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l.INTRODUCTION

In 1965 S' Gähler [6] defined 2-nonned spaces and studied their basic pro-
perties' Since then the field has considerably grown, the research being directed to
obtain a theory similar to that of normed spaces. A key result in develõping such a
theory is a Hahn-Banach type theorem for bilinear furictional on 2-normed-spaceb-.
But, as remarked s, Gähler [7, p.345], a general Hahn-Banach theorenr dàes',t
hold in this setting' Some extension theorems for bounded bilinear functionals
defined on subspaces 

-of 
the form z x [ó] to x x lb) (x-a 2-norntecr space,

Zasubspaceof xand[b]- the subspace ofxspannedby ó e x\ {0}) *.."p.ui
by A. G. white ItB], s. Mabizeraf13] and L Fianié t+l,in [2] it was show'that all
these results follow directly from the classical Flairn--BarìaËh theorem for li'ear
functionals on selninormed spaces.

Inspired by some results of L. Nachbin Ir4], Ir5] and of J. Linde'strauss
[12], r. Beg and M. Iqbal [r] proved some extension iheorems for bounded or
conrpact bilinear operators defined also on subspaces of the fom-t z x [ó]. In this
paper we shall show that, again, all these results follow directly from the cores-
ponding results for lirlea¡ operatoß on nonned spaces. The key táol will be a result
relating the bilinear operators fromz x [ó] to a semi-normed spaáe ({ q) andtrre linear
operators fronz to r(Proposition 3.2 below). The extension results are applied to
obtain some duality results for best approximation in spaces of bounded bilinear
operators,

2. BOUNDED LINBAR OPBRATORS ON SEITINORN,IED SPACES

Let (x, p) and (Y, q) be two seminormed spaces. It is well known that a linear'. operator A : X -+ I is continuous if and only if it is bounclert (or Lípschitz), j.e.
there exists a numberZ > 0 such that



64 $tefan Cobzåt, Costicã Mustä,ta

(2.1) q(Ax) < L' p(x), for all x e X.

A number r ) 0 veriffing (2.1) is called a Lipschi.rz constatTr for A. For a
bounded linear operator A : X -+ Idefine by

(2'2) 
ll,alj = sup {q('q*), x e x, Á*) < t} ,

the nonn of the operator A. The following results are well known i1 the case of
nonned spaces (see e,g. [3]), Since their proofs can be transposed with slight arrd
obvious modifications to the case of seminonned spaces we shall omit them.
Denote by L (x, r ) the space of all bounded linear oplrators from x to z

PRopostnoN 2.7 Let (X p) and (y, q) be seminormed spaces. The, tlteþll.ctu,_
íng assertions hold:

l" If A e L (x, Y) then the nunt.ber ll.ell, ae¡.nea by e.2) is the smallesÍ.
Lípschitz constantfor A, i.e.

ll,ell = t"in{¿ > 0:L is a Lípschírz cotxstant for A} .

2" The applicatíon ll'll: L(x,r) -+ lo, oo) r a seminornt on L (x, y) t,vhicrt
ís ct nonn if and only if q is a nonn on y.

3" The seminornted spoc" (t(x, y),ll . ll) is comptete if (and only if u,he,
q * 0) tlrc semínormed space (y, q) ís complete.

3. BOUNDED BILINEAR OPERATORS ON 2-NORN{ED SPACES

Let x be a real vector space of dimension at least 2, An application

ll , . ll ,X x X -+ fo, *) is called a 2-nonn on X if

BN 1) ll",yll = 0 if and only if a y arelinearly dependent,

BN 2) ll',yll = lly,*ll,
BN 3) llr",rll = lrl ll', yll,

BN 4) ll, * y,4l=ll,,"ll+llt,,ll,
for all x, !, z e X and all À e R (see [6]).

