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1. INTRODUCTION

Consider the first-order Volterra integro-differential equation (VIDE):

(1.1) V(1) = £ (1)) + j; K(1,5,(s))ds, ¢ el:=[0,T],
with initial condition y(0) = y,. Here, the given functions f:/ x R — R and
K:Sx R — R (with S: = {(1, 5):0<s<t<T}), are supposed to be sufficiently
smooth for the initial-value problem for VIDE (1.1) to have a unique solution
ye C*(I), with aeN (see[3], [6]).

VIDE-s of the above form will be solved numerically in certain polynomial

spline spaces. In order to describe these approximating spaces let [1: 0 = 7, < #; <

<.<ty =T (with ¢ = z’SN )} be a mesh for the given interval /. and set

GO': [to,tl], 0-":: [tn’tn+l} s h":: t’H—l _tn, n = 0,...,N_ 1, r
h= max(n)(t,m i tn)’
Zy:={t,:n=1..,.N-1}, Zy=2ZyU {T}.

Moreover, let &, denote the space of (real) polynomials of degree not
exceeding k. We then define, for given integers m and d with m>1 and d=-1,

=y, () €Fyqsn=0,...,N~1,

tec,

A PADER PRI ()

) (1,) = (1

n—1 n

) for j=0L...d and, €Zy},
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to be the space of polynomial splines of degree m+ d whose elements possess the
knots Z,, and are d times continually differentiable on /. If = -1, then the ele-
ments of S,(,, B(Z ~) may have jump discontinues at the knots L

In many papers, the problem of approximating the exact solution of initial-
value problem for VIDE (1.1), has been solved by collocation method in polyno-

mial splines spaces Sr(n)(ZN) and S( (Zy) (see [1], [2], [3]) or in polynomial
splines space S,S,i)l(Z ~ ) (see [6]). In this paper we shall construct an approximate

solution in the space of polynomial spline functions S,(n +) AZy), with m=1 and

d20. This approximationu e S,(”Jr)d( o will be determined by collocation

methods. The attainable order of global and local convergence of these methods is
analyzed in detail.

2. COLLOCATION IN POLYNOMIAL SPLINE SPACES S'%,(Z,)

We shall assume in the following that mesh sequence (IT N)”>1 is quasi-

uniform, that is, there exists a finite constant y independent of V such that:

max,(4,) / min, (h,) <y <o, for all N €N,

In [7] M. Micula and G. Micula proved that an element u < S,(,i) (Zx ) has
forall n=0, ..., N~1 and for all tec, the following form:

4 u,(,l;l(tn) roo d+r
@.1) u(t) = un(l) = Z (t L tn) +Z an,r(t ® tn) ’

where:

0= [d_r'“(t)J = y"(0), r=01,....d.
i t

()

From (2.1) we have that on element u € S, ;(Zy) is well defined when we

know the coefficients {a,,,r}r_l_m forall n=0, ..., N-1. In order to determine these

coefficients we consider the set of collocation parameters {C j} where

Jj=tm>
0<¢ <..<c, £1, and we define the set of collocation points by:
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(9]

N=1
(2.2) X(N):: UX”, with X,,::{rnj =1, +cihy,, j 1,2,..,,m}.
n=0

! ; d ) ; . i
The approximate solution u € S,(n +) 4(Zy) will be determined imposing the

condition that u satisfy the VIDE (1.1) on X(NV) and the initial condition, i.c.:

2.3) w(t) = f(tu(r))+ j;K(t,s,Lt(s))ds, for all # € X(N), with 1(0) = y,.

The exact collocation equation (2.3) may be written in the form:

(2'4) ulu<tn,j>:f(tn,j’ n( r:J))‘F/zzzj K( I!j’f71+Vh7l7l’{ (7,+V/’I71))dV+F ( el /)

j:l,...,m(n:0,...,N—1),

where:
n—1 1

= th : K(r, 1+ Vi, w4 + Vhi)) dv
i=0

denotes the lag term.
For & small enought it is easy to show that system (2.4) has a unique solution

{ nJ} _ forall n=0, ..., N—1.

