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An operator
£ E(),

given by the formula:

0 for x =0
F(f)x):= if:tn'lf(t)dt for x= 0

xﬂ
transforms the class K(b), b > 0, all real functions, convex on [0, b] and vanishing
at zero, into itself. In particular, for n :=1 it reduces itself to the usual integral

mean. More generally, given a suitable function ¢ (instead of “x +> x"”) one
may consider an integral operator:

0 for x =0

(1) - F(p(f)(x):z no(x* e o
o) _[O(p(t)f(z)dt fors x1=0;

This operator was considered by Gh. Toader _in\ [1]. He has proved that the
inclusion F' (P(K(b)) < K(b) forces ¢ to be proportional to a power function.
More exactly:

THEOREM (Gh. Toader [1]). Ifthe operator F, given by (1) on the class K(b)
preserves the convexity, then there exist a real constant k> 0 and an a > 0 such
that o(2) = kt 9, t € [0, b]. Conversely, if p(1) = kt¢, t € [0, b], a> 0, k#0, then the
operator F, given by (1) transforms the class K(D) into itself.

The chief concem of the present paper is to replace the derivative ¢' of the
function ¢ in Toader’s operator by another given function. More precisely, we
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shall replace ¢' by an arbitrary positive continuous functlon So, we shall consider
a pair (¢, y) of continuous functions enjoying the following properties:
@, v : [0, b] > IR, (0) =0, ¢(x) # 0 for x € (0, b]. In this way we define an
integral mean F,_  on the space C(b) of all continuous real functions on [0, D],
vanishing at zero “with the aid of the formula

0 for x =0
[Cw)s(nar for x < (0.]

0

(2) F(P,\I' (f)(x) T=

1
¢(x)

for f e C(D).

We will prove a result similar to that due to Gh. Toader in [1] for the integral
mean F, _]USt introduced. We shall first show that the operator F y given by (2)
can be reprebented as the sum of two new operators depending upon one given
function only and that one of them is just the Toader operator.

THEOREM L. Let ¢, y : [0, b] = R be continuous functions enjoying the
following properties: ¢(0) = 0, (x) > 0 and y(x) > 0 forx € (0, b] and let ¢ be
(right-hand side) differentiable at zero. If the operator F,, : C(b) = RI%21 given
by (2) transforms the class K(b) into itself; then ¢ is a C1 funcnon on the interval
(0, b] and there exist a constanty > 0 such that

E, &t ttFes
where
0 for x =0
3) Fi{f)x):=4 1 o) .
9 @jo == f(0d for x <(0,5],
and the operator Fis given by (1).

Proof. The identity function id(x) = x, x € [0, b], belongs to K() and, there-
fore, the function F % (id) is convex. In particular, for an arbitrary A € (0,1) and
for every x € [0, b] we have:

Fp o (id)(0x) = F, ,(id)(2x + (1 2)0) < 1F, , (id)(x) +
+(1 - 1)F, 9, \v( )( )= Fy, w(ld)(x)’
whence, by definition (2), we get the inequality
1

_hetly 49 L ’W( )df X———I—J‘J t\y(l) dz

¢(Ax)
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valid forall A e (0,1)and x € (0, b]. Similarly, since —id € K(D) as well, we obtain
the reverse inequality. Ccnsequently,

4) R;T) j:\ ny(1)dr = & q)—(ll—) J(: ny(r) dr

b
forall A € (0,1) and x € (0, b]. In particular, for x = b and B:= j(, ny(£)dr > 0

equality (4) assumes the form

:P—l——_[kb ny(r)dr = -—}\—B for A e(0]).

0 o(b)

Setting here s : = Ab we get

——I—J.S r\y(t) e B dfon & ssie (0, b] A

or, equivalently,

bo(b
o(s) = )(PB( )%J(? ny(f)de  for s e(0,0]
Putting here v := bq?(b) we have y > 0 and

ysp(s) = J ny(t) dr for s €(0,1].

Moreover, ¢ is a C' —function on (0, b] because  is continuous. From the last
equality we infer that
o(s)

w(s) =y — +yg'(s)  for se(0,b]. .

Substituting this equality into (2) gives

Fon(/)(s) = (P(lx) ./ (f){v @ + vcp'(f)} di =y ?(1;) W (t)i(tt—)dt i
" (' (1) dt = FLS ) + AF (1)), x e (0,8],

Y (p()c) ¢

which completes the proof.

In what follows, we shall show that under some additional assumptions upon
the given functions the demand that the corresponding operator £, transforms
the class K(b) into itself, determines the analytic form of ¢ and . \‘i\lamely, we

have the following
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THEOREM 2. Let ¢, y : [0, b] = R, be continuous functions such that ¢(0) =0,
¢(x) > 0 and y(x) > 0 for x € (0, b] and let ¢ be (right-hand side) differentiable at
zero. Assume that there exists a ¢ 2 2 such that the function

(S) 0,b|5x w(x) e R is starshaped
c~2 P
x
and the function
w(x) . i
M) (o, b] >x ——eR attains the absolute minimum at b.
S -

If the operator F, , : C(b) — RI% 81 given by (2) transforms the class K(b) into
itself, then there exist a real constant k> 0 and an a € (0, ¢) such that
O(x) =@, (x) 1 =kx?, y(x) =y, (x) =9, (x) = kax*"!,  x e [0, D).
Proof. Observe that
;JM ny(r)de = }»LJ‘X ny(t)de  for all A e(01) and x (0,5]
¢(Ax) Jo ¢(x) %0

(see the proof of Theorem 1). With the aid of the substitution: z = Au (for
fixed A € (0,1) and x € (0, b]) we obtain the equality

A x x
WL ny(Ar)dr = (p(lx) jo ny(1)de

valid forall A € (0,1) and x € (0, b]. Consequently, one has

) fx[ ~ \v(?»t)—#w(t)sz: 0 forall Ae(0l) and x €(0,5].

