\begin{equation*}
v(T)=\|A\| \tag{3.5}
\end{equation*}
$$

Proof: 1° If $T: Z \times[b] \rightarrow Y$ is a bilinear operator, it is immediate that the operator $A: Z \rightarrow Y$ defined by $A z=T(z, b), z \in Z$, is linear. Since

$$
q(A z)=q(T(z, b)) \leq v(T)\|z, b\|=v(T) \cdot p_{b}(z)
$$

for all $z \in Z$, it follows that A is continuous and $\|A\| \leq v(T)$
But

$$
\begin{aligned}
q(T(z, \alpha b))= & q(T(\alpha z, b))=q(A(\alpha z)) \leq\|A\| \cdot p_{b}(\alpha z)= \\
& =\|A\| \cdot\|\alpha z, b\|=\|A\| \cdot\|z, \alpha b\|
\end{aligned}
$$

for all $z \in Z$ and all $\alpha \in \mathrm{R}$ implying $v(T) \leq\|A\|$ and $\|A\|=v(T)$.
2° Suppose now that $A:\left(Z, p_{b}\right) \rightarrow(Y, q)$ is a continuous linear operator and let $T: Z \times[b] \rightarrow Y$ be defined by $T(z, \alpha b)=\alpha \cdot A z$, for $z \in Z$ and $\alpha \in \mathrm{R}$. It is obvious that T is a bilinear operator and from

$$
q(T(z, \alpha b))=q(\alpha \cdot A z)=q(A(\alpha z)) \leq\|A\| \cdot p_{b}(\alpha z)=\|A\| \cdot\|\alpha z, b\|=\|A\| \cdot\|z, \alpha b\|
$$

we get $v(T) \leq\|A\|$.
The equalities $A(\alpha z)=T(z, \alpha b),\|\alpha z, b\|=\|z, \alpha b\|$, and the definitions of the norms $\|A\|$ and $v(T)$ (relations (2.2) and (3.2) respectively) imply

$$
\begin{aligned}
& \frac{\text { Bust Approximation in 2-normed Spaces }}{} \begin{array}{l}
\|A\|=\sup \left\{q(A z): z \in Z, p_{b}(z) \leq 1\right\}=\sup \{q(A z): z \in Z,\|z, b\| \leq 1\} \\
\leq \sup \{q(A(\alpha z)): z \in Z, \alpha \in \mathbf{R},\|\alpha z, b\| \leq 1\} \\
\\
=\sup \{q(T(z, \alpha b)): z \in Z, \alpha \in \mathbf{R},\|z, \alpha b\| \leq 1\}=v(T),
\end{array} \\
& \text { showing that } v(T)=\|A\| \square
\end{aligned}
$$

4. NORM PRESERVING EXTENSIONS OF BILINEAR OPERATORS

Let $(X,\|\|$,$) be a 2-normed space and X_{1}, X_{2}$ linear subspaces of X. A normpreserving extension of a bounded bilinear operator T from $X_{1} \times X_{2}$ to a seminormed space (Y, q) is a bounded bilinear operator $\widetilde{T}: \widetilde{X}_{1} \times \widetilde{X}_{2 \rightarrow} \rightarrow Y$, (where \widetilde{X}_{1} and \widetilde{X}_{2} are linear subspaces of X containing X_{1} respectively X_{2}), such that
i) $\widetilde{T}\left(x_{1}, x_{2}\right)=T\left(x_{1}, x_{2}\right)$, for all $\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}$ and
ii) $v(\widetilde{T})=v(T)$.

For two seminormed spaces (X, p) and (Y, q) a norm-preserving extension of a bounded linear operator A, defined on a subspace Z of X and taking values in Y, is a bounded linear operator \tilde{A} defined on a subspace \widetilde{Z} of $X, Z \subseteq \widetilde{Z}$, and taking values in Y , such that

$$
\begin{aligned}
& \text { i) } \widetilde{A} z=A z \text {, for all } z \in Z \text {, and } \\
& \text { ii) }\|\tilde{A}\|=\|A\| \text {. }
\end{aligned}
$$

