REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Tome XXVI, Nº 1-2, 1997, pp. 103-108

ON THE HERON'S METHOD FOR APPROXIMATING THE CUBIC ROOT OF A REAL NUMBER

DAN LUCA, ION PĂVĂLOIU

$(\mathbf{u} - \mathbf{x})(\mathbf{u} - \mathbf{x}) = \mathbf{u} \cdot \mathbf{u} \cdot$

In this paper we shall specify and go deeply into some problems presented in [1], concerning the Heron's method for approximating the cubic root of a positive number.

The authors of [1] construct a method based on the Heron's algorithm for computing the cubic root of 100.

The method works as follows: Given two real numbers a and b satisfying $a^3 < N < b^3$, the Heron's method for approximating $\sqrt[3]{N}$ is

(1.1)
$$\phi(N, a, b) = a + \frac{bd_1}{bd_1 + ad_2}(b - a),$$

where $d_1 = N - a^3$ and $d_2 = b^3 - N$. We shall show that the approximation (1.1) of $\sqrt[3]{N}$ follows from the *regula falsi* applied to the equation $x^2 - \frac{N}{x} = 0$ [2]. This will give a rigorous interpretation of (1.1), and the results from [1] will be reached again.

Using results from [4], we shall give other error bounds than those in [1]. On the other hand, the method is generalized to the case $\sqrt[p]{N}$, $p \in \mathbb{N}$, $p \geq 2$, the method also offering bilateral approximations. Some remarks on applying the results in [4] for the error bounds will lead us to the generalization of the Heron's method.

2. HERON'S METHOD AND REGULA FALSI

A. In order to approximate the cubic root of N > 0 by (1.1), consider the function $f:[a,b] \to \mathbb{R}$ $f(x) = x^3 - N, 0 < a < b$ and the function $g:[a,b] \to \mathbb{R}$, $g(x) = \frac{f(x)}{x}$.

It is well known that regula falsi applied to the equation g(x) = 0 leads to the following approximation of its root

(2.1)
$$c = a - \frac{g(a)}{[a, b, g]},$$

 $c = a - \frac{g(a)}{[a, b; g]}$, [u, v; g] denoting the first-order divided difference of g on the nodes u and v. It can be easily verified that $c = \phi(N, a, b)$.

Taking into account that $c \in (a, b)$ and denoting by [u, v, w; g] the secondorder divided difference of g on the points u, v, w, we get

$$(2.2) g(x) = g(a) + [a, b; g](x - a) + [a, b, x; g](x - a)(x - b)$$

for all $x \in (a, b)$, and one one one place of the vice set $x \in (a, b)$.

For $x = \sqrt[3]{N}$ in (2.2) we obtain The authors of [1] construct a method baxed on the Heron's algorithm for

$$g(a) + [a, b; g](\sqrt[3]{N} - a) + [a, b, \sqrt[3]{N}; g](\sqrt[3]{N} - a)(\sqrt[3]{N} - b) = 0,$$

from which, by dividing [a, b; g] it follows

(2.3)
$$c - \sqrt[3]{N} = \frac{\left[a, b, \sqrt[3]{N}; g\right]}{\left[a, b; g\right]} (\sqrt[3]{N} - a) (\sqrt[3]{N} - b).$$

An elementary calculation on $\frac{\left[a,b,\sqrt[3]{N};g\right]}{\left[a,b;g\right]}$ shows that

(2.4)
$$\frac{c - \sqrt[3]{N}}{\sqrt[3]{N}} = \frac{\sqrt[3]{N} + \sqrt{ab}}{\sqrt[3]{N} \left[ab(a+b) + N\right]} \left(\sqrt[3]{N} - a\right) \left(\sqrt[3]{N} - b\right) \left(\sqrt[3]{N} - \sqrt{ab}\right),$$

which gives Theorem 3, [1].

Taking into account the above remarks and using the evaluations obtained by T. Popoviciu in [4], (2.3) gives the following error bounds

the other hand, the method is generalized to the case $\langle W, p \in \mathbb{N}, p = 2$, the

$$(2.5) \qquad \frac{m_2}{M_1} \left(\sqrt[3]{N} - a \right) \left(b - \sqrt[3]{N} \right) \le \left| c - \sqrt[3]{N} \right| \le \frac{M_2}{m_1} \left(\sqrt[3]{N} - a \right) \left(b - \sqrt[3]{N} \right),$$

where

 $m_2 = \min \left\{ \frac{N}{a^3} - 1, 1 - \frac{N}{h^3} \right\}$ $M_1 = \max \left\{ \frac{2a^3 + N}{a^2}, \frac{2b^3 + N}{b^2} \right\}$ $M_2 = \max \left\{ \frac{N}{a^3} - 1, 1 - \frac{N}{h^3} \right\}.$

Note that (2.5) leads to a very good error evaluation; since a and b are close to N, then m_2 and M_2 are close to zero. This is implied by the fact that the function g and its second derivative vanish at the same point $x = \sqrt[3]{N}$.