J=lm
For linear the version of (1.1)

2.5) y'(t) = p()y(t) + ¢(z) + J‘; K(t,s)y(s)ds, t € I, »(0) = yq

the collocation equation assumes the form:
n—1

( n,}) P(ru j)”ﬂ( i, /) ( n ]) + hn(bzz n Z B (I)nz

j=1...,m (n: O,...,N—l),

(2.6)

where:

SFg LA
‘ j K(IM, 1, + Vi, ) (e, +vh)dv, if i=n
@7 oVw]=1%
LK([”"’{‘ + vh)u(r +vh)dv o, if i=0,..,n-1

We phrase our convergence results for the linear equation (2.6); a re-
mark on the extension of these results to the general case (1.1) will follow

each of the proofs.
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In most applications the integrals (2.7) occurring in the exact collocation
(2.6) cannot be evaluated analytically, and one is forced to resort to employing
suitable quadrature formulas for their approximation. In the following we suppose
that these integrals are approximated by quadrature formulas of the form:

Ky

. Z“)IK(IHJ’[[ +d1/11-)u,-(t,- +d1/'li) N lf i= 0,...,’1“ 1,
@8) §/)[u]:= 1!
Z“)J',IK(IHJ’[N +dj,,hn)un(t" +dj,lhf1) 3 lf i n,
1=1

where i, and p, are two given positive integers; {d,}, {d } are two sets of para-
meters satisfying, respectively:

0<d; <..<d, <1 and 0<d;; <.<d;, <¢, (=1, 08,

and w;, w,, denote the quadrature weights.
The corresponding error term are defined by:

EI(I,JL)[MI] 5 ¢I(1{i)[ui] ims (’I\)El{i)[ui]’
j=L...,m, i=0,....n, (n:O,...,N—l).

Hence, the fully discretization version of the collocation equation (2.6) is
given by:

(2.9

(2.10) i
ji=1..,m, (n=0,..,N-1).
One can observe that the approximation # € S,(,:?d(Z v ) given by the fully
discretized collocation equations (2.10) will, in general, be different from the

approximation u € S,(,ir) 1(Zy) given by the exact collocation equations (2.6). For

alln=0, ..., N—1 and for all €, the approximation # € S,(,:i)d(Z ) has the form:

d m
@) =) =3 EM S )™,
r=1

!
el av!

with:
#7(0):= y*)(0), ¥ = 0,1,

Equations (2.6) and (2.10) represent, for each n=0,1,..., N-1 a recursive

system which will give the unknowns {an,r},,=]-,-" , respectively {an,r},:l—m. Since
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this solutions have been found, the values of u and u together with their denva-
tives on o, are determined by the formula (2.1), respectively, by the formula (2.11).

3. GLOBAL CONVERGENCE RESULTS
If the given functions p, ¢ and K are of class m +d on their domain of defini-

tion, then the VIDE (2.5) has a unique solution y, which is of class m+d+1. For a
function ¢ defined on / we shall denote by @, the restriction of ¢ to the subinterval

o, foralln= 0,1, ..., N—1, and we shall use the following norm:

(3.1) ||cp”00 A= sup{ltp,,(t)‘:z e &) ni=0;1,...) N - 1}.
. Concerning the convergence of the method described above we give the
following theorems:

THEOREM 3.1 Let p, g and K in (2.5) be m+d times continuously differen-
tiable on their respective domains I and S. Then, for every choice of the colloca-

tion parameters {cj}j=l-71 with 0 <¢; < ¢, <...<c, <1 andforall quasi-uni-

orm mesh sequences {1y} with sufficiently small h> 0, we have:
q N Y
(i) the exact collocation equation (2.6) defines a unique approximation

(@) (Zy), and the resulting error function e:=y—u satisfies:

ue Sm+a'

