REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 26 (1997) no. 1-2, pp. 99-101 ictp.acad.ro/jnaat

CONTINUOUS DEPENDENCE AND FIXED POINTS FOR SOME MULTIVALUED OPERATORS

EDUARD KIRR, ADRIAN PETRUŞEL

1. INTRODUCTION

In this paper we extend the notions of I^0 -continuity and uniform I^0 continuity (given by I. Del Prete and C. Esposito in [2]) for multivalued operators on metric spaces, as follows:

Let (X, d) be a metric space and denote

$$\begin{split} \mathcal{P}\left(X\right) &= \{A | A \subseteq X\}\\ P_{cl}\left(X\right) &= \{A \in \mathcal{P}\left(X\right) | A \neq \varnothing, \ A \text{ is closed}\}\\ D\left(x, A\right) &= \inf\{d\left(x, a\right) | a \in A\}, \text{ where } x \in X \text{ and } \ A \in \mathcal{P}\left(X\right) \end{split}$$

 $H: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+ \cup \{+\infty\}$ the Hausdorff-Pompeiu generalized semimetric on $\mathcal{P}(X)$, given by

$$H\left(A,B\right) := \begin{cases} \max\left\{\sup_{a\in A} D(a,B), \sup_{b\in B} D(b,A)\right\}, & \text{if } A \neq \varnothing \neq B\\ 0, & \text{if } A = \varnothing = B\\ +\infty, & \text{if } A = \varnothing \neq B \text{ or } A \neq \varnothing = B. \end{cases}$$

Consider $F: X \to \mathcal{P}(X)$ a multivalued operator. Let Fix $F := \{x \in X | x \in F(x)\}$.

DEFINITION 1.1. We say that F is I^0 -continuous if and only if, for every $\varepsilon > 0$, there exists $\delta > 0$ with the property that the following implication holds: $\forall x \in X \text{ with } D(x, F(x)) < \delta \Rightarrow \exists x^* \in FixF \text{ such that } d(x^*, x) < \varepsilon.$

Now, let (Y, τ) be the topological space of the parameters and $F : X \times Y \rightarrow \mathcal{P}(X)$.

¹⁹⁹¹ AMS Subject Classification: 47H04, 34A60.

DEFINITION 1.2. *F* is called locally uniform I^0 -continuous at $y_0 \in Y$ if and only if for each $\varepsilon > 0$ there exist a neighborhood *V* of y_0 and $\delta > 0$ with the property that for every $y \in V$ and $x \in X$ the following implication holds: $D(x, F(x, y)) < \delta \Rightarrow \exists x^* \in \operatorname{Fix} F(\cdot, y)$ such that $d(x^*, x) < \varepsilon$.

The aim of this paper is to give some results on the continuity of the multivalued operator $p: Y \to \mathcal{P}(X)$, $p(y) = \operatorname{Fix} F(\cdot, y)$ (where $\operatorname{Fix} F(\cdot, y) = \{x \in X | x \in F(x, y)\}$).

2. MAIN RESULTS

Throughout this section d will be a metric on the nonempty set X and (Y, τ) the topological space of the parameters.

We consider the multivalued operator $F: X \times Y \to \mathcal{P}(X)$. The next result is an extension for multivalued operators of the main theorem from [3].

THEOREM 2.1. Let $y_0 \in Y$ and assume that:

- i) $F(x, \cdot): Y \to \mathcal{P}(X)$ is lower semicontinuous at y_0 , for every $x \in X$.
- ii) F is locally uniform I^0 -continuous at y_0 .

Then $p: Y \to \mathcal{P}(X)$ is lower semicontinuous at y_0 .

Proof. We have to show that, for each $x \in p(y_0)$ and for every neighborhood U(x) of x there exists a neighborhood V of y_0 such that $p(y) \cap U(x) \neq \emptyset$, $\forall y \in V$.

Let $x_0 \in p(y_0)$ be arbitrary and a neighborhood $U(x_0)$ of x_0 in X. Let $\varepsilon > 0$ such that $B(x_0, \varepsilon) \subset U(x_0)$. From *ii*) we obtain a neighborhood V_1 of y_0 and $\delta > 0$ such that the following implication holds: $\forall (x, y) \in X \times V_1$ with $D(x, F(x, y)) < \delta \Rightarrow \exists x^* \in p(y)$ such that $d(x, x^*) < \varepsilon$.