A normed space (Y, q) is said to have the extension property if for any normed space (X, p), every continuous linear operator A, defined on a subspace Z of X and taking values in Y, has a norm-preserving extension $\tilde{A}: X \rightarrow Y$. A normed space (Y, q) is said to have the binary intersection property if every family of mutually intersecting closed convex balls in Y has a nonvoid intersection. By a famous result of L. Nachbin [14] (see also [15]) a normed space (Y, q) has the extension property if and only if it has the binary intersection property. The binary intersection property, and the extension property can be defined in a similar way for seminormed spaces, yielding a seminormed version of Nachbin's result.
I. Beg and M. Iqbal [1] transposed the sufficiency part of Nachbin's theorem to bilinear operators defined on subspaces of the form $Z \times[b]$. We shall show that this result is an immediate consequence of Nachbin's result and of Proposition 3.2.

First we prove the following result:
Proposition 4.1 Let $(X,\|\|$,$) be a 2-normed space (Y, q)$ a seminormed space. Let Z and \widetilde{Z} be subspaces of X such that $Z \subseteq \widetilde{Z}$ and let $b \in X \backslash\{0\}$. Suppose that the operators $T: Z \times[b] \rightarrow Y, \widetilde{T}: \widetilde{Z} \times[b] \rightarrow Y$ and $A: Z \rightarrow Y$ respectively $\tilde{A}: \widetilde{Z} \rightarrow Y$, are related as in Proposition 3.2.

Then \tilde{T} is a norm-preserving extension of T if and only if the corresponding linear operator \widetilde{A} is a norm-preserving extension of A.

Proof. The proof is an immediate consequence of the relations $T(z, \alpha b)=\alpha A z$, $(z, \alpha) \in Z \times \mathbf{R}, v(T)=\|A\|$ and $\widetilde{T}(\widetilde{z}, \alpha b)=\alpha \cdot \widetilde{A} \widetilde{z},(\widetilde{z}, \alpha) \in \tilde{Z} \times \mathbf{R}, v(\widetilde{T})=\|\widetilde{A}\|$, relating the operators T and A, respectively \widetilde{T} and $\widetilde{A} \square$

Let us agree to say that a seminormed space (Y, q) has the restricted extension property for bilinear operators if for any 2 -normed space $(X,\|\|$,$) every$ bounded bilinear operator $T: Z \times[b] \rightarrow Y(Z$ a subspace of X and $b \in X \backslash\{0\}$ has a norm-preserving extension $\widetilde{T}: X \times[b] \rightarrow Y$. Using these terms, Proposition 4.1 can be restated as follows:

COROLLARY 4.2 A seminormed space (Y, q) has the restricted extension property for bilinear operators if it has the extension property for linear operators.

Observing that the proof of sufficiency part of Nachbin's theorem [14, p.31] remains valid when all spaces are supposed to be seminormed we get:

Corollary 4.3 ([1, Th. 2.1]). If a seminormed space (Y, q) has the binary intersection property, then it has the restricted extension property for bilinear operators.

Remark. We do not know whether the necessity part of Nachbin's theorem remains valid for bilinear operators too: Must a seminormed space (Y, q) verifying the restricted extension property for bilinear operators have the binary intersection property?

The extension result for operators defined on condimension one subspaces, proved by J. Lindenstrauss [12, Lemma 5.2], can be transposed to bilinear operators too.

Proposition 4.4 Let $(X,\|\|$,$) be a 2-normed space, Z$ a codimension one subspace of X and $b \in X \backslash\{0\}$. A bounded bilinear operator T from $Z \times[b]$ to a seminormed space (Y, q) admits a norm-preserving extension $\widetilde{T}: X \times[b] \rightarrow Y$ if and only if there exists $u \in X \backslash Z$ such that

$$
\begin{equation*}
\bigcap\left\{B_{q}(T(z, b), v(T)\|u-z, b\|: z \in Z)\right\} \neq \varnothing . \tag{4.1}
\end{equation*}
$$