(3.2) He(k)” < Ckh”‘+d+l‘k , foral k=0,1..,m+d,

o0
where C, are finite constants independent of h;
(i) if the quadrature formulas (2.8) satisfy: o

Hy

(3.3) jol b1, + th)de =Y wid(h, + diiy) = O,
I=1
and, forj=1, ..., m,
o Ho
(3.4) [ 00, + wn)dx =3 v, 00, + d ) = O(h),
=1

whenever the integrand is a sufficiently smooth function, then for the approxima-

tion 4 € S,(;i)d(ZN) defined by the discretized collocation equation (2.10), the

following relations hold:
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(3.5) e = [l a0 <o R for all k=0,

and t =

(3.6) é(")H = “y(k) —id®¥ < E R, for all k=0,..,s

where s'= min{r, + 1,5} +1, s=min{s',m+ d + 1} and O, ,ék are finite
constants independent of h.
Proof. We shall prove it by induction using the same technique as in [4] or in [5].
(1) Forn=0,1, ..., N-1andforall t = ¢, + th, € o, (r (0, ID the exact

solution y can be developed in Taylor series:

m+d (r)
(37) y(”n o Thn) i ZM

r=1

rLr m+d+1
1 T hn g hn I(T) ’

where:

1 U (mtd+ .
Bt (an)!Jo A0 0, )z = )" dn,

So, by (2.1) and (3.7) we have:

d )
(3.8) e"(tn + 'rhn) = Z n— 1 hr‘r' +hpz Bnr h’rln+d+1 R ( ),
r=0
where:
Wp, = y(ﬂ'-f-r)(ln) —dy, pd+r
’ (d +r)! g

Taking into account that y is a solution of VIDE (2.5) and u € S @) (Zy)

m+d
satisfies the exact collocation equation (2.6) and employing the expression (3.8)
fore, , we are led to:

h,f"lz Bn,r{(d + 1)t~ pe j“’pnj ~ hzj o (ty + Thy )T ‘”"dr} =

(r)
{
- z il ”)/7;1 ](—’C’ Yt hyp, jf + h2J. ke (2, + th )T"dr) e
+h,’1"+d{_Rv”( )+ p,,jh,,R,, + h? J‘ k,,J t + th, ) ,,(‘C)d‘t} +

1
+Z/1J ko (1 + et + th)d, =1 m,
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where, we have introduced the abbreviations p,, j:=p<r +c jh,,)alld k,,,j(')=K (l,,’ j,->‘

Relation (3.9) can be written:
n—1

(3.10) WeTD,B, = F, B, 1+ g,
i=0
where D, € M, , F, € M (d+1) > E e L//z’(dJrl (a+1) ( A, denote the set

nmx

of matrices with a lines and y columns) and B, r, , ¢, ; are the column vectors, The
explicit form of the matrices and the vectors results from (3.9).
For n=0, by (2.1) and (3.10) we obtain:

(3.11) ho—lDOB m+d

From the assumptions of the theorem it results that the vector 7 is bounded
and for sufficiently small /,> 0 the matrix D, possesses a uniformly bounded in-
verse. Hence, for p = m + d + 1 we have:

(3.12) ”BOHI e IZ|50J| = “DO—IH1”"°“1 e
=1

and from (3.8) it results:
(3.13) |eg(t + thy)| < ™41 My +|Ry(7))) < Cp - ™+, for all 1 €[0,1].
Deriving relation (3.8) ktimes (k=1, 2, ..., m+d} and using (3.12) we obtain;

(8\14) eok)(t(, + hy )| < C((,k) Sk Cfor all te[0,1].

