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SEQUENCES OF MULTICRITERIA OPTIMIZATION
PROBLEMS

DOREL I. DUCA, EUGENIA DUCA, LIANA LUPSA

A whole series of production processes, economic systems of different types
and technical objectives are described by mathematical models which are
multicriteria optimization problems.

This paper presents some properties of different classes of multicriteria
optimization problem solutions. \

Consider the following model of a multicriteria optimization problem

(P) {v — min f(x)

x e X,

where X is a nonempty convex compactset of R"and f = (f,,..., f,): X - R"
is a continuous function on X.
Let us recall some concepts of multicriteria optimization problem solutions:

DEFINITION 1. The point x e X is said to be a Pareto solution of Problem
(P) if there exists no point x € X such that f(x) < fi (xP )

The inequality f(x) < f (xP ) means
fi(x) < f,-(xP) for all i €{l,...,m}
and
A+ fu(x) < fi (xP)+. Al (xP).
Let P(f; X) denote the set of Pareto solutions for Problem (P).

DEFINITION 2. The point x° e X is said to be a Slater solution of Problem
(P) if there exists no point x € X such that
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Si(x) < £(x*) for all i {L,...,m}.
Let S(f; X) denote the set of Slater solutions for Problem (P).

DDEFINITION 3. The point x® e X is said to be a Geoffrion solution of
Problem (P) if x is a Pareto solution of Problem (P) and there exists a positive

number M> 0 such that for each i € {1,...,m} we have

£(x) = /()
fj(x) = fj(xG)

A

M

>

for some j e{l,...,m} such that fj(xG) < f,(x) whenever x € X and

(%) < £i(x°).
Let G(f; X) denote the set of Geoffrion solutions for Problem (P).
It is obvious that

G(f;X) c P(/;X) < S(f; X),
If 4= [aij] e R is amatrix of the type (p, ) with all real elements, then
A 1 X — R? denotes the function defined by
Af(x) = (ay filx) ran, £, (x) oy @ fi(2) e A ap (x))
forall x € X,

THEOREM 1. Let 4 = [a‘.] € R be a matrix such that (a,y, ..., a,,) = 0

y

forall i €{l,..., p}. IfxSisa Slater solution of Problem
(PA) V—minAf(X)
xelX,

then xS is a Slater solution of Problem (P).

Proof. Assume that x5 is not a Slater solution of Problem (P); then there
existsapoint x € X suchthat f(x) < /' (xS ) From this, because (q,,...,q;,) > 0
forall i e{l,..., p}, it follows that

ailfll(x)_‘—' : '+aimfm (X) < ail./i (xs)+' ' '+aimfm (xS)

forall i €{l,..., p}, hence 4f(x) < Af(x). Therefore, x%is not a Slater solution of
Problem (PA), which is a contradiction,
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Remark 1. The converse of Theorem 1 is not always true. For example, let
X = {(xl,xz) S 9:{2‘ Oéx] §1,0§x2 §1},

S(x, %) = (%1, x5) for all (x;,x,) € X
and
4 =[11] e g2,
Then
S(/;X) = {(x1, %) € X|x; = 0,x, € [0,1]}U{(x}, x,) € X|x‘2 =0,x <[0,1]}
and
S(4f; x) ={(0,0)}.

Hence, the point (1, 0) is a Slater solution of Problem (P), but it is not a
Slater solution of Problem (PA).

THEOREM 2. Let A4 = [aij] € RY*™ be a matrix such that a; >0 Sfor all

i €{l,...,p} and j e{l,..., m}. Ifx¥ is a Pareto solution of Problem (PA), then
xFis a Pareto solution of Problem (P).

Proof. Assume that xP is not a Pareto solution of Problem (P); then there
exists a point x € X such that f(x) < f(xF). From this, because a; > 0 for all

i €{l,...,p} and forall j e {1,..., m}, it follows that
(al lfl(x)+' H '+a1mfm (x)’ 1N 2 aplfl (x)+ ; .'+apmfm (X)) <
Y = (al lfl(xp)'*" : "}-alm/;n (xP)’ 0gap apl./i (XP)'*" : "'"apm/;n (xP)),

hence A4/(x) < 4f (xP ) Therefore, x” is not a Pareto solution of Problem (P4),
which is a contradiction.

Remark 2. The converse of Theorem 2 is not always true. For example, let
N= {(x],xz) € iRz|x1 € [O, 1], x, €0, 1], X +xy2 1},

(31, x2) = (%, x,) for all (x,,x,) € X,

N

3 .
A= (L ) @ W22
23
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Then
P(f;X) = {(x,%,) € X|x, + x, = 1}
and
P(4f; X) = {(1,0)}.
Hence, the point (0, 1) is a Pareto solution of Problem (P), but it is not a Pareto
solution of Problem (PA4).

