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ON A REPRESENTATION OF THE EXPANSION
COEFFICIENTS OF A FUNCTION RELATIVE
TO A POWER SCALE '

GHEORGHE HALIC

The main results of this paper are: a necessary and sufficient condition for
the existence of the asymptotic expansion

n
(1) S +h) =" AR + o(h”)
k=0
of the function f, where o is the Landau symbol, and the representation of the
coefficient 4,, k= 1,2, ..., n as an iterated limit of a difference quotient of /; The
number k/ 4, is a generalization of the kth-order derivative of Satx,.

Let ] < R be an open interval, x, e/ and let J'be a function defined in J
that is continuous at x,. If the variable h belongs to a sufficiently small
neighbourhood U(0) of the origin, then Xy + h €] and we can consider the function
h> f(xo + h), defined in U(0). The nth-order asymptotic expansion of this function

relative to the power scale {h", k=01.., n} is (1), where the coefficients A, -
are calculated successively -

h—=0 h' =0

k-1
@ A= f(x), 4, = lim —I,c— [f(xo +h) - E:A,-hi], k=12..n

provided that the limits of the second member of (2) exist and are finite. _
For i = 1, the existence of the expansion (1) is equivalent to the derivative-
ness of fat x; and 4, = /"(x,). The  time derivativeness of JSat x, is a sufficient

condition for the existence of the expansion (1) (wherc 4, = % i m(xo )] but

for n 2 2 this condition is not a necessary ane. For =2 and X, =0, the following
exampie may be an illustration of this fact
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3sehly, 1,
x’sin— if x#0

f(x)= x
0 if x=0.

To obtain a condition which is also a necessary one, for each natural number
k, 1< k < n, the difference quotient

€)

4) [xo,x0+h1,...,x0+hk;f]

is considered, where the variables &, I = 1, 2,..., k satisfy &, € U(O) and for
i# j, b #h,.

LEMMA. If [xy; /] = f(%0) = 4y and for each natural k,1< k < m,

(5) lim [xO,xO + h-l,...,xo + hk;f] = Ak’ Ak (S R,

h—0,..,,,—0

o hn+1 ZAI: m+1
(6) liln [xO’ xO +h’l’-'-’x0 +hm’xo +hm+l;f]

m 1-1
By —0,..., 1 >0 y hmrl

Proof. For m = 0, the statement is obvious. We suppose that it is true for

each natural number less than m and we will show that it is true for m, i.e., that.

relation (6) takes place. The left-hand side of (6) is equal to

([xO +hl"' +hm+1’f]—[x0,x0 +h]""’x0 +hm;f:|) =

m
by =0, =0 f

m+1
1 4 .
= lim [xo,x0+hl,...,x0+hm+1,f]—Am )
hm+1 By =0, 1y —0

Since the statement is supposed to be true for m — 1, the equality

xo + h,,,+1 ZAk n+1
hm [xo, X+ My Xyt Ry f]

by —0,..., h"n"ﬂ

takes place. Using this equality, the left-hand side of (6) becomes equal to
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xO + hm+1 Z A m+l
- A

m m |2
hm+l h

m+1

which is equal to the right-hand side of (6).

THEOREM. The necéssary and sufficient condition for the existence of the
expansion (1) is that for each natural number k,1 < k < n, the difference quotient

(4) has a finite iterated limit, when b — 0,...,h, — 0. In this case, the coeffi-
cients 4;, k=1, 2,..., n, are

) 4, = lnn [xo,xo R Xt hk;f}.

Proof. Relation (1) is equivalent to relations (2).
If we prove that foreach k,1 < k < n, relations

7C0+h ZAhl

®) ' lim i=0 = - X, g T ok o
B0 nk hk—>0,...,h1——>0[0 0t oo + Iy /]

take place, then both the necessity and sufficiency of the condition result im-
mediately.

We will prove (8) by induction. For k= 1, it can be casily verified. Let m be
a natural number such that 1 < m < n — 1 and we suppose that (8) is true for each
natural &, k& < m. We will show that (8) is true for m + 1. The following equalities
take place

lim X, %0+ By X+ Bt =
h?ﬂ'l-l_-)oru,hl—)o[ 00 JERRRE Y1) m+1,f]

= lim
hm+1—)0 hm+1 hm_>0’""hl_>0

1
= lim lim X0, %0 + My Xg +hpats -4, |=
By 1=>0 P11 (h,,,—>0,...,h2—>0[ 0:%0 + P ey X0 + Byats S = Ay

m
S(xo + Ps1) = ZAkh,]ZH
k=0
]m+1

Il
5

hm+1 -0

lim ([XO + hl,XO +h2,...,X0 +hm+1;f]_[x0’x0 + hl,...,‘XO ar hm,f]) =
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(note that the last equality is true since, according to the above lemma,

x0+hm+l ZAI(
lim [xO’x0+h’la'“>x0+hm+1;f] )

Hy=30,h—0 h”:ﬂ

Replacing in the last expression 4, ,, by A, we obtain

S (%, +h)—iAkh"

lim  [xg,x, + A, %0 +h = lim
l1,"+1—>0.-..,h,—>0[ e 13 +1’f] h >0 hm+1 ]

which shows that relation (8) is true for m + 1.

Remark 1. For k >2, the number k/4, where 4, is givenby (7),isa genera-
lization of the kth-order derivative of / at x,. We emphas1ze that this notion is
different from that based on the limit of dlfference quotient, when the variables
hy,..., b tend simultaneously to 0, i.c., on the limit of function

(Bryeoes By ) [0, %0 + sy Xg + Py f ]

at the point O(O ) 0) eR*. This generalization also differs from the so-called
direct derivative of the order k of fat x,. We will illustrate these, for k=2, by the
function (3), at the point x,= 0. It is easy to verify that

: t ", 1 [T 1 =
hn_}l&lgo[o,h h ,f] = ,,1..11)“0" smﬁ =0.
To show that the function (A, h") > [0, #', A"; f] has not a limit at O(0, 0), we

consider the sequences A', = L. a, = —2——, n=1 2,.. .The sequence

>

nm T @2n-n
[0,4,,4",; ] has not a limit, when n — oo, The direct derivative of the second
order of f at the origin O(0, 0) is the limit at O of the function (4", ") > Q(k', h"),
where

S = S() = 1)+ £(0)

hl , hll —
Q( ) hl ]1"
To show that Q(h' F h“) has not a limit at O, we consider the sequences
1
h'n:—; h” :—_—1 ,I’I:LZ,... .

nn’ " n(2n-Dn

The sequence Q(A', , A",) has nota limit, when n — .

The sum of the right-hand side of relation (1) is the “best local approxima-
tion” of f; in the neighbourhood of x,, by the linear subspace H generated by the

basis {h", k=0, l,...,n} [3]. The coefficients 4, , given by (7), are completely
determined by £ x, and H, that is why we call number &/ 4, the kth-order H-derivative
of f'at x, and write this as H* f(x,) = k!4, [4].

Remark 2. Further generalizations of the kth-order derivative of.a function at
a point x, may be obtained by using the same idea, but starting from another

asymptotic scale (for example, the scale {(CD(xO +h) - CD(xO))k, k=0,1,..., n},
where @ is a strictly monotonic function in a neighbourhood of x,, which is
continuous at x) ([5], [6]).

Remark 3. Similar investigations would be interesting to be done for the
functions of p variables as well as the research of the connection between the
coefficients of its asymptotic expansions and the various generalizations of partial
derivatives.
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