A 2-nomred space is a real rinear space equipped with a 2-non' ll., il rr
(x,ll' , ll) is a 2-nomred space and b e x then the functional pb : x -+ [0, cc),
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defined by pb6) = llr, òll ,:E e X, is a senrinonn on X. The locally corlvex topology
getrerated by the family p: {pt : l: e X } of semiuonns is called tbe natut.al

topology ofXinduced by the 2-nomr ll 
.,. ll, tsee tAJ).

Let (X,ll , lD U. a 2-nonned space and Xr,Xrsubspaces ofX. A biÌiner¿r

operaÎot'is an application Z froni X, x Xrto a semitronned space ()', 4) such that:

(BL) f (., y) ' Xt -+ Iand I (.r:, ') : X, -+ Iare linear operators, for all .r e X, and all
)t e Xz.

A bilinear operator T : X, x X, -+ Y is called bounded if there exists a unnrber
I>0suchthat

(3.r) q(r(r,y)) = Lllr,rll, for all (.r, y) e xt , xz.

A trumber Z > 0 r,edting (3.1) is called a Lipschitz cor-ìstant for T. A biti-
near functional is a bilinear operator F : X, x X, -+ R. As it was shown by A. G,
white [18] in the case of bilinear functionals, and by I. Beg and lv{. Iqbal [l] in
general, the bouridedness ofa bilinear operator can be characterized by a kind ofa
continuity condition, called 2-continuity by S. Gähler [7]. It tums that the 2-co¡ti-
riuity of a bilinear operator at (0, 0) inplies its 2-continuity on the rvhoJex, x X,
A rypical example of a (noulinear) filnctiorial wliich is continuous on X x Xis t6e

2-nonn ll , ll.As renmrked S. Gähler [7] this notion of 2-continuitl, is tlifferent
fronr tlre continuify with respect to the natural ltroduct topology ott X x X.

For a bounded bilinear ollerator T : X, x X, -+ y define

(3.2) v(r) = sup{a(r(',r))'(.", 7) e xy * xz, il', ll < ri

and derrote by L, (X, * Xr, \ the linear space of all bounded bilinear operators
frornX, x Xrto L As in the case of linear operators on nonned spaces olle call
easily prove:

PRoposlttoN 3.1 Let 6, ll , l) ¡" u 2-norntecJ spac,e Xr, X" subspqc,es o./'X
and (Y, q) a setrtíltonned space. Then the.follov,íttg assertions holc.l:

1' I.f T e L, (X, x X2, Y ) then v (T ) is t he smallest Lipsc,hirz consrant.ftr T, i. e.

(3.3) v(7): min{L> 0: L is a Li.psc'hítz cortslant.for T}.

2o Tlrcapplicutionv: Lr(X1>. X.r, \ -+ [0 .c) is aseminontt on Lr(Xrx Xr, ))
y,híclt is a nornt if and onlv if q is a norm on Y.

3" Tlte semi.normed space (Lr(Xt " Xz, Ð, u) ,s cr,trnplete i-f the seminonner.l
spa('e (1', q) ís c'orn¡tlete.

2
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Remark. The completeness of L2 (X x X, Y) for the case of a Bauach space

()/, ø) was proved by A. G. White Jr. [8],
For arr element b e X \ {0} denote by [á] the subspace of X spanned by

b (i.e. tb): R ' ó). If Z is a subs pace of Xletnu,láiotethe seminonn puþ) = llt,bll,
z e Z. The bilinear operators from Z x [å] to a seminonned space (f, q) and the

linear operators between the seminormed spaces (2, po) and (Y, q) are related as in
the following proposition, Here ll,all ana v (I) denote the norms of a linear operator