Proof. If $u \in X \backslash Z$ then $X=Z+\mathrm{R} u$ and any bilinear extension $\widetilde{T}: X \times[b] \rightarrow Y$ of T is completely determined through the formula

$$
\begin{equation*}
\widetilde{T}(z+\alpha u, \beta b)=T(z, \beta b)+\alpha \beta y_{0}, \tag{4.2}
\end{equation*}
$$

by its value y_{0} at (u, b). Consequently, \widetilde{T} is a norm-preserving extension of T if and only if

$$
\begin{equation*}
q(\widetilde{T}(z+\alpha u, \beta b) \leq v(T) \cdot\|z+\alpha u, \beta b\|) \tag{4.3}
\end{equation*}
$$

for all $z \in Z$ and all $\alpha, \beta \in \mathbb{R}$. Supposing $\alpha \cdot \beta \neq 0$ and deleting by $|\alpha \cdot \beta|>0$, one obtains successively:

$$
\begin{gathered}
q(\tilde{T}(z+\alpha u, \beta b)) \leq v(T) \cdot\|z+\alpha u, \beta b\| \Leftrightarrow \\
q\left(\tilde{T}\left(\alpha^{-1} z+u, b\right)\right) \leq v(T) \cdot\left\|\alpha^{-1} z+u, b\right\| \Leftrightarrow \\
q\left(y_{0}-T\left(z^{\prime}, b\right)\right) \leq v(T) \cdot\left\|u-z^{\prime}, b\right\|,
\end{gathered}
$$

for all $z^{\prime}=-\alpha^{-1} z \in Z$. This last relation is equivalent to:

$$
y_{0} \in \bigcap\left\{B_{q}(T(z, b), v(T) \cdot\|u-z, b\|): z \in Z\right\}
$$

Since, for $\alpha=0 \quad q(\widetilde{T}(z, \beta b))=q(T(z, \beta b)) \leq v(T) \cdot\|z, \beta b\|$ and for $\beta=0$ $\widetilde{T}(z+\alpha u, 0)=0$, the proposition is proved \square.
4.kemark. 1° From the proof it is clear that if relation (4.3) holds for an element $u_{0} \in X \backslash Z$, then it holds for any other element $u \in X \backslash Z$.
2° Proposition 4.4 appears in [1, Proposition 3.3] in a slightly different form.

5. COMPACT BILINEAR OPERATORS

The aim of this section is to show how some extension results for compact operators on normed spaces, proved by J. Lindestrauss [12], can be transposed to bilinear operators on 2-nommed spaces. The basic tool used in doing this will be again Proposition 3.2 .

Roughly speaking, a compact bilinear operator is a bilinear operator mapping bounded sets into relatively compact ones. We shall consider three boundedness notions in 2-nomed spaces and three corresponding compactness notions for bilinear operators.

Let $(X,\|, \cdot\|)$ be a 2-normed space and $b \in X \backslash\{0\}$. A subset V of X is called p_{b}-bounded if sup $p_{b}(V)<\infty$. The set V is called bounded if it is p_{b}-bounded for all $b \in X \backslash\{0\}$ (and obviously for all $b \in X$). This is nothing else than the boundedness of V with respect to the natural locally convex topology of X induced by the 2-norm $\|;\|$. . Finally, we call a subset W of $X \times X \quad 2$-norm bounded provided $\sup \{\|x, y\|:(x, y) \in W\}<\infty$. The corresponding boundedness notions for sequences in X or in $X \times X$ are defined in an obvious way.

Let X_{1}, X_{2} be linear subspaces of a 2-normed space $(X,\|;\|)$ and let (Y, q) be a seminormed space. A bilinear operator $T: X_{1} \times X_{2} \rightarrow Y$, is called separately compact (s-compact for short) if $\left\{T\left(x_{n}, y_{n}\right)\right\}$ contains a convergent subsequence for every bounded sequence $\left\{x_{n}\right\}$ in X_{1} and every bounded sequence $\left\{y_{n}\right\}$ in X_{2}. The operator T is called compact if $\left\{T\left(x_{n}, y_{n}\right)\right\}$, contains a convergent subsequence for every 2 -norm bounded sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ in $X_{1} \times X_{2}$.

