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CONSTRUCTION OF BASKAKOV-TYPE OPERATORS |
BY WAVELETS

O. AGRATINI

1. INTRODUCTION

The Baskakov operators are defined on C[O, o) as

M (B,/)(x) = ibn,k(x)f[ﬁj,

k=0 n
where
n+k-1 %k
2 b,(x) = e

If we define the mth order central moment by
[s o] k m
pn,m(x) = Z b,,,k(x)(— - x) ,m=0,12,...,
k=0 H Ly
then there are well-known the following relations:

x(x +1)

3) Baoo(%) = 1, B,(x) = 0, p,5(x) =

and

iy mar(x) = 21+ X)W, (x) + mpy 1 (x)), m=2,3, 4,...

The purpose of this paper is to introduce a class of Baskakov-type operators
by means of Daubechies’ compactly-supported wavelets. These new operators
have the same moments as Baskakov operators in an arbitrarily chosen number.
The rate of convergence of these operators is in connection with the Lipschitz
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functions with respect to the second-order modulus of smoothness. We mention
that using wavelets for Szasz-type operators, remarkable results have been
obtained in [4].

2. PRELIMINARIES

Because the operators defined by (1) cannot be used for Lp-approximation
(1<pc< ), they were modified in an integral extension in the sense of Kanto-
rovich. The Baskakov-Kantoro vich operators are given by

© kol
@) (B;f)(x) = nZ b, .(x) ik S(u)du,
k=0 n
where b, (x) is defined at (2).
There has been an extensive study of relations between rate of convergence
and smoothness in L,[0, o). |

We will recall the step-weight function ¢ of operators B, and B; which -

controls their rate of convergence. This function is defined as

(5) 9*(x) = x(1+x), x>0,

On the other hand, we recall some facts about wavelets (see [2], [5]). The

term “wavelets” refers to sets of functions of the form

W,s(x) = a‘”zw( o b), a>0,bcR,
. a

i.e., sets of functions formed by dilations and translations of a single function W
called the “mother wavelet” or “basic wavelet”, In the Franklin-Strémberg theory
a is replaced by 27 and 5 is replaced by k.2, where J,k € Z . In the analysis of
an arbitrary function /€ L,(R), these wavelets are going to play the role of an
orthonormal basis. The synthesis of f is given by

0

S = 2 ali k), 4(x),

—0 —00

where

afj, k) = 2f’2J'Rf(;)\|/(2fx ~ k) dx.

For each positive integer  Ingrid Daubechies constructs an orthonormal
basis for L,(R) of the form

2%y, (Px - k), jk ez,
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where the support of v, 1s [0, 27 +1]. Also, there exists a positive constant y such
that v, has yr continuous derivatives and for any 0 <k <p

k S
fo W, (x)dx = 0.

[n the case of Daubechies” wavelets a regular function is approximated by
functions that have strong discontinuities,

We mention that for =0 this system reduces to the Haar system. If we want
wavelets to be useful for the analysis of other function Spaces, it is necessary to
impose conditions on them in addition to those we have already given. In what
follows we require for y L.(R) the following conditions:

(C)) a finite constant A >0 exists with the property Supp y [0, 7»] ;
(C,) its first » moments vanish:

jR tk\y(t)dt =0, 1<k <

()
| wiede = 1.
Then our Baskakov-type operators are defined as
(6) (Ll )®) = n3 b u ()| F(e0w(nt ~ By,
k=0

I Xfo,1) is the characteristic function of the inferval [0,1) and w = ¥y,
then L, becomes B * defined at (4),
In this way, L, are extensions of the Baskakov-Kantorovich operators. Because
supp y < [0, ?\.] , it is clear that L, can be written under the following form

o) B0 = b A e :

3. RESULTS

THEOREM 1. Let L, be defined by (6). Then, for 0 < 5 < y, we have
(Lnes)(x) = (Bne.s')(x)> x20,
where e (1)=15,

Proof. We can write

s (2] o= 157 b,,,k<x)[ 2l x"kf-fwx)drj.

n k=0 i=

(Lue,)(x)="

k=

0
0
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By using the conditions (C,) and (C2), we obtain the claimed result
1
(Lnes )( 5 J. ks n .s')(x)'
n' k:
The following particular situations will be remarked as important:
(8) (L,eo(x) = 1 and (L,e )(x) = x.

Further, we present some Bernstein-Markov types of inequalities. Firstly,
we insert C3[0,00):= C[0,00)L,[0,0).