A (cf. (2.2)) and respectively of a bilinear operator f @f. (3,2)),

PRoposttloN 3.2 l'' If T : Z x [å] -+ Y is a bounded bílinear operator thert

the operator A : (2, ps) + (Y, q) defi.ned by Az: T(z,b), z e Z, is a cottlíttuous

linear operator and

(3.4) ll,allqr;,

2o Conversely, ,f A : (2, pa) -+ (Y, q) ís a contittuous linear operalor, Ihett the

operator T : Z x lbl --+ Y, deJìned by T (2, o"b) : u' Az, for z e Z attd ct e R ¡s a

bounded bi.linear operator and

(3.s) v(r) = ll,all

Proof, 1'lf T: Z x lbl + )/ is a bilinear operator, it is imrnediate that the

operator A : Z -+ Y deftned by Az : T (2, b), z e Z, is linear. Since

8(Az) = q(T(2,ó)) < v(r)llz,åll = u(r)' pÁz),

forall z e Z,itfollows thatl iscontinuous anO ll,ell < v(i").
But

q(T(z,ab)) = q(T(az,b)) = q(A(az)) <llell. rr@4 =

=ll,'illllo',ull=ll,nll.lþ,"r'll,

forall z e Zandallcr e Rirnplying v(D < ll,all ano ll,all = v1f .

2o Suppose now that A : (2, p) -+ (Y, q) is a continuous linear operator and

letT:Z x [ö]+IbedefinedbyT(z,o,b):a'Az,forze Zanda e R. Itisobvious
that lis a bilinear operator and from

q(r(z,at:))= q(e.Az)= q(A(a¿¡<ll¿ll.pu(az)= llzll lls.z,bll= ll,lll lV,"t'll

we get v1r; < ll,lll.
Tlre equaliti es A (c,z): T (2, c.,Q, llc',z, bll = llr,oåll , and the defirritions of the

nomls ll,a ll ana v(I) (relations (2.2) and (3,2) respectively)imply

ll,all = supla (Az):z e z, p6Q) < 1) = sup{q(Az):z e z'llz'

< suP{q(l(ct z)):z e Z'a e & ll"''l'll < U

= sup {4(Z( z,c,b)): z e Z,a e R, llz, "41 
< tl = v(1")'

showing that v(7) = lþll n

4. NORI\{ PRESER\/ING EXTENSIONS OF BILIÈ'EÄR OPERATORS

Let (X ,ll', 'lll u" a 2-nonned space antl X, ' Xrlinear subspaces ofX' A nonn-

presenlingextellsionofaboundedbilirrearoperatorlfromX,xX,foaseminonrred
space (1, q) is aboundedbilinearoperator FtÍr' iL? Y' (where Í' and f'
are linear subspaces of Xcontaining X, respectively Xr)' such that

r) i@r, x2) = T(x1,-rr), for all ('r1, xr) e X, x X,and

et'vi.ttg extension of

u 'aking 
values in I'

. ZcZ,atdtaking
1S

values in Y, such that

i) 7z: Az. forallz e Z, and

,Ð llill = ll.¿ll

xtension
intersec-
way for

e sufficiency part of Nachbiu's theorem

of the form Z x [b], We shall show that

this result is an immediate consequence of Nachbin's result and of Propositiori 3 '2'

First we prove the following result:

PRoposluoN 4'l Let (X,ll','l|) be a 2-ttotttred space (Y' q) o seminormed

ndZ be 3=Z andlet ó e X\{0}'
he oPerat Z xÍb) -+ Y attd A : Z -> Y

:Z -+ y , ion i'2.

all = 
tl
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Then T is a norm-preservirtg exlensíon of T if and only if the coruespondittg
Iinear operator À ¡t o norm-preset'víng extensi.on of A.

Proof. The proofis an immediate consequence of the relations T (2, r:,b) : aAz,
(z,a) e 7xy v(T) = ll,lli ana lçZ,o,ø¡ = o.ÃV, (Z,u) eZ "\,(¡) = ll7ll,
relating tlre operators T and A, respectively F an¿ À E

Let us agree to say that a seminormed space (y, q) has the restricted exten-
síon property .for bilinear operators if for any 2-normed space (x,ll.,.ll) 

"u.tyboundedbilinearoperator T:-zx fb)-+Y(z asubspace of xandb e x\ io¡ tras a
noml-preserying extensio n F: X x [ó] + I . Using these terms, Proposition 4.1
can be restated as follows:

coRoLLARY 4,2 A seminormed space (Y, q) has the resfi.icf.ed exÍension pro-
pertyfor bilínear operators íf it has lhe exl.ensíon propertyfor línear operators.