B. It can be easily seen that the method presented at A can be generalized. For the approximation of the root of order p of the real number $N, p \in \mathbb{N}, p \ge 2$, consider the function $f_1:[a_1,b_1] \to \mathbb{R}$, $f_1(x) = x^p - N$, $0 < a_1 < b_1$ $a_1^p < N < b_1^p$ and the function $g_1:[a_1, b_1] \to \mathbb{R}$, $g_1(x) = \frac{f_1(x)}{x^q}$, where $q = \frac{p-1}{2}$. The function g_1 satisfies $g_1(\sqrt[p]{N}) = g_1''(\sqrt[p]{N})$.

(2.6)
$$c_1 = a_1 - \frac{g_1(a_1)}{[a_1, b_1; g_1]}.$$

Similar to A, we obtain

(2.7)
$$c_1 - \sqrt[p]{N} = \frac{\left[a_1, b_1, \sqrt[p]{N}; g_1\right]}{\left[a_1, b_1; g_1\right]} \left(\sqrt[p]{N} - a_1\right) \left(\sqrt[p]{N} - b_1\right),$$

Applying regula falsi to the equation $g_1(x) = 0$, we obtain

which gives

$$(2.8) \quad \frac{t_2}{2T_1} \left(\sqrt[p]{N} - a_1 \right) \left(b_1 - \sqrt[p]{N} \right) \le \left| c_1 - \sqrt[p]{N} \right| \le \frac{T_2}{2t_1} \left(\sqrt[p]{N} - a_1 \right) \left(b_1 - \sqrt[p]{N} \right),$$

where

$$t_{1} = pa_{1}^{\frac{p-1}{2}}$$

$$t_{2} = \min \left\{ \frac{(p-1)(p+1)(N-a_{1}^{p})}{4a_{1}^{\frac{p+3}{2}}}; \frac{(p-1)(p+1)(b_{1}^{p}-N)}{4b_{1}^{\frac{p+3}{2}}} \right\}$$

 $T_{1} = \max \left\{ \frac{(p+1)a_{1}^{p} + (p-1)N}{\frac{p+1}{2a_{1}^{2}}}; \frac{(p+1)b_{1}^{p} + (b-1)N}{\frac{p+1}{2}} \right\}$ $T_2 = \max \left\{ \frac{(p-1)(p+1)(N-a_1^p)}{\frac{p+3}{4h^2}}; \frac{(p-1)(p+1)(b_1^p-N)}{\frac{p+3}{4h^2}} \right\}.$ and agent & prime a confequentiate laws quent) have by the least of the period of the production of the period of

to N, their m, and M, may have to seep Main admitted by the first that the func-3. STEFFENSEN'S METHOD FOR APPROXIMATING THE pTH-ORDER ROOT By It can be easily soon that the mushed presented at A can be generalized.

Let $I = [\alpha, \beta]$, $\alpha < \beta$ be an interval of the real axis. Consider the equation

$$(3.1) F(x) = 0,$$

where $F: I \to \mathbb{R}$. Suppose that equation (3.1) has a root $\bar{x} \in (\alpha, \beta)$. Consider also a function $h: I \rightarrow \mathbb{R}$ such that the equation

$$(3.2) x - h(x) = 0 \text{and one product of } x - h(x) = 0$$

is equivalent to (3.1).

The Steffensen's method consists in the generation of two sequences (x_n) and $(h(x_n))$ by the relations

(3.3)
$$x_{n+1} = x_n - \frac{F(x_n)}{[x_n, h(x_n); F]}, \quad x_0 \in I, \quad n = 0, 1, \dots.$$

As we shall see, this method offers the possibility to obtain better both upper and lower approximations, by starting with a lower approximation of $\sqrt[p]{N}$. Then, by applying only once the regula falsi (2.6), the precision can be increased.

As concerns the convergence of (x_n) and $(h(x_n))$ in (3.3), in [3] it is proved the following

THEOREM 3.1 [3]. If the functions $F: I \to \mathbb{R}$ and $h: I \to \mathbb{R}$ are continuous and satisfy the following conditions:

i) the function h is decreasing on I,

ii) the function F is increasing and convex on I,

iii) there exists $x_0 \in I$ such that $F(x_0) < 0$ and $h(x_0) \in I$,

iv) the equations (3.1) and (3.2) are equivalent,

then the following properties hold:

j) the sequence (x_n) is increasing, jj) the sequence $(\ddot{h}(x_{\cdot \cdot}))$ is decreasing,

jjj) $\lim x_n = \lim h(x_n) = \overline{x}$,

jv) the relations $x_n \le x_{n+1} \le \overline{x} \le h(x_n)$ hold for all n = 0, 1, ...,

v) $\bar{x} - x_{n+1} \le h(x_n) - x_{n+1}$

Applying this Theorem for $F: [\alpha, \beta] \to \mathbb{R}$, $F(x) = x^p - N$, $h: [\alpha, \beta] \to \mathbb{R}$, $h(x) = x^p - N$