We have:
Proposition 5.1 Every compact operator is bounded.
Proof. Let $T: X_{1} \times X_{2} \rightarrow Y$ be a compact bilinear operator. Supposing T not bounded then, by (3.2), we can choose a sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ in $X_{1} \times X_{2}$ such that $\left\|x_{n}, y_{n}\right\| \leq 1$ and $q\left(T\left(x_{n}, y_{n}\right)\right)>n$, for all $n \in \mathbf{N}$. It follows that the sequence $\left\{T\left(x_{n}, y_{n}\right)\right\}$ has no convergent subsequences \square

Consider now the case of a bilinear operator $T: Z \times[b] \rightarrow Y$, where Z is a subspace of the 2 -normed space $(X,\|\cdot\|)$ and $b \in X \backslash\{0\}$. We call the operator T p_{b}-compact if $\left\{T\left(z_{n}, \alpha_{n} b\right)\right\}$ contains a convergent subsequence for every p_{b}-bounded sequence $\left\{z_{n}\right\}$ in Z and every bounded sequence $\left\{\alpha_{n}\right\}$ in R. In this case these three notions of compactness are related as follows:

Proposition 5.2 Let $T: Z \times[b] \rightarrow Y$ be a bilinear operator:
Then

$$
T \text { compact } \Rightarrow T p_{b}-\text { compact } \Rightarrow T s-\text { compact }
$$

Proof. T compact $\Rightarrow T p_{b}-$ compact
If $\left\{z_{n}\right\}$ is a p_{b}-bounded sequence in Z and $\left\{\alpha_{n}\right\}$ is a bounded sequence of real numbers, then the equality $\left\|z_{n}, \alpha_{n} b\right\|=\left|\alpha_{n}\right| \cdot\left\|z_{n}, b\right\|$ implies $\sup _{n}\left\|z_{n}, \alpha_{n} b\right\|<\infty$. The operator T being compact it follows that $\left\{T\left(z_{n}, \alpha_{n} b\right)\right\}$ contains a convergent subsequence.

To prove the second implication we need a lemma:
LEMMA 5.3 Let $b \in X \backslash\{0\}$ and $\left\{\alpha_{n}\right\} \subset \mathbf{R}$. The sequence $\left\{\alpha_{n} b\right\}$ is bounded in X if and only if the sequence $\left\{\alpha_{n}\right\}$ is bounded in \mathbf{R}.

Proof. By definition, a 2-normed space has dimension at least 2 , so that there exist $a \in X$ with $\|a, b\|>0$ (Axiom BN 1). The boundedness of $\{\|\alpha, b, a\|\}$, and the equality $\left.\left\|\alpha_{n} b, a\right\|=\mid \alpha_{n}\right\} \cdot\|a, b\|$ imply the boundedness of the sequence $\left\{\alpha_{n}\right\}$.

Conversely, if $\left\{\alpha_{n}\right\}$ is a bounded sequence of real numbers then the equality $\left\|\alpha_{n} b, c\right\|=\left|\alpha_{n}\right| \cdot\|b, c\|$ implies that the sequence $\left\{\left\|\alpha_{n} b, c\right\|\right\}$ is bounded for every $c \in X$. Lemma is proved.

Prove now that:

$$
T_{p_{b}}-\text { compact } \Rightarrow T_{s} \text { - compact }
$$

Let $\left\{z_{n}\right\} \subseteq Z$ and $\left\{\alpha_{n} b\right\}$ be bounded sequences. It follows that the sequence $\left\{z_{n}\right\}$ is p_{b}-bounded and, by Lemma 5.3, the sequence $\left\{\alpha_{n}\right\}$ is bounded too. Since T is p_{b}-compact, the sequence $\left\{T\left(z_{n}, \alpha_{n} b\right)\right\}$ will contain a convergent subsequence, proving that T is a p_{b}-compact bilinear operator \square.

Concerning the compactness properties of a bilinear operator $T: Z \times[b] \rightarrow Y$ and of the associated operator $A: Z \rightarrow Y$ (in the sense of Proposition 3.2) one can prove:

Proposition 5.4 A bilinear operator $T: Z \times[b] \rightarrow Y$ is p_{b}-compact if and only if the associated linear operator $A:\left(Z, p_{b}\right) \rightarrow(Y, q)$ is compact.

Proof. Suppose that the bilinear operator $T: Z \times[b] \rightarrow Y$ is p_{b}-compact and let $\left\{z_{n}\right\}$ be a bounded sequence in the seminormed space $\left(Z, p_{b}\right)$. It follows that $\left\{z_{n}\right\}$ is a p_{b}-bounded sequence in Z and, consequently, $\left\{T\left(z_{n}, b\right)\right\}$ will contain a convergent subsequence $\left\{T\left(z_{n_{k}}, b\right)\right\}$. Since $\left\{T\left(z_{n_{k}}, b\right)\right\}=A z_{n_{k}}$ it follows that $\left\{A z_{n_{k}}\right\}$ is a convergent subsequence of $\left\{A z_{n_{k}}\right\}$, showing that the operator A is compact.