Observing that the proof of sufficiency part of Nachbin's theorern [14, p.3l]
remains valid when all spaces are supposed to be seminormed we get:

CoRol,l-eRy 4.3 (U, fh. 2.1)), If a senti,nonned space (y, q) has the binatlt
intersectíott property, then it has the restrícted exlensí.on properry for l:ilinear
operalors.

Remark. We do not know whether the necessity part of Nachbin's theorem
renrains valid for bilinear operators too: Must a seninormed space ({ q) t,eirfyittg
the restricted extension property forbilinear operators have tlie binary intersection
property ?

The extension result for operators defined on condimension one subspaces, proved
by J. Lindenshauss fl2,Lentna 5.2), canbe transposed to bilinear operators too.

PRopostnoN 4.4 Let (x,ll.,.lD be a 2-normed space, z a codimensi.on one
subspace of x and b e x\ {0). A bowtded bilinear operator Tfrom /, x [b) to a
setnínormed space (Y, q) admits a nonlt-preser-ving extension i: X x tb) _+ y tf
and only if tltere exists u e X\Z such that

(4,r) ){anlr{",b),v(r)ll"- ",ll:, ez)l * Ø.

Proof. If u e X\ Z thenX: Z+Raand any bilinear extension 7 : X x [bl _+ y
of I is completely detenniued through the fonnula

(4.2) lç, + øu,Fb) = T(z,pb) + apyo,

by its value ls at (u, ó). consequently, I is a nonn-preservirrg extension of r if
and only if
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(4.3) q(T (z + uu,þb) < 
"(f ) 

.llt + au,Þbll,

folall z e Zattdalla,p e R. Supposingct'p+0andcleletingby lct.pl> 0, one
obtains successively:

q(ÍQ + au,þb)) < \,(?) llz + uu,þbll €)

ø(F(*-" + 
""b)) 

< r,(z) ll" ', *,, all *>

qb,o - T(z', b)) < v(Z) .llu - z' . bll,

for all z' : -a-tz e Z. This last relation is equivalent to:

y6 e O{Bo(T(z,b),\,(f).llu-t,blþ:z e z}.

Since, for cr,: 0 q(le"þb)) = q(T(",pó)) < v(Z).lle,Bóll and for p : s

T çt + au,0) - 0 , the proposition is proved E 
"

Retnark.lo From the proof it is clear that if relatio n (4.3) holds for an eleure¡t
uo e X\ Z, then it holds for any other element u e X\ Z.

2o Proposition4.4 appeals in [, Proposition 3.3] in a slightly diffcrent fo1¡.

5. CON'ÍPACT RIII¡{EAR OPEILTTORS

The aim of this section is to shorv how solne extension results for compact
operators olt nonued spaces. proved by J, Lindestrauss [12], can be transposecl to
biliilear operatoß on 2-uomred spaces. The basic tool used irt doing this will be
again Proposition 3.2.

Roughly speaking, a compact bilincar operator is a bilinear operator map-
ping bounded sets into relatively compact ones. We shall consider thrce þoundechress

notions in Z-nomred spaces and three conesponding cornpactness notions for bi-
linear operators.