Suppose now that, forall j=0,1, ..., n—1

@:15) e, 4 on) & B etk ce0,], k=0, mtd

hold and prove that (3.15) holds for j = n.
By (3.9), (3.10), (3.15) and the assumptions of the theorem it follows that for
sufficiently small A >0 the matrix D_ possess a uniformly bounded inverse,

IE0, = 0 (B "), Jand,
Thus, from (3.10) for p = m + d + 1, we obtain:

= O(h’”+d+1) (1=0,1,...,n=1) and ||, is bound.

m

(3.16) B.,:= D |Bos|< M, + 01, 1,

I=1
and from (3.8) it results:
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(3.17) ety ik ) < Gl i

forall v €(0,1] and k =0,L...m+d.

Evaluations (3.14), (3.15) and (3.17) end the proof of the first assertion by
the theorem.

(i) By (2.1) and (2.11) it follows that the function &:='u — # can be written
forevery n=0,1,...,N = 1, thus:

d 8(") (If ) m ;
(3.18) g, (1, +Th) = Z”—lh'"t"hﬁ B My,
r=0 i r=1

where:
s’ Rt o d+r
h” Ny = (an,r i an,;')hn .

If we now substract the discretized collocation equation (2.10) from the ex-
act collocation equation (2.6) and we use relations (2.9) and (3.18), we are led to:

n—1

(3 19) hﬁ'mlD"n" 7 F"é;‘l + hnrn,n + Zhi((}n,i + rn,i)5
i=0
where 7, ;1= E,(lll)[ul], W E,(,":)[u,] , and the matrices bn g ﬁ,,,éj, and the vectors

(},1,,; have the same sizes as D, F, E, and ¢,; from (3.10), the differences be-
tween them consisting in the fact that the integrals from (3.9) are replaced with
quadrature formulas of the form (2.8).

The above expression has the same structure as (3.10). From the smoothness

hypothesis and from the assumptions on the order of the quadrature formulas (3.3)
’1 = 0<h,f°) and |r,,,l-.

ing from the proof of the assertion (i), it easily results that relation (3.5) is true.
Now by (3.2) and (3.5) it results:

It ”y(k) _ %)

and (3.4) we have: |7 n oy 0</11-r' ) . Thus, repeating the reason-

(k)

~(k
e(‘ ) e

<
00

(0] < G

o0

0
forall k=01, ..., s, with s=min{s', m+d+1}.

COROLLARY 3.2 Let the assumptions of Theorem 3.1 hold. If the quadrature
formulas (2.8) are(d(gfinterpolatory type, with p, = p, = m+d , then the ap-
proximation it € S, ,(Z v ) defined by the discretized collocation equation (2.10)
leads 1o an error &(t) satisfying:
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(3.20) é(")“ = O(Wm1K), (as KNO and NREAT),

for k=0, ... m+d, and for every choice of the collocation parameters {cj} =
j=1m

with 0 <¢ <...<¢, <1

Tn many papers (see [1], [2], [3]) the quadrature formulas used have u,=p,=m,
a{/.=cj. and di,,=cjc, (j,I=1, ..., m). The possibility of employing some quadrature
formulas of the this type in our method would lead to some simplifications. These
simplifications are useful when they do not spoil the convergence order given by
Theorem 3.1 (i), namely s=m +d +1. An answer to this problem is given in the

following corollary.

COROLLARY 3.3. Ifin VIDE (2.5), peC™(I),qeC™(I)and K eC"™(S)

and if m>d, then there exists the set of collocation parameters {cj}j & such
=Im

~ d ] ; 3
that for the approximation U€S ,(,,Jr)d(Z ~ ) given by the discrete collocation equa-

tions (2.10) in which p=p,=m, dj=c]. and d; ;= cicwe have:

S®) ::”y(k)_ﬁ(k)H :O(hm+a’+l—k>’

(3.21)

for k=0,..., m+d (as ™0 with Nh <yT).