THEOREM 3. Let A4 = [aij] € R¥"™ be a matrix such that a; > 0 for all
ie{l,...,p} and j €{L,...,m}. If x5 is a Slater solution of Problem (PA), then
x% is a Geoffrion solution of Problem (P).

Proof. Since x° is a Slater solution of Problem (PA), there exists no point
x € X such that 4f(x) < Af (x). This means that, for each x € X, there exists an

index k = k(x) € {l,..., p} such that the inequality
(1) h ay fi(x)+. A, fo(¥) 2 4 f; (xs )"‘; g, (xs)

is fulfilled. Let ¢, = a,+.. +a;,,. From a;> 0 forall j e {L,...,m} it follows
that ¢, > 0 and hence by (1) we deduce

m Ay m ar: ¥
k) X A}
DIt G ED IS
J=1 % j=1 Ck
Letnow ¢, = a,+..+a,, forall i {l,..., p}. Obviously, ¢,;> 0 forall i e {1,..., p}.
Then there exist the points

4 :[ﬂ“_mj Lefl i, Bl

G ¢

such that v’ = (V{,...,an) >0 for all ie{l,..., p} and, foreach x e X, there
exists an index k = k(x) € {L,..., p} so that

Z foj(x) gz; foj(xs)-
Fo

J=1

Now, in view of Theorem 2.1.12 in [2], the point x5 is a Geoffrion solution of
Problem (P). 7
Let now B' e RP*™ B ¢ RP*Pi . be a sequence of matrices and let

(A" )L  be the sequence of matrices defined by
v €
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A' = B!
@ 4¥ = B¥ 4k eN k22,

Assume that each matrix 4* = [a,f ] K (k eN ) has all positive elements. Consider
the family of multicriteria optimization problems

(PAk) {V— minAkf(x)
xeX,

where k e N,

Such problems chains usually occur in sequential processes of taking decisions;
at each step the decision is taken considering the state of the system; the utility
functions at each step have a ratio corresponding to the priority of the moment in
which the decision is taken. - '

From Theorems 1, 2 and 3 it follows

THEOREM 4. The chain of inclusions
S X) 2 P(f;X) 2 6(f; X) 2 S(4'f; X) 2 P(4'1,X) 2 6(4'1; X) ...
.2 8(4*f: %) 2 P(4"f;X) 2 G4 f;X) 2.
is valid.

If X ¢ R" is a nonempty compact set and the function [:X > R" is
continuous, then the set S(f; X) is a nonempty compact set. Hence each set

S(A" i X), (k € N) is a nonempty compact set. Then, by a well-known theorem

of functional analysis, the family of nested sets (S( A fx )) has a nonempty
keN
intersection; this means that there exists a set x* < X such that L

X" =Ys(4 1 = i S
N{S(4*7: X )k € N} = lim S(4*7; )
Now, assume that forevery k e N the matrix 4% is square, of the mth order,
with all positive elements, and there exists '

lim 4* = 4 e gmm,

k—o

Is then the equality X* = S(A' X ) true? Or, generally speaking, are the
equalities

3) lim S(4"f; %) =8 ((}5130 A") f; X),
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@ fm P45, ) = 2 ({1 )7 x),
® fimo{a7,t) = o (im 47 %),
true?

Example 1. Let us consider the multicriteria optimization problem
v — min f(xl»xl) ¥ ('xl,x2) .
(x,x,) € {(xl,xz) € Eﬁz‘xl €[0,1],x, €[0,1],2x, + 2x, > 1}

and the matrix

Eipy
6) B 5 | 3wl & Rist
Gl
forall £ € N. Then
\ 1+z(zj" zqz[z)"
%) Ak:3 35k 3 35’(69.{2,‘2
l_l(zj LJ(EJ
3 345 3 315
for all £ € N; hence, there exists
12
(8) A = i’ % e B2,
g0

On the other hand, we have

S(13 %) = {(x1, %2) € B2

23 + 2%, = %, 20, % gO}U

U{(xl,xz) e R x =0,x, € [%,1}} U{(xl,xz) e R?|x, =0,x, € [%,1}};
P(f;X) = {(x1, %) € R + 22, = Ly €[0,1]x, €[0,1]};

G(f; X) = {(x1, x;) € R2x + 2, = Ly €[0,1) x, €[o, 1}

b

y

3
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S(4'f; %) = G(4'f: %) = P(4'f; %) = P(f; X);

S(4* /X)) = G(4* f,x ) = P(4 1, X)

I
—N—
TN
o=
<
N——

-

forall £ € N k >2. Therefore, there exist
1 g
: k o, =T k o, 1 ke, vy
lim S(a*f; %) = lim GlA* f; X) = lim P4 f,x) = {(on}

It can be casily verified that

N

PAfX)=GAf;X)=8(4); X) = {G’OJ};

thus, in this case, equalities (3), (4) and (5) are fulfilled.