Using *i*), we can obtain a neighborhood V_2 of y_0 such that $F(x_0) \cap B(x_0, \delta) \neq \emptyset$, for every $y \in V_2$. Let $V = V_1 \cap V_2$. Then, for each $y \in V$, we have $D(x_0, F(x_0, y)) < \delta$, so there exists $x^* \in p(y)$, with $d(x_0, x^*) < \varepsilon$. It follows that $x^* \in p(y) \cap B(x_0, \varepsilon) \subset p(y) \cap U(x_0)$. The proof is complete. \Box

In the next result, we shall weaken the assumption ii) but then we must replace i) with another condition.

THEOREM 2.2. Let $y_0 \in Y$ and assume that:

- iii) $F(x, \cdot) : Y \to \mathcal{P}(X)$ is upper semicontinuous at y_0 , uniform with respect to $x \in X$.
- iv) $F(\cdot, y_0): X \to \mathcal{P}(X)$ is I^0 -continuous.
- v) $p(y_0)$ is compact.

Then $p: Y \to \mathcal{P}(X)$ is upper semicontinuous at y_0 .

Fixed points

Proof. We shall prove that for each open set $U \subseteq X$ with $U \supset p(y_0)$, there exists a neighborhood V of y_0 such that $p(y) \subset U$, for every $y \in V$. Let $U \subseteq X$ be an open set such that $U \supset p(y_0)$. From the compactness of $p(y_0)$, we deduce the existence of $\varepsilon > 0$ with the property that $\bigcup B(x,\varepsilon) \subset U$. $x \in p(y_0)$

Now, we shall demonstrate the existence of a neighborhood V of y_0 such that $\bigcup B(x,\varepsilon)$, for every $y \in V$. $p(y) \subset$ $x \in p(y_0)$

Clearly, condition iv) implies the existence of $\delta > 0$ such that if $x \in X$ and $D(x, F(x, y_0)) < \delta$, then there exists $x^* \in p(y_0)$ with $d(x, x^*) < \varepsilon$. Using *iii*), we can construct a neighborhood V of y_0 with the property that \bigcup $B(x', \delta)$, for every $(x, y) \in X \times V$. Consequently, for each $F(x,y) \subset$ $x' \in \widetilde{F(x,y_0)}$

 $(y,x) \in V \times p(y)$ we have that $D(x, F(x,y_0)) < \delta$. Taking into account the property of δ , for each $(y, x) \in V \times p(y)$ there exists $x^* \in p(y_0)$ such that $x \in B(x^*, \varepsilon)$ or, equivalently, $p(y) \subset \bigcup_{x^* \in p(y_0)} B(x^*, \varepsilon)$, for every $y \in V$. The

proof is complete.

REMARK 2.3. In a previous paper, these abstract results are applied for the classical dependence on parameters of the fixed points set for some contractive multivalued operators. For example, using Theorem 2.1, and Corollary 1 from [1], we have

THEOREM 2.4. Let $F: X \times X \to \mathcal{P}(X)$ be a multivalued operator such that:

- a) $F(x, \cdot)$ is continuous at $y_0 \in Y$ for each $x \in X$.
- b) $F(\cdot, y)$ is a k-contraction for every $y \in Y$.

Then p is lower semicontinuous at y_0 .

Sketch of the proof. Condition b) implies that F is uniform I^0 -continuous. Since the continuity of $F(x, \cdot) : Y \to \mathcal{P}(X)$ (where the topology on $\mathcal{P}(X)$ is given by the generalized semimetric H) implies i) from Theorem 2.1, the conclusion follows.

REFERENCES

- [1] H. COVITZ and S. B. NADLER JR., Multivalued contraction mappings in generalized metric, spaces, Israel J. Math., 8 (1970) no. 1, pp. 5–11.
- [2] I. DEL PRETE and C. ESPOSITO, Elementi uniti di transformazioni funzionali e teoremi di dipendenza continua, Rend. Circ. Mat. Palermo, 23 (1974) no. 2, pp. 187–206.
- [3] E. KIRR, On the continuous dependence on parameters of the fixed point set for some classes of metric operators (to appear).

Received May 15, 1996 Faculty of Mathematics and Computer Science "Babeş-Bolyai" University 1, M. Kogălniceanu St. 3400 Cluj-Napoca Romania