Proof. If py=p,=m and m=d then we choose the set of collocation para-

meters {c j} i to be formed by the m Gauss points for (0,1).
J=lm
Remark 3.4. (i) The results of the above theorems for d=0 and m > 1 are
similar to the results given in [3], while for d=n-1 and m=1 (ne N) they are
similar to the result from [6].
(ii) The extension of the above arguments to nonlinear VIDE (1.1) is straight-

forward: in the error equations (3.10) and (3.19), the roles of p, J and of kmj (t+1h)

are taken, respectively, by of (t,, +¢;hy,.z, j)/ 9y and 6K(r,, + ¢l by + T]1,-,Z,~(‘t)) /oy,
withz, and z, (t) denoting suitable intermediate values arising in the application
of the Mean-Value Theorem (see {3], [5]).

4.1LOCAL SUPERCONVERGENCE ON Z,

The notion of local superconvergence is used when on a set of interior points
Zyn (or zZ N) , the approximate solution has a convergence order greater than the
global convergence order. From Theorem 3.1 we notice that the only conditions

imposed on the collocation parameters {c j} o are that they must be distinct and
j=lm

A
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they must belong to (0,1]. The local superconvergence on Zy is closely connected

with the choice of the collocation parameters (see [3], [4], [5]) and with the rela-
tion between their number and the number of the coefficients of the approximate
solution determined from the smooth conditions.

We will give the following theorem concerning the aspects presented above:

THEOREM 4.1. Suppose that:

(1) the given functions p, g and K from VIDE (2.5) are m+p times continu-
ously differentiable on their respective domains I and S (where d+1<p< m);

D) m 2d +2,

(I11) the collocation parameters {cj} —, with 0<¢ <..<c¢, =lare
j=lm
chosen such that:
1 m
szzjoyf]_[(s—cj)dszo, for. k=0L..,p=1;
J=

4.1)
J,#0,  where d+l<p<m

Then, for all quasi-uniform mesh sequences {11 N} with sufficiently small

h> 0, we have:

(1) ifu eS,(,i)d (Zy) is the approximate solution defined by the exact colloca-
tion equation (2.6) and y is the exact solution of VIDE (2.5) then:
(4.2) maz_xly(tn) - u(x,,)| = O(h"”"”), (as WNO and Nh<yT);
1, €Ly
(i1) if the quadrature formulas (2.8) satisfy (3.3) and ﬁeS,(,i)d (Zy) is the

approximate solution defined by the discretized collocation equation (2.10) then:

(4.3) zﬁ%ﬂ e,) - lt,)| = O(h*), (as INO and Nh<yT),
where o=min{m+p, s'};
(iii) if m>d+2 and the collocation parameters {c f}j=1—;7; , are chosen such
that relation (4.1) holds and c, =1, then:
(4.4) Sg;]y'(z,,) ~u(1,)| = O(H"*?), (as hNO and Nh<HT),
and
(4.5) t"rré%)ﬂy'(t,,) — (s, )| = O(h“ ) (as INO and Nh<yT),

where o =min{m +p, s'}.
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Proof. (i) The exact collocation equation (2.6) can be written in the form:
4.6) w(1)=qe)+ p(0)ule) + | K(1.)u(s)ds=3() 1,

where 8(7) denotes a suitable function, subsequently called the defect function,
vanishing on X(N).
By (4.6) and (2.5) we obtain for the error function e: = y—u the following VIDE:
! L
A7) (1) = 8(¢) + e(1)3(t) + jo K(t,5)e(s)ds, 1 eI with e(0)=0.

The solution of (4.7) can be expressed in the form (see Theorem 1.3.4. from [3]):

t ¢
(4.8) e(r) = R(10)e(0) + [ R(t,5)8(s)ds = || R(t,5)8(s)ds,
where R(1,s) represents the resolvent kernel associated with the VIDE (2.5), and
hence with VIDE (4.7).

If in (4.8), for 1 =1, € Zy » we replace each integral by the sum of the

interpolatory quadrature formula with abscissas {1, + ¢;f;:1 = 1,...,m} and the
corresponding remainder term £, ; since 8(t, + ¢;h;) = 0, we obtain:

n-1 n-1 .