Conversely, let $A:\left(Z, p_{b}\right) \rightarrow(Y, q)$ be a compact linear operator. If $\left\{z_{n}\right\}$ is a p_{b}-bounded sequence in Z and $\left\{\alpha_{n}\right\}$ is a bounded sequence in R , then $\left\{A z_{n}\right\}$ contains a convergent subsequence $\left\{A z_{n_{k}}\right\}$. Taking a convergent subsequence $\left\{\alpha_{n_{k}}\right\}$ of $\left\{\alpha_{n_{k}}\right\}$ it follows that $T\left(z_{n_{k} j}, \alpha_{n_{k j}} b\right)=\alpha_{n_{k_{j}}} \cdot A z_{n_{k} j}, j \in \mathrm{~N}$, is a convergent subsequence of $\left\{T\left(z_{n}, \alpha_{n} b\right)\right\}$. Therefore the operator T is p_{b}-compact \square.

The following result was proved by J. Lindestrauss [12, Th. 5.4], in the case. of linear operators on normed spaces and by I. Beg and M. Iqbal [1, Th. 3.5] in the case of bilinear operators on 2-normed spaces. A normed space (Y, q) is said to have the finite 2-intersection property (F.2.I.P.) if any finite collection of mutually intersecting closed balls in Y has nonvoid intersection.

Proposition 5.5 Let (Y, q) be a Banach space with the (F.2.I.P.), $(X,\|;\|)$ a 2-normed space, Z a codimension one subspace of $X, b \in X \backslash\{0\}$ and $T: Z \times$ $[b] \rightarrow Y$ a p_{b}-compact bilinear operator. Then, for every $\varepsilon>0$ there exists an extension $\widetilde{T}: X \times[b] \rightarrow Y$ of T verifying $v(\widetilde{T}) \leq(1+\varepsilon) \cdot v(T)$.

Proof. Let $A:\left(Z, p_{b}\right) \rightarrow(Y, q)$ be the linear operator associated to T according to Proposition 3.2. By Proposition 5.4, the operator A is compact and, by J. Lindenstrauss [12, Th. 5.4], there exists an extension $\tilde{A}:\left(X, p_{b}\right) \rightarrow(Y, q)$ of A, verifying $\|\widetilde{A}\| \leq(1+\varepsilon) \cdot\|A\|$. Appealing again to Proposition 3.2 it follows that the desired extension of T is given by $\widetilde{T}(x, \alpha b)=\alpha \cdot \widetilde{A} x, x \in X, \alpha \in \mathrm{R} \square$.

Remark. 1° I. Beg and M. Iqbal [1, Th. 3.5] proved Proposition 5.5 for compact bilinear operators following the ideas of the proof given by J. Lindenstrauss [12] for compact linear operators. By Proposition 5.2, a compact bilinear operator $T: Z \times$ $\times[b] \rightarrow Y$ is p_{b}-compact, so that the result of I. Beg and M. Iqbal follows from Proposition 5.5.
2° We have used a seminormed version of Lindenstrauss' result which can be proved in the same way as in the case of normed spaces (The space Y could be also supposed to be only seminormed too).

6. UNIQUE EXTENSION AND UNIQUE BEST APPROXIMATION

The aim of this section is to prove some duality results relating the extension properties for bilinear operators and best approximation in spaces of bilinear operators. In the case of linear functionals on normed spaces the problem was first studied by R. R. Phelps [16]. For other related results see I. Singer's book [17].

