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ON THE HERON’S METHOD FOR APPROXIMATING
THE CUBIC ROOT OF A REAL NUMBER

DAN LUCA, ION PAVALOIU

1. INTRODUCTION

In this paper we shall specify and go deeply into some problems presented in [1],
concerning the Heron’s method for approximating the cubic root of a positive number.

The authors of [1] construct a method based on the Heron’s algorithm for
computing the cubic root of 100,

The method works as follows: Given two real numbers a and b satisfying
@’ < N < b’, the Heron’s method for approximating 3/N is

bd
N,a,b) = a+ 1 (p )
(1.1) o(N,a,b) = a bd1+ad2( a)
where 4 = N — 4* and dy)= b* — N. We shall show that the approximation (1.1)

of 3/N follows from the regula falsi applied to the equation x* — 4y 0 [2]. ]

x

This will give a rigorous interpretation of (1.1), and the results from [1] will be
reached again,

Using results from [4], we shall give other error bounds than those in [1]. On

the other hand, the method is generalized to the case W ,p €N, p>2, the

method also offering bilateral approximations. Some remarks on applying the results
in [4] for the error bounds will lead us to the generalization of the Heron’s method.

2. HERON’S METHOD AND REGULA FALSI
A. In order to approximate the cubic root of N > 0 by (1.1), consider the
function f:[a,b] >R f(x)=x’-N,0<a<b and the function g:[a, 5] — R,
S(x
() = L)

X
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Itis well known that regula falsi applied to the equation g(x) = 0 leads to the
following approximation of its root

21) =a— g(a) ’
: ‘ [a, b ¢]

[, v; g] denoting the first-order divided difference of g on the nodes u and v, It
can be easily verified that ¢ = (N, a, b).

Taking into account that ¢ e (a b) and denoting by [u, v, w, g] the second-
order divided difference of g on the points u, v, w, we get

(2.2) g(x) = g(a) + [a, b; g](x - a) + [a, b, x; g](x - a)(x - b)

forall x e (a, b).
For x = 3/N in'(2.2) we obtain
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gla) + [a, b; g](w - a) + [a, b,3N; g](w - a)(iﬁ\/— - b) =0,

from which, by dividing [q, b; g] it follows

ab\/—]

(2.3) ¢c-iN = | (/N - a)¥N =b).

[a b; g]
(4,5, YN} 2]
An elementary calculation on _[_b_]_ shows that
40,8

(65 %/_ %/’ +'\/Zl_ 3 3 3
@4 WN " \/ﬁ[Z - b)”+ 7 (VN = a)YN ~b)¥N - Jab),

which gives Theorem 3, [1].
Taking into account the above remarks and using the evaluations obtained
by T. Popoviciu in [4], (2.3) gives the following error bounds

@) LN -afb-YN) <|e- YN] < L2 (W - a)s - ¥W),

1 m

where

. | N L1 N}
m, = mm4§— — L1-—-——
2 a3 b3

3 3
+N 25+ N
Mlzmax{za — =, }

a b’
N N
M, = max{?— 1,1——b—3}.

Note that (2.5) leads to a very good error evaluation; since ¢ and b are close
to N, then m, and M, are close to zero. This is implied by the fact that the func-

tion g and its second derivative vanish at the same point x = UN.

B. It can be easily seen that the method presented at A can be generalized.
For the approximation of the root of order p of the real number N, peN, p 2 2,

consider the function f;:[a;, b;] > R, fi(x) =¥~ N, 0 <a;<b; af <N < bP and the

x -1 )
function g,:[a,, b;] - R, g\(x) = f‘(q ) , where g = ﬁz— The function
x

g, satisfies gl(W) = gl({’/ﬁ)
Applying regula falsi to the equation g, (x) =0, we obtain

gi(a)

(2.6) Gl LT [al,bl;gl]'

Similar to A, we obtain

[al,bl,w;&]