 $= x - \frac{F(x)}{p\alpha^{p-1}}, \text{ where } 0 < \alpha < \beta \text{ and } p \in \mathbb{N}, p \ge 2, \text{ we obtain}$

$$x_{n+1} = x_n + \frac{\left(p\alpha^{p-1}\right)^{p-1} (x_n - N)^2}{\left(p\alpha^{p-1} x_n - x_n^p + N\right)^p - \left(p\alpha^{p-1} x_n\right)^p}, \quad x_0 = \alpha, \quad n = 0, 1, \dots; \alpha^p < N.$$

Since F is increasing and convex on $[\alpha, \beta]$, it follows that h is decreasing on $[\alpha, \beta]$, and the equations F(x) = 0 and h(x) - x = 0 are equivalent. So the conclusion of Theorem 3.1 follows.

The sequences (x_n) and $(h(x_n))$ being convergent, it follows that for all $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that for $n \ge n_0$ we have

$$h(x_n) - x_n < \varepsilon,$$

which implies $\sqrt[p]{N} - x_n < \varepsilon \ h(x_n) - \sqrt[p]{N} < \varepsilon$.

. The recision will be a population of \mathcal{E}_{quid} and \mathcal{E}_{quid} and \mathcal{E}_{quid} and \mathcal{E}_{quid} and \mathcal{E}_{quid} and \mathcal{E}_{quid} If we use (2.6) for $a_1 = x_n$ and $b_1 = h(x_n)$ and $g_1(x) = \frac{h(x_n)}{p-1}$, and we denote

the approximation obtained by c_n , then by (2.8) we have

$$\left|c_n - \sqrt[p]{N}\right| \leq \frac{T_2'}{2t_1'} \varepsilon^2,$$

where

$$\begin{cases}
T'_{2} = \max \left\{ \frac{(p-1)(p+1)(N-x_{n}^{p})}{\frac{p+3}{4x_{n}^{2}}}; \frac{(p-1)(p+1)(h^{p}(x_{n})-N)}{4h(x_{n})^{\frac{p+3}{2}}} \right\} \\
t'_{1} = px_{n}^{\frac{p-1}{2}}
\end{cases}$$

4. A NUMERICAL EXAMPLE AND THE REPORT OF THE PROPERTY OF THE P

We intend to apply the method described in Section 3 for the approximation of the number $\sqrt[5]{100}$, i.e., for solving the equation $x^5 - 100 = 0$. In this case we have $F(x) = x^5 - 100$

$$F(x) = x^5 - 100$$

and, taking $\alpha = 2$, for the function h we have

$$h(x) = x - \frac{1}{80}F(x).$$

Considering $x_0 = \alpha = 2$ and using (3.3), with F and h given above, we obtain for the sequences $(x_n)_{n\geq 0}$ and $(h(x_n))_{n\geq 0}$ the following values:

n	2, 11 (0 = 16 , 20 = 10	h(x)	
0	2.0000000000	$h(x_n)$ 2.8500000000	$\varepsilon_n = h(x_n) - x_n \\ 8.50000000000E -01$
1	2.3704445072	2.6849117966	3.1446728941E -01
2	2.4927536892	2.5396394928	4.6885803578E -02
300	2.5114651493	2.5125130194	1.0478700715E -03
4	2.5118862213	2.5118867443	5.2291215979E -07
Malagia	2.5118864315	2.5118864315	3.6379788071E -12.
		and a second second	rose they especialibos all I

REFERENCES

- 1. G. Deslauries and S. Dubuc, Le calcul de la racine cubique selon Héron, Elemente der Mathematik 51, 1 (1996), 28-34.
- 2. M. Ostrowski, A Solution of Equations and Systems of Equations, Academic Press, New York-London, 1960.
- 3. I. Păvăloiu, On the monotonicity of the sequences of approximations obtained by Steffensen's method, Mathematica (Cluj) 35 (58), 1 (1993), 71-76.
- 4. T. Popoviciu, Sur la délimitation de l'erreur dans l'approximation des racines d'une équation par interpolation linéaire ou quadratique, Rev. Roumaine Math. Pures Appl. XIII, I (1968), 75-78.

Received May 15, 1996

Institutul de Calcul "Tiberiu Popoviciu" Str. G. Bilascu, nr. 37 C.P. 68, O.P. 1 3400 Cluj-Napoca România