Recall that, for a 2-normed space $(X,\|\cdot\|)$, a normed space (Y, q) and two subspaces X_{1}, X_{2} of X, we denote by $L_{2}(W, Y)$ the normed space of all bounded bilinear operators from $W=X_{1} \times X_{2}$ to Y. If $\widetilde{X}_{1} \supset X_{1}$ and $\widetilde{X}_{2} \supset X_{2}$ are other two subspaces of X then the normed space $L_{2}(\widetilde{W}, Y)$ and \widetilde{W} are defined similarly. The norms in $L_{2}(W, Y)$ and $L_{2}(\widetilde{W}, Y)$ will be denoted by the same symbol v (see (3.2) and Proposition 3.1). For $T \in L_{2}(W, Y)$ denote by $\mathscr{E}(T)$ the set of all norm preserving extensions of T to \widetilde{W}, i.e.

$$
\begin{equation*}
\mathscr{E}(T)=\left\{\widetilde{T} \in L_{2}(\widetilde{W}, Y):\left.\widetilde{T}\right|_{W}=T \text { and } v(\widetilde{T})=v(T)\right\} \tag{6.1}
\end{equation*}
$$

The annihilator of W is $L_{2}(\widetilde{W}, Y)$ is defined by niallud beantrantin

$$
\begin{equation*}
W^{\perp}=\left\{S \in L_{2}(\widetilde{W}, Y): S(W)=\{0\}\right\} . \tag{6.2}
\end{equation*}
$$

As usual, for a nonvoid subset V of a nomed space E and $x \in E$, denote by $d(x, V)=\inf \{\|x-v\|: v \in V\}$ the distance from x to V. An element $v_{0} \in V$ satisfying $\left\|x-v_{0}\right\|=d(x, V)$ is called a nearest point to x in V (or a best approximation element $)$. The set of nearest points to x in V is denoted by $P_{V}(x)$ and the set-valued operator $P_{V}: E \rightarrow 2^{V}$ is called the metric projection operator of E onto V. The set V is called proximinal if $P_{\nu}(x) \neq \varnothing$ and Chebyshevian if $P_{V}(x)$ is a singleton, for all $x \in E$.

We say that W has the extension property with respect to \tilde{W} if every bounded bilinear operator $T: W \rightarrow Y$ has a norm preserving extension $\widetilde{T} \in L_{2}(\widetilde{W}, Y)$. The following proposition shows that the extension properties of W and the best approximation properties of its annihilator are closely related.

Proposition 6.1 If the subspace W has the extension property with respect to \widetilde{W}, then its annihilator W^{\perp} is a proximinal subspace of $L_{2}(\widetilde{W}, Y)$ and the following formulae hold

$$
\begin{equation*}
d\left(S, W^{\perp}\right)=v\left(\left.S\right|_{W^{\prime}}\right) \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{W^{1}}(S)=S-\mathscr{E}\left(\left.S\right|_{W}\right) \tag{6.4}
\end{equation*}
$$

for any operator $S \in L_{2}(\widetilde{W}, Y)$.
Proof. If $S \in L_{2}(\widetilde{W}, Y)$ then $\left.(S-T)\right|_{W}=\left.S\right|_{W}$ and, by the definition of the norm v (formula (3.2)), we have

$$
v\left(\left.S\right|_{W}\right)=v\left(\left.(S-T)\right|_{W}\right) \leq v(S-T)
$$

for every $T \in W^{\perp}$, implying $v\left(\left.S\right|_{W}\right) \leq d\left(S, W^{\perp}\right)$. If $S \in L_{2}(\widetilde{W}, Y)$, is a norm-preserving extension of $\left.S\right|_{W}$ then $T_{0}=S-S_{0} \in W^{\perp}$ and since $S_{0}=S-T_{0}$ we can write

$$
v\left(\left.S\right|_{W}\right)=v\left(S_{0}\right)=v\left(S-T_{0}\right) \geq d\left(S, W^{\perp}\right),
$$

showing that formula (6.3) holds and that $S-S_{0}$ is a nearest point to S in W^{\perp} for any $S_{0} \in \mathscr{E}\left(\left.S\right|_{W}\right)$, i.e.

$$
\begin{equation*}
S-\mathscr{E}\left(S_{W}\right) \subseteq P_{W^{\perp}}(S) \tag{6,5}
\end{equation*}
$$

Suppose now that r_{0} is a nearest point to S in W^{\perp} and let $S_{0}=S-T_{0}$. It follows $\left.S_{0}\right|_{W}=\left.S\right|_{W}$ and by (6.3)

$$
v\left(\left.S\right|_{W}\right)=d\left(S, W^{\perp}\right)=v\left(S-T_{0}\right)=v\left(S_{0}\right)
$$

showing that S_{0} is a norm-preserving extension of $\left.S\right|_{W}$, i.e.

$$
S-P_{W^{ \pm}}(S) \subseteq \mathscr{E}\left(\left.S\right|_{W}\right)
$$

or equivalently

$$
\begin{equation*}
P_{W^{ \pm}}(S) \subseteq S-\mathscr{E}\left(\left.S\right|_{W}\right) \tag{6.6}
\end{equation*}
$$

which together with relation (6.5) give (6.4).