0 Lo(Ax) o(x)
In particular, for x: = b we have

| b[—”‘— (M) - Lw(t)Jdt -0,

0 | @(Ab) ®(b)

We shall show that the expression occurring here under the integral sign is
nonpositive. In fact, by assumption we have @(Ab) = X°p(b) for all A € [0,1]
whence, in view of (S) and (M) applied consecutively,

tA 1 1

t % i
AR ’[cpw)) i w(bJ‘"(’) it

as claimed.
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Consequently, on account of (5), the difference considered has to vanish
identically. In particular, setting x = b we obtain

——\y(kb) = L\y(b),zzn >0 for Ae (0,1].

Therefore
(1) = n—= for all 1 e(O,b].
On the other hand ' \
L ex)
w(x) =7 -

(cf. the proof of Theorem 1) whence

+ y(p'(x), X e(O,b},

¢'(x) = ﬂ_(p_(x_) for all x e(0,5],
Yy ox
ie.

(p'(x)za(Pix), x e (0,8],

where a: = 1 —1 Thus, there exista B €IR such that In p(x) ~ Inx “=f3, x € (0, b],
Y

which means that ¢(x) = ePx?, x € (0, b]. Itsuffices to put k:=eP >0. Of course
a # 0 (by assumption ¢(0) =0). Itremains to show thata € (0, ¢]. If wehad « <0,

then ¢ would fail to be continuous at zero; thus @ € (0, «). Since the function
X ) ! .
(0, b}a X Kc) = kx97¢ attains its absolute minimum at » we get a < ¢. This
5
ends the proof.

THEOREM 3. Let ¢ : [0, b] = IR be continuous function which is (right-hand
side) differentiable at zero. If ¢(0) =0, (x) > 0 for x € (0, b) and if the operator
F(é given by (3) transforms the class K(b) into itself, then there exist real constants
k>0 and a > 0 such that ¢(x) = kx“ for all x € [0, b]. Conversely, if p(x) = kx?,
x € [0, 5], a, k € (0, 00), then the operator F(; transforms the class K(b) into itself.

Proof. By assumption, if f € K(b) then Fq}(f) is convex. In particular,
g:= F(; (id) is convex on [0, b], positive on (0, b] and g(0) = 0. Obviously, the
operator £, is linear which implies that the function —g = —Fq} (id) = Fq} (—id) is

convex as well, because —id € K(b). Hence
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g(hx + (1~ x)y) - xg(x) +(1- x)g(y)  for all g(x) e[01], x,y E.[O’ b].

Setting here y = 0 and taking into account that g(0) = 0, we get
g(?\x) = Xg(x) for A e [0,1], X € [0, b].
Putting here x = b, t := Ab, A € [0, 1], we obtain

£ = 1) =

b o(b)
which means that

b .
-[0 (p(s)dsjt for all ¢ e [O, b] ]

g(t) =at, t €[0,]],

b
where o1 = ;J.o @(s)ds > 0.

bo(b)
Consequently
I x
ox =—— | o(t)dr for x €(0,5|,
et 0 (0,4
LE:
1 pex
(6) o(x) = ;JO ¢(r)dr for x €(0,b];

in particular, the function ¢ |(0 5 is differentiable.
From (6) we get

i sl
ox) o x’ (0.5],

which implies

o(x) = kx*, x e(0,8],

) 1- f R
with g:= and k> 0. We have a > 0 in view of the fact that ¢ is continuous

o
at zero (by assumption @(0) = 0). The other part of the assertion was already
proved in [1]. This completes the proof.

Remark 1. As a matter of fact, the assumption that the operator F__ trans-
forms the class K(b) into itself, occurring in Theorems 1 and 2, was used exclu-
sively in order to prove that the functions F  (id), F, " W(—id) are starshaped.

Remark2. Assumption (M) occurring in the statement of Theorem 2 is trivi-
ally satisfied whenever the function )
' - x
(P(C) e R

X

(0,6) 3 x

is monotonically (weakly) decreasing. ‘
Bearing Remarks | and 2 in mind and applying Theorem 2 with c= 2 we

obtain immediately the following

THEOREM 4. Let ¢,y : [0, b] — R, be continuous functions such that (0)=0,

(%) > 0 and y(0) > 0 for x € (0, b] and let ¢ be (right-hand side) differentiable at
SR i ‘
zero. Assume that y is starshaped and the function (0, b] 53X -7(p(x) elR is
R ¢ S0

(weakly) decreasing. If the operator Fo 8iven by (2) has the proipertj{ that the
Sfunctions F, 0 \u(id)’ F . LP(—id) are starshaped, thenthere exists a real constant k>0

and an a € (0, 2) such that

:(P(?f) = kx? W(x) = (p'(x)-= alpc“‘l , xle [O,Z?].
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