THEOREM 2. Let | € C B[O, ). Then the following inequalities

) Iz, <
(10) Iz, 7., <
(1) 122, £, <4n(n+10)M| 1],

hold, where M = Ay, -
Proof. If we put

J: f(t t, k)W(t)dt = 1,(k,n),

then, for. f € C,[0, =), the following inequality

(k. m)| < ALl

holds.
By using relation (7), we can write

M
o
s

(Lf)(x) <

x) |1, (k) < M.,

=
I

0

In order to prove relations (10) and (11), we recall

By x(x) = ;(I’J‘r—x)(%-x)b,,,k(x), x> 0;

k
K ()= sbpapea(s), k=123,

Thus, we can write
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(L f

{Z bn+1k 1 If k n) (Lnf)(x)} n

(12) . [ '
= I+ . ];}bn+l,k(x)1f(k + 1, n) = (L,,f)(x) .
This identity together with relation (9) imply
n o0
69 = 2 AS ol e el = L
k=0
Hence (10) holds.
We derive relation (12) with respect to x and we get
. n+l, ., n+1
(L, f)(x)=“i+—x(Ln 1+x Z_: w2 k1(X)L o (k+1n) an+1 k() ¢ (k+Ln) |

From the above relation and inequality (10) we obtain

(2% Yoo (e N £)06) + 200+ DA v, < 4+ 1) 11,

The proof of this theorem is complete.

THEOREM 3. Let f € C'[0,00)(1L,[0,). Then the following inequality

5 71, < M(AL +171.)
holds, where M = )V"\y"oo .

Proof. Relation (14) may be written as follows

(l,, f)(x) = {Z Lk +Lm) = I(k, m)+ D (B (%) = B (R (ke +1 n)}.

But we have

: A
|If(k + ]" n) i If(k’ n)l = ; "f'“oo”\""oo 2

f(t+:+l)_f(t;k) lf(ik)

because
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£, lies between § il and k1 . Also, it is easy to verify that
n n
k
——x
bn+],k(x) - bn,k (X) = ;l-l—‘x bn,k(x)'

All these relations lead to the following inequality

(2 ¥ < xnwuw[u I+ oL bt
"Applying the Cauchy’s inequality, we obtam

and,-according to (3), we get the desired result.
Further, let g € C?[0,0)NC;[0,00). We use the Taylor expansion

——x

k=0

g(t) = glx)+¢ (x)(z - x) + J:(t - u)g” (u)du.

By using relations (8) and (3), for x>0, we can write successively

L{(Lf(f - e (i ] g
= i By (x) J‘Ox [ J.X% (t : L3 u)g” (u)du]w(l)df

(Lug)(x) - g(x)| =

< ébmx)ff{ﬁ“ e o JdrnwL <
<ol 3 b)) (25 -+t -
AL 2 R st - st 5+ 2.

Taking the infimum over g e C?[o, )1 C4[0,), by (9), we have
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(7)) = 1Gf = ine {Itas = ), +17 = el + (Lus)o) - £()] <

< {MH“J’ el +Mllg"ll[ HIJ}

geC*NC

<(M+1) inf {Hf gl + [

geC? NCy

2
= (M + I)Kz[f ik A+ l)].
n
Here, K, is Peetre’s functional given by
(13) K(f.0= jnf {If-el, +del.}. > 0.

Now, we can state the following result

THEOREM 4. Let f € Cy[0,) and L be given by (6). Then

I(L,,f)(x) - f(x)| < (M + I)Kz[f, (perx) + %J,

n

2
o = A — > @ and K, arementioned at (5), respectively at (13).

It is known that Peetre’s functional is equivalent to the regular modulus of
smoothness, consequently there exist some constants B >0 and #,> 0 such as

(14) Bloy(/,0) < Ky(f, ¢ )< Boy(f,1), f €Cp 0 <t <1,
where

3(f51) = sup

O<h=t

s,

and

A S (%) =

0 , otherwise.

{f(x+h)—2f(x)+f(x—h) , when s < x

Once Theorem 4 and inequality (14) are known, we can easily obtain

COROLLARY. Let 0 < o <2, f & Cy[0,0) and L, given at (6). If

o,(f,1t) = O(t“),
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then we have

(Z,/)) f(x)|<y( ¢*(x) H%JE

2
where g = % ,y Is a constant and ¢ is defined by (5).

Next, let s be an integer such that A < 5 and f < L[0,00). We can write
SIEIINGCay M O
ns T — o = 0 -
f ek © A+I(
Hetprason- g

Here we have used the fact that for n > 2

Jm bn,k(x)dx = 1

0 n—1

<WL

On the other hand,
© Atk ) w stk
;L stgﬂ"

. Hence it follows that ”L f “l

o -1 k+i+l

D= 25 [ e g,ufnl - s},

k=0 i=0

, where M, =

The above inequality and relatlon (9), by means of Riesz-Thorin theorem
(see [1]), lead to the following result

THEOREM 5. Let n>1, 1< p < oo, f € L,[0,00). Then

|21, < c,lA,

holds, where C_is a constant.

The Riesz-Thorin theorem claims that the norm of operator L, does not
exceed M|~ M”, where, in our case, p' =1 - v,v e (0,1). After a few calcu-
lations we obtam an upper bound of the operator’s norm, as follows

11

1
¢, =2 (2 Il

For the classical operator B " the estimation
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1
no\r
<
251,
is known (see [3], p. 118).
If we choose w = ¥y, ), then W], = LA = 1and s can become A. In this
way, we come across (15).

(15)
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