4.9) e(t,)= Z hEi= Suk J;R(t,,,s)S(s)ds.
i=0 i=0

From (4.1) we have that for ‘E”,,-' = O(h”‘“’ ) for h — 0 and hence from (4.9)

it results 'e(r,, )’ = O(h"’*f’ ) , evaluation which proves the first assertion of the theo-

rem.

(i1) The assertion of Theorem 4.1 (ii) now follows from (3.5) and (4.2). We
mention that relation (4.3) can be straightly proved using the same technique as in
Theorem 3.1 from [5]. i

(iii)By (4.8) we obtain:

@10) (1) = 8()R(1,1) + (fﬁ%(s)ds = 8(1) + j; %(s)ds,

since R(t, 1) =1 (see T 1.3.4 from [3]).
For 0 < ¢ <...<c, =1 we have &(1,) =0 andby (4.10)for r = ¢, € Z,
it results, in complete analogy to (4.9):

n—1 n—-1
(4-1 1) e'(t") T S(ZH) + Z hr.'En,i v Z hiFTn,i ’

=0 =0
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where E,,,,- denote the quadrature errors associated with the m-point interpolatory

quadrature formulas, based on the abscissas {t, + ¢/}, for the integrals from (4.10).
The assertions of Theorem (3.1) (iii) now follows by the arguments employed at

the end of the proof of (i) and (ii).

COROLLARY 4.2. Let the assumptions of Theorem 3.1 hold. Then:
(i) for the approximation TS S,(,i) “(Z ~ ) given by the discrete collocation
equation (2.10) in which p,=p=m, dj.= ¢ and dj’,=c]cl we have:

mz%x.y(t,,) — ﬁ(t,,)| = O(h"‘“’) (as IO and Nh<yT),
t, €2y

and for ¢, =1 we have:

m@xly'(r,,) - &'(z,,)\ = O(h’“”’) (as KNO and Nh<yT);

tne N

(ii) if the collocation parameters {c j} o are the zeros of P, (25-1) (Gauss
j=lm

points for (0,1)), thenp = m and

llnneaz)i‘e(r” )l = O(hQ’") (as K\O and Nh<yT);

(iii) if the collocation paramelers {c } __ are the zeros of P _(2s-1)-
JJj=1m =E o

~P,(2s - 1) (Radau 11 points for (0,1]), then p = m-1 and
e(i)(t,, )l = 0(112'”'1), for i=0,1(as ™NO and Nh< vT);

max
t,&ly

(iv) if the discretized collocation equation (2.10) is characterized by
interpolatory m-point qaadrature approximations with w,=p,=m, then the

resulting approximation 4 € S ,(ndﬁ d(Z v ) has the property that:

m%_xlé(l,,)l = O<h2’") (as ’NO and Nh< yT),
1, €Ly f
if and only if, (a), (b) and one of (¢), (¢), (c") holds:
(a) the collocation parameters {Cj} L =are the Gauss points for (0,1);
=1,m
by d=c, (=1, .., m); !
(c) dj'] =) Gl =1, .., m);

©d=cc) G I=1 m), where the {c‘ j}j=rm are the Radau I points for [0,1);
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(c") dj‘,=c].c’,’ (j,l=1, ..., m), wherethe {cj} __ arethe Radau Il points

Jj=lm
for (0,1].
Proof. The above results are proved by H. Brunner and P. J. van der Houwen

in the case d=0 (i..e S©(Zy) (see [3], pp.279-299)). Also they hold in our case

(d=0), the proofs can be identically transposed,

5.NUMERICAL EXAMPLES

The convergence results derived in the preceding sections will be illustrated
by the collocation methods to the following test problem:

(5.1) y(O) = Ms)ds, 0)=1, refol], r>0,

0

whose exact solution is y(1) = %(exp(ﬁ? ) + exp(—\/ﬂ )), and two linear problems:

y'(t) = y(z) + 2t exp(ﬂ) + J(: 2t exp(l2 = sz)y(s)ds,
y(0) =1, 1eo1],

(5.2)

whose exact solution is y(7) =exp(z+ ¢2), and

¥ (r) = —y(l) + exp(t) - JZ exp(z - s)y(s)ds,
»(0)=1, te[01],

whose exact solution is y(7) = 1.