27 ¢ -%N = hz] (N -a XN -b)
which gives
B R R e
1
where
p-1
4 = palT

(p-1)(p+ 1)(.N — a{’) i (p-Dip+ 1)(b{' - N)

t2 = min Fr% 3 m
7 2
4a,? 4by
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e i / f 1 2\
=l ma}J(p + Gl + (p - ON (p+ )b + (b - 0N
i rH ’ 1
2a% 2b 7

(b =100 + (¥ — af) (p=1(p + ot - )

7, = max Pr: ; 73
4a, 2 4b ?
3. STEFFENSEN’S METHOD FOR APPROXIMATING

THE pTH-ORDER ROOT

Let 7= [a, B], o < be an interval of the real axis.
Consider the equation

G.1) Fx) =0,

where F: [ R. Suppose that equation (3.1) has a root 3 (o, B). Consider also
a function % : /- R such that the equation

B2 x —h(x)=0

is equivalent to (3.1).
The Steffensen’s method consists in the generation of two sequences (x,)
and (h(x,)) by the relations

F(x,)
(33) an:xn“an, Xy €1, =104, o

As we shall see, this method offers the possibility to obtain better both upper

and lower approximations, by starting with a lower approximation of 2. T hen,
by applying only once the regula falsi (2.6), the precision can be increased.

As concerns the convergence of (x,) and (A(x,)) in (3.3), in [3] it is proved
the following

THEOREM 3.1 [3]. If the functions F - | —>Rand h: IR are continuous

and satisfy the following conditions:

i) the function h is decreasing on I,

i) the function F is increasing and convex on 1,

iii) there exists Xo€ 1 such that F(x,) < 0 and h(x,) €1,
V) the equations (3.1) and (3.2) are equivalent,
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then the following properties hold:
J) the sequence (x,) is increasing,
ji) the sequence (h(x,)) is decreasing,
Jij) lim x, = lim h(x,)= X,
jv) the relations X, <x,,, < X< h(x,) hold for all n = 0, 1,043
V)X ~X,, <h(x)-x, .
Applying this Theorem for 7 : [, B1 >R, F(x) ="—N, h : (o, B > R, A(x)=
F ( x)

=x—m,whereo<oc<ﬁ andpe N, p>2, we obtain

-1
p-1}? 2
(poc ) (x, = N) o
Xpy1 = X, + ,» Xp = O, HZO,I,...,G. <N.

(potp_]x,, —xl+ N)p - (pocp_lxn)p

Since F'is increasing and convex on [c, B], it follows that / is decreasing on
[, B], and the equations F (x) = 0 and A(x) — x = 0 are equivalent. So the conclusion
of Theorem 3.1 follows.

The sequences (x,) and (h(x,)) being convergent, it follows that for all
& > 0 there exists n,e N such that for 5 > n, we have

F)
h(x,) -x,<¢,

which implies £/ — x, <& h(x,)~ 4N <e.

- F(x :
If we use (2.6) for ay=x, and b= h(x ) and gx) = % , and we denote

X
the approximation obtained by c,, then by (2.8) we have

T
Cn in Wl < _282’

- 21"1

where

P13 ’ SR
4'.‘,:_3_ 4h(xn ) 2

r ((p = 1)(;) + ])(N - x,{’) . (p- l)(p + 1)(hp(x,,) N)
1
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4. A NUMERICAL EXAMPLE

We intend to apply the method described in Section 3 for the approximation

of the number /100, i.e., for solving the equation x> — 100 = 0. In this case we

_have
F(x)=x>-100

and, taking o =2, for the function % we have
1
h(x) =x - — F(x).
) ” )

Considering Xy =0 =2 and using (3.3), with Fand % given above, we obtain
for the sequences (%), ¢ and (A(x,)), s o the following values:

n x, h(x,) &,= h(x)—x,

0 2.0000000000 2.8500000000 8.5000000000F -01
1 2.3704445072 2.6849117966 3.1446728941E -01
2 2.4927536892 2.5396394928 4.6885803578E -02
3 2.5114651493 2.5125130194 1.0478700715E -03
4 2.5118862213 2.5118867443 5.2291215979E 07
5 2.5118864315 2.5118864315 3.6379788071F -12.
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