Let (X,ll , lli U. a 2-nonnetl space and b e X\ {0} A subser lt of X is called
pu-bounded if supp, (v) < *. The set zis called boundedif it ispr-bouncred for all
b e X\ {0} (and obviously forall b e X). This is notliing else tban theboundeclness
of Vwith respect to the natural locally corlvex topology of Xinducetl by the
2-nornr lj','ll. Finatty, we call a subset I4t or xxx z-nr.¡rm boundeclproviclecl
sup{lþr, lll:(x,y) eW} < oo. 'l'he correspouding boun<ledness notiorrs for se-
quences in X or in X x Xare defined in an obvious r,vay,

76
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Let X¡, xrbelinear subspaces of a 2-nomred space (x, 
ll , ll) and rer (y, q)be

a senrinormed space. A bilinear operator T : X, x X, ) I, is calle<J separal.ely
compacÍ (s-compact for short) if {T (x,,,1)} contains a convergeut subsequence for
every bounded sequence {-r.r} in x, and every bounded sequence Lr,,,} in xt Tl.rc
operator ?'is called compact if {T (xr, y,,,)}, coritaills a convergent subsequelrce for
every 2-nomr bounded sequellce {(xr,!,,)} in X, x yr.

We have:

PRoposltloN 5.7 Every cotllpoct operalor is boundecl.

Proof, Let T : Xt * X;.+ Ibe a compact bilinear operator. Supposing I not
bourrded then, by (3.2), we can choose a sequerlce {(x,,, y,,)} in X, x X, sucli that
llr,,y,ll < land q(T(x,,)t,,))>,, forall¡r e N. Itfollowsïhai'thesequenc e {T(r,,/,)}
has no convergent subsequences E

corisidernow the case of abilinear operator T: zx lb) -+ { where z jsa
subspace of the 2-nomred space (x, 

ll., lD and ó e x\ {0}. we call rhe operator T
p b-cotnPact iÎ {T (zn, arö)} contains a convergent subsequence for everypr-bounded
sequence {z n } in Z and ev ery bounded sequence {crr} iri R. In this case these three
notions of compactness are related as fbllows:

PRoposltto¡,t 5.2 Let T : Z x [b] __> y be a bilinear operat.or
Then

T contpact ¿ Tpt- cotttpact + /¡. - compacÍ..

Proof, T contpuct. + Tpu- cornpact
lf {2,} is a pr-bounded sequenc e in z and {cr.,,} is a bounded sequepce of ¡eal

nurnbers, thentheequality.llz,, 
.?,lrll ,lc.',,l.llr,,,óll irnpfies sup,llz,,",,lrll . cc. The

operator Tbeing compact it follows tbat {T (2,,ø,ó)} contain, ä'"orrr,"ryent subse-
quence.

To prove the second irnplication we need a lemula:

Lptr¡ve 5.3 Let b e X\ {0} and {cr,,} c R Theseque,ce {a,,1:) is l¡r¡utrleclin
Xif andonlyif thesequence {a,} rs bounrJed inR.

Proof' By definitiou, a 2-nonued s race has dimensiolr at least 2, so that there
exist a e xwith ll",trl¡, 0 (Axionr BN l). The bountredness of {llo,,,tt,ølli, ana ure
equality llø,b,all=!1,'ll",ttll imply rhe boundedness of rhe sequeuce {ø,},

cgnversell,, if {cxr} is a bounded sequence of real nunrbers then thá equality
ll",,ttr,"!= l",i ,llr,cll irnpttes rhar rhe r"qu.n". {ll..,,ø,"11} i, uounded for every
c e X. Lemma is provetl.

Prove now that:

Tpo- contpacl. + Ts - compect,

!zr\ e z and {urb} be bounded sequences, It follows that the sequerlce
{2,) is pu-bounded and, by Lemma 5.3, the sequence {cr.,} is bounded too. Sl¡ce I
is pr-compac!, 

lhe sequence {T (2,, .r,ö)} will contain a'"onve.gerrt subsequence,
proving that T is apr-com¡ract bilinear operator E,

concerning the compactness properties of a bilinear operator T: Z x lbl -+ y
and of the associated operator A : Z -+ I(in the sense of Proposition 3.2) òne can
prove:

PRoposrrtoN 5.4 A bilínear operatoF T : Z x t/¡] -+ y is po-contpacl if and
onþt íf the assocíated línear operal.ot.A: (2, p) -+ (y,q) ß compact.