Let $(X,\|;\|)$ be a 2-normed space, Z a subspace of X and $\mathrm{b} \in X \backslash\{0\}$. For a normed space (Y, q) let

$$
Z_{b}^{\perp}=\left\{T \in L_{2}(X \times[b], Y): T(Z \times[b])=\{0\}\right\}
$$

denote the amihilator of $Z \times[b]$ in $L_{2}(X \times[b], Y)$. In this case Proposition 6.1 and
Corollary 4.3 give: Corollary 4.3 give:

COROLLARY 6.2 Let (Y, q) be a normed space with the binary intersection property. Then Z_{b}^{\perp} is a proximinal subspace of $L_{2}(X \times[b], Y)$ and the following
formulae

$$
\begin{equation*}
d\left(S, Z_{b}^{\perp}\right)=v\left(\left.S\right|_{Z \times[b]}\right) \tag{6.7}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{Z_{b}^{\frac{1}{b}}}(S)=S-\mathscr{E}\left(\left.S\right|_{Z_{\times[b]}}\right) \tag{6.8}
\end{equation*}
$$

hold for every $S \in L_{2}(X \times[b], Y)$.
Furthermore the annihilator W^{\perp} is a Chebyshevian subspace of $L_{2}(X \times[b], Y)$ if and only if every $T \in L_{2}(Z \times[b], Y)$ has a unique norm preserving extension to
$X \times[b]$.

REFERENCES

1. I. Beg, M. Iqbal, Extension of linear 2-operators, Mathematica Montesnigri 2 (1993), 1-10 2. S. Cobzaş, C. Mustặa, Extension of bilinear functionals and best approximation in 2-normed spaces, (to appear).
2. N. Dunford, J. T. Sclwartz, Linear Operators Part. I: General Theory, Interscience Publishers,
New York 1958
3. 4. Franic, An extension theorem for bounded linear 2-functionals and applications, Math. Japonica
40 (1994),79-85. 5. S. Gähler, 2 115-148
1. S. Gähler, Linear 2-Normierte Räume, Math. Nachr. 28 (1965), 1-45
2. T. L. Hayden, The anach-Räume, Math. Nachr. 42 (1969), 335-347.
3. R. B. Holmes, On the continuity of best functionals, Pacific. J. Math. 22 (1967), 99-108. Dimensional Topology (R. D. Anderson Editor), Anals of intors, in Symposium on Infinite Press, Princeton 1972, 137-158. - Press, Princeton 1972, 137-158
4. K. Iseki, Mathematics on 2-normed Analysis and its Application, Springer-Verlag, Berlin 1975.
5. J. Lindenstrauss, Extension of compact operalors. Mem. Aath. Soc., 13 (1976), 127-136.
6. S. Mabizela, On bounded Z-itinear funs octionals, Math Jamer. Math. Soc. 48, (1964)
7. L. Nachbin, A theorem of Hahn-Banach tope for linear aponica, 35 (1990), 51-55 68 (1950), 28-46
8. L. Nachbin, Some problems in extending and liffing continuous linear transformations, in Proc. International Symposium on Linear Spaces, Jerusalem, 1960.
9. R. R. Phelps, Uniqueness of Hahn-Banach extension and unique best approximation, Trans Amer. Math. Soc., 95 (1960), 238-255.
10. I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Publishing House of the Romanian Academy and Springer Verlag, Bucharest and Berlin,1970. 18. A. G. White Jr., 2-Banach spaces, Math. Nachr. 42 (1969), 43-60.
11. A. G. White and Yeol Je Cho, Linear mappings on linear 2-normed spaces, Bull. Korean Math. Soc. 21 (1984),1-6.

Received 14.01.1996

S. Cobzas

 Faculty of Mathematics Ro-3400 Cluj-Napoca RomaniaC. Mustăta "T. Popoviciu" Institute of Numerical Analysis O.P. 1 C.P. 68