(5.3)

For above problems we have tested the collocation methods based on:

A. set of collocation points {Cl =

_.C';!:l} if m = 2, and the set
1 1

€ = =Cy ==, C = 1plifm=3;
37627 5 C

, 1
B. Radau II points {Cl e AChH = 1} if m = 2, and the points

3
{ 4-J6  4++6 } _
o= CH = =1

Ot (b ol D




90 Ioan Danciu 14

BB 33
D2 TNl
6

6

C. Gauss points {¢ if m = 2, and the points

_S—JEC I IS

Ka¥= 10 ’2:5’6327)— ifm=3.

The tables contain the values of approximated error in the end point, i.e. the
value ey =| wWT)-u(T )' , the number of correct digits obtained at the end point, i.e.
the value of:

[y(T} - u(T)'
I(7)|

and the effective order of numerical method, i.e. the value of

Sd:=—10g10 ,(T:’N>

B sd(h) — sd(Zh)

P T g (log10(2) = 03)

for various values of the A, m, d.

Table 5.1.a

Approximated error, number of correct significant digits and effective orders for problem (5.1),
with A=1, form=2 and d=0

4 B C
ey/sd; p,, ey /sd, Dy ey/5d; Py
1/2 68107 /235 >2’1 37x107 /361 >2’8 17x107 / 4%4 )
1/4 16x107 /298 S4x10™ /445 10x107 /616
1/8 39%10™ /359 J0x107 /533 > 221 61x107 /736 >
1/16 | 96x10™*/420 )203 89%x10°/623 >3 40x 107 /858 )4-06

4.06

>2.o3 4

Table 5.1.b

Approximated error, number of correct significant digits and effective orders for problem (5.1),
with A=1, form=3 and d=0

) 4 B aQ

ey 5d; Py ex /54 py e /343 P,y
172 | 83x1077326 >3_06 B4 x 1077545 >5 23 %107 7782 >6 =2
1/4 | 10x107/418 17 %10/ 6.95 35%x10°/963 {
1/8 | 12x104/508 > 40 x 107 /858 >5'5 56 % 107 /1144 >6'°3

15 Spline Collocation Methods 91

Table 5.1.c

Approximated error, number of correct significant digits and effective orders for problem (5.1),
with A=1, form=3 and d=1

A B C
/
l ey/sd, p., ey!sd, p,, ey!sd; p.,
2 2x107" 2 /6. A 15
1/2 12 x 107 /508 >4.03 .0><_108/687>5 1><l(JIS 7 7>4.4
1/4 78 x 107 /629 66 x 107 /837 20x 107 / B8R
it 4 4+ /058 503 4 )4.03

1/8 S50x1077/77.49 20%x107 /9.88 12 %107 /10.09

Table 5.2

Approximated error, number of correct significant digits and effective orders for problem (5.2),
form=2 and d=1

b A B C
ey ! 3d; P, e, /sd; p,, ey /sd; p,,
1/2 27 %107 /243 > 21x 10 /152 A48 x 107/ 3'18>401
. 2.86 .
1/4 15%x 1072 /369 > 30x107 /238 > 28 x 107 /4.41>
4.06 293 4
1/8 90 x 107 /491 39x 107 /326 > 17 x 107 / 561
4.03 )& 4.03
1716 | 55x107° /612 51%x 107 /416 10x 107 /683

Using the Maple Programing Language, the collocation method apply at the
problem (5.3) in all cases from above, we yield the exact solution, 1.e. u(f)=(f) forall r[0,1].
Finally, from numerical examples printed in Tables 5.1 and 5.2, we can
observe a good concordance between theoretical results presented in the preceding

sections and corresponding results given in this section.
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