Proof, Suppose that the bilinear operator T : z x Lb) -+ ris 7_rr-cornpact and
let {2,) be a bounded sequence in the serninonned space (2, p). rt follows that
{2,} is a¿r-bounded sequence ir Z and, consequently, {T (2,,, å)} will contain a

convergent subsequence {T (zn, ó)}. Since {r(t,,-,0)} = Az,,r it follows rhar

{ur,,r} is a convergent subsequence of {nr,,r}, showing that the operator I is
compact,

Conversely, let A : (2, pt) -+ (y, q)b
p¿-bourded sequenceinZ and {crr} is a boun

convergent subsequenc " {Ar,,r} , runng

{cr,-} itfollows trú T(z,o,,or,b) = &,tkj

quence of {T (zn, d,b)}. Therefore the operator T is pu-con-tpact EI.
The following result was proved by J. Lindestrauss [12, Th. 5.4], i¡ the case -

of linear operators on normed spaces and by L Beg and M. Iqbal [1, th. 3,5] in the
case of bilinear operators on 2-nonned spaces. A normed.pa". 1r, q) is said to
havethefini.te 2-intersection property (F,2.I.P.) if any finite collectìonãf mutualij.
intergecting closed balls in Ihas nonvoid intersection.

PRoposltloN 5.5 Let (Y, q) be a Banach space v,ith the (F.2.1.p.), (X ,ll,.ll) "2-nonnedspace, zacodùnensíononesubspaceofx, b e x\ {0} anelT:2*
lbl -+ Y a pr-contpacr bilínear operaror. Then, for evety e> 0 tløe exists an
esctensi.on 7:X x [ó] + y of Tverifying v(î) < (l+e).v(f),

Proof. Let A : (2, p ) -+ (Y, q) be the linear operator associated to l accord-
ing to Propositiori 3.2. By Proposition 5.4, the operatorl is cornpact and, by J.
Lindenstrausl [12, Th. 5.4], there exists an extension i:(X,p) -+ (y,q) of A.
veriffing llrll < (t * 

") 
' lllll, Appealing again ro proposirion:.2 it rolro*s rhat the

desiredextensionof lisgivenby |$,ab)=a.Ãx, x eX, cr eRE.
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Remark. l' I. Beg and M. rqbar [], Th, 3.5] proved proposition 5.5 for co'rpact

bilinear operators followi'g the ideas of the proof given by J. Lindenstrauss Ir2]
for conrpact li'ear opemton. By proposition 5.2, a compact Ûilinear operator T : Z xx [ó] -+ r ispu-cornpact, so that the result of I. Beg and M. Iqbal follows tiom
Proposition 5.5.

2 We have used a semiltomred version of Lintjenstrauss' result which can
be proved i' the salne way as in the case of nonned. spaces (The space rcould be
also supposed to be only seminonned-too).

6. UNIQUE EXTENSION AND UNTQUE BEST ,4ppRox'\tATION

The aim of this section is to prove some duality results relati¡g the exten-
sion properties for bili'ear operators and best approximation in spaces of
bilinear operaton. In the case of linear flinctionals on nonned sllaces the problern was
first studied by R. R, phelps Ir6], For otrrer related results see L Si'ger,s book [17].

Recall that, for_a 2-'omred space (X,ll.,.ll),u nomred space (y,q) and two
subspaces Xþ X2 of X, we detrote by L, ' n' 

f all bouuded
bilinear operators fron l[/ = X, x Xzto y. 

are other trvo
subspaces ofXthen the nonned space L, irnilarly. Tlie
norms rn Lr('tl, r) and It(ñ, r) will be denoted by the same symbol v (see (3.2)
and Proposition 3.1)' For T e Lr(w, n denote by g e) the set of alr nomr pre-
servirig extensions of Ito ñ ,i,".

(6.1) EQ) = {7 e Lr(ñ,r):71, = T ayd vçi¡ = v(r)}.