FExample 2. Letus consider the multicriteria optimization problem
v —min f(x,x,) = (x,x,)

X, X,) €4(x,x,) € Rx, €[0,1],x, € 0,—1-,x +2x, =2 1¢,
1> X2 1 %2 1 2 Y 2

and B € R (& ¢ N) the matrix given by (6). Then 4* e %> (k ¢ N) is
given by (7) and hence 4" is given by (8).
We have

S(f;X) = G(f; X) = P(f; X) = S(4*f; X) = G(4"f; X) = P(4"f; X) =~ ’
= {(xm) e ®Yx, + 26, = Ly €[0,1],x, €[0,1]}

forall £ € N and hence equalities (3), (4) and (5) are fulfilled, too.

Example 3. Let us consider the multicriteria optimization problem
{V e mll‘l f(xl, x2) = (x,, xz)

(%, x;) € {(xl,xz) € iﬂzlx] €[0,1],x, €[0,1] } ]
and the mairix

Bk

R A
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forall £ € N. Then

b
4k = (ak kJ for all &k eN,
Cr dk

where

i 1o+\/ﬁ_(5+\/ﬁjk+10—\/1_6(5—\/1_6jk

a
20 12 20 12
k k
b= o < VIO (54410) 3V10 (5-4i0
ke kT 20 12 20 12 ’
k-1 k-1
g, = 8+¥10 (54410} 8-4i0 (5-i0)
T 12 48 12

for evety k € N. Therefore, there exists

. 0 0
A4 = lim 4* = .
s U]

Obviously, )
s(4"s; X)= P(4'f; X) = G(4'f; X)=x.
On the other hand, we have
S(f:X) = P(f;X) = G(f; X) = S(4*f; X)= P4y, X)=G(4" X)={(0,0)},
for all £ € N. Hence there exist

lim s(4* s, X) = lim P(Ak f; X) = lim G(Ak £:%) ={(0,0)}

Thus, in this case, equalities (3), (4) and (5) are not fulfilled.
The following theorem shows a relationship among the sets X* and S(4*f; X).

THEOREM 5. Let (B" )keN be a sequence of square matrices of the mth order
such that the sequence (A" )k N defined by (2) has the property that each matrix
A = [a,;f ], (k €N), has all positive elements:

ag >0 for every i,j €{l,...,m} and k e N.
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If there exists
lim 4% = 4",
k—>w

then

(9) X cs(4'f; x).

Proof. Let x € X*. Then there exists a sequence (x")keN of points
x* € S(4"/;X), (k e N) such that x* is the limit of the sequence (xt) .
From x* e S(Ak ;X ) » (k € N) we deduce that it does not exist x < X suech
that 4*f(x) < 4*f (x") . This means that, for every x e X, there exists an index
i =i(x) e{l,...,m} such that

(4" 1 (x) - 4 £(x¥)) 20,

i

Let x € X and let

J

Kf:{keN

(A"f(x)—A"f(x")) go}, je{l...,m)

It is clear that

K'U.UK" =N
P X

and it is obvious that at least one of the sets K ',..., K™ is infinite; suppose, for
] \ v N . x X
instance, that the set K ! is infinite. Since

4 = lh—I)Tolo A
we have t
lim 4% = 4",
k—o0
kekK!
and
(10) Jim (4Ff(x) - 4¥ f(xk))l = (4"s(x) - A*f(x*))l.

kek!

Then, from (10) and from the structure of K 1, we obtain

(A*f(x) - A*f(x*))l =0,
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Since x is an arbitrary point in the set X, it follows that, for each x & X, there
exists an index i = i(x) e {1,...,m} such that (A*f(x) —~ A*f(x*»' >(0. This
means that 1" € S(A* X ), hence relation (9) is fulfilled.

Remark 3. Considering »n = m = 2 and the particular case when 4 is a
stochastic matrix, M. E. Salukvadze and A. L. Topchishvili [4] have proved that
relation (9) is an equality.
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