The annihilator of W is lr(fi,I) is defined by

(6.2) Lt/r = {S e þ(ñ,y):S(tt) = {0}}.

As usual, for a nonvoi<J subset z of a nomretr space E and .¡: e E, de'ote by

f(','),,= 
inf{li".l vlf v e v} tr'rcdistancefro'r.rro z A, erenrent vo e zsarisgring

llr - v.ll = d(r,z) is called a, nearest poirÍ to x in v (or a besr approxi.matio,
elentenÍ)' The set of nearestpoints to xin visdenoted by pr(x)and trre set-valued
operator Pr: E -+ 2v is cailed the meÍt-ic ¡trojecrio, operar,:orof ,Ð onto z. The set
v is called proximinal if p, (x) + Ø arñ chebysheviin if p, (x)is a singleton, forallxeE.

we say that ll has the extetts i o tl prop er ry v, i lh resp ec t to fi if ev ery b ou¡ d e¿
bilinear operator T: 14/ -+ Íhas a norm preservi'g extlnsion I u Ir(;;,y) Th;
following proposition shows that the extensionproperties of w'and' th! best
approxi.ration properties of its aunihilator are closelyielated.

PRoposrttoN 6,1 If the subspace w has rhe exrensiot: r)roperry u,ír.h respect
rc fi , then íts anni.hilar,or wL ¡i a proxintínar subspace of 

'L2(fr,n 
"r;;;;fo I I owi ng fonnulae hold

(6.3) d(s,II/L) = v(slø, )

and

(6.4) pw, (s) - .ç - t(sl Hò,

for an1, operaîor S e tr(fi,f).
Proof,If S e Lr(ñ,I) then (^t- Z) l*: Sl*arrd, by the defi'itiori of the

noml y (fonnula (3.2)), we have

y (,s lrz): v ((^t - r) Ç) < v (S- Z),

for every T e WL, illnlvins u(Sl,r) < d(^t, W.If S e Lr(ïi,),), is a nonn_pre_
servitig extension of Sl," then Zo = S- So e V[/t and.in". So : S_ e, ,r. "un 

*rit.
u (SlÐ: v (56) : v (^r _ Zo) > d(S,W) ,

showingthatfonnula(6,3)holdsandthatS-Soisanearestpointto Sinltrfora'y
S,, e á(,Slr), i.e.

(6,5) S -8(Slw)c. p*,(S).

Suppose norv that T., is a nearest poirrt to S in W and let So : S _ 70. Itfollows Solw: Slwand by (6.3)

v(Sl,n):d(S, W) :u (S-Io):v(S6)

slrowing that So is a nonn-preserving extension of Sl*, i,e.

S - Prr,(,S) c 6(Siy )

or equivalently

(6,6) 
4t , (s) c ,s - 6(slw )

which together with relation (6.5) give (6.4).tr
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t3
I 
:et 

(X,if{l U" a 2-nomred space, Za subspace of'and b e X\ {0}, For anomred space ()/, 4) let

zf = g e 46 xlbl,y):T(Z xló]) = {0}}
denote the arurilrilator of Z x [ó] in Lr(x x [b), Ð.In trris case propositio' 6.1 andCorollary 4.3 give:

Best Approximæion io 2-nonned Spaces 75

coRoueRy 6.2 Let (y, q) be a nonned space with rhe bi,aty irtersectio,

'nit-íä,i;Then ft 
is a proxitnittal subspace of L, (x x [b], Ð and thefoilowíttg
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(6.7)

and

d(S,Zi) = u(Sb"¡¿l)

(6'8) Pz;G)= s -e(s¡r,ror)
holdfor" evety S e L, (X x [b], Ð.

Furthennot'e trie anníh,ator,L ß a chebyshevian subspaceof L,(xx tt:r, I)'lX"1ui", if evetv T e L, (z x tbl, Y) ttaì a uníque nr, pi"r",ring extensio, to
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