REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

Tome XXVI, Nºs 1-2, 1997, pp. 131-135

A METHOD FOR OBTAINING ITERATIVE FORMULAS OF HIGHER ORDER FOR ROOTS OF EQUATIONS

ADRIAN MUREŞAN

1. INTRODUCTION

Formulas of the class which use information at only one point are naturally called one-point formulas. We shall consider only stationary one-point formulas which have the form

$$(1) x_{n+1} = F(x_n),$$

with $\alpha = F(\alpha)$, if the method converges, where α is the root of the real or complex equation f(x) = 0.

For the iterative method (1) which converges to α , we say it is of order k if

(2)
$$|x_{n+1} - \alpha| = 0(|x_n - \alpha|^k), \ n \to \infty.$$

If the function F(x) is k-times differentiable in a neighborhood of the limit point $x = \alpha$, then [3] the iterative method (1) is of order k if and only if

(3)
$$F(\alpha) = \alpha, F'(\alpha) = F''(\alpha) = \dots = F^{(k-1)}(\alpha) = 0, F^{(k)}(\alpha) \neq 0.$$

In Section 2 we give some results which represent the answers of the following f question: If we have a method of order k, how can we obtain from it a method of order k + 1?

In Section 3, a family of iterative functions for finding root α is derived. The family includes the functions presented in Section 2.

2. HIGHER ORDER METHODS

THEOREM 1 [4]. Let (1) be an iterative method of order $k \ge 2$ and let the function F(x) be k+1-times differentiable in a neighborhood of the limit point $x = \alpha$. Then

1991 AMS Subject Classification: 65B99.

132 Adrian Muresan 2

(4)
$$x_{n+1} = F(x_n) - \frac{1}{k} F'(x_n) (x_n - F(x_n)) =$$
$$= x_n - (x_n - F(x_n)) (1 + \frac{1}{k} F'(x_n)), \quad n = 0, 1, 2, \dots$$

 $= x_n - (x_n - P(x_n)) \left(1 + \frac{k}{k} F'(x_n)\right), \quad n = 0, 1, 2, \dots$ is an iterative method of order at least k + 1. \Box

THEOREM 2. [1]. Let (1) be an iterative method of order k. Let the function F(x) be k + 1-times differentiable in a neighborhood of the limit point $x = \alpha$ and let $F'(\alpha) \neq 0$. Then

(5)
$$x_{n+1} = \frac{F(x_n) - \frac{1}{k} F'(x_n) x_n}{1 - \frac{1}{k} F'(x_n)} = x_n - \frac{x_n - F(x_n)}{1 - \frac{1}{k} F'(x_n)}, \ n = 0, 1, 2, \dots$$

is an iterative method of order at least $k + 1$. \Box

THEOREM 3 [4]. Let (1) be an iterative method of order k. Let the function F(x) be k + 1-times differentiable in a neighborhood of the limit point $x = \alpha$ and let $F'(\alpha) \neq 1$. Then as an intermediate data with the formula of the second state of the

 $x_{n+1} = F(x_n) - \frac{1}{k} F'(x_n) \left(\frac{x_n - F(x_n)}{1 - F'(x_n)} \right);$ (6)sie is a neighborhood of the limit if the function /[x] is /-times differentia

that is, "In the limit is a star to a (1) bother evidential (1) and to may later

$$= x_n - \left(1 + \frac{1}{k} \left(\frac{F'(x_n)}{1 - F'(x_n)}\right)\right) (x_n - F(x_n)), n$$

is an iterative method of order at least k + 1.

= 0, 1, 2, ...

Remark 1. 1. If (1) represents Newton's method for finding simple roots of the equation f(x) = 0, namely,

(8)
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \ n = 0, 1, 2, \dots,$$

which means that $F(x_n) = x_n - \frac{f(x_n)}{f'(x_n)},$

then from (4), (5) and (6) we obtain the following methods, respectively:

133

070-

 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \cdot \frac{2(f'(x_n))^2 + f(x_n)f''(x_n)}{2(f'(x_n))^2}$

which is known as Chebyshev's iterative method,

(10)
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \cdot \frac{2(f'(x_n))^2}{2(f'(x_n))^2 - f(x_n)f''(x_n)},$$

which is known as Halley's method, and

(11)
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \cdot \frac{2(f'(x_n))^2 - f(x_n)f''(x_n)}{2(f'(x_n))^2 - 2f(x_n)f''(x_n)},$$

(n = 0, 1, 2, ...).

The order of these methods is at least 3 but, since they do not involve derivatives of f higher than the second order, their order of convergence cannot exceed 3 (see [3]).

2. In [2] it is presented a family of transformations

(12)
$$T_{m}(x) = x - \frac{f(x)}{f'(x)} \cdot \frac{\sum_{k=0}^{m} a_{k} [f'(x)]^{2m-2k} [f(x)]^{k} [f''(x)]^{k}}{\sum_{k=0}^{m} b_{k} [f''(x)]^{2m-2k} [f(x)]^{k} [f''(x)]^{k}},$$

where $m \in \mathbf{N}^*$ and $a_k, b_k \in \mathbf{R}$, which includes those of Newton and Halley, and which accelerates the convergence of the ratios of consecutive Fibonacci numbers, for some values of a_k and b_k , to φ (the golden number).

3. A NEW METHOD

THEOREM 4. Let (1) be an iterative method of order $k \geq 2$. Let the function F(x) be k + 1-times differentiable in a neighborhood of the limit point $x = \alpha$ and let s be a finite parameter such that $1 - F'(\alpha)\left(s + \frac{1}{k}\right) \neq 0$. Then

(13)
$$x_{n+1} = x_n - (x_n - F(x_n)) \cdot \frac{1 - sF'(x_n)}{1 - \left(s + \frac{1}{k}\right)F'(x_n)}, \ n = 0, 1, 2, \dots$$

is an iterative method of order at least k + 1.

Since

Iterative Formulas

135

 $\left(\frac{x-F(x)}{1-\left(s+\frac{1}{k}\right)F'(x)}\right)' = \frac{\left(1-F'(x)\right)\left[1-\left(s+\frac{1}{k}\right)F'(x)\right] + \left(x-F(x)\right)\left(s+\frac{1}{k}\right)F''(x)}{\left[1-\left(s+\frac{1}{k}\right)F'(x)\right]^2},$

we obtain

$$G^{(k)}(a) = F^{(k)}(a) - \frac{1}{k} \Big[k F^{(k)}(a) \Big] = 0;$$

hence conditions (15) are fulfilled. \Box

Remark 2. For $s = -\frac{1}{k}$ we obtain the iterative method (4), for s = 0 we obtain the iterative method (5) and for $s = 1 - \frac{1}{k}$ we obtain the iterative method (6).

REFERENCES

1. B. Jovanović, A method for obtaining iterative formulas of higher order, Mat. Vesnik. 24, 9 (1972), 365-369.

- 2. I. Lazăr and A. C. Mureșan, Generalized transformations on ratios of Fibonacci and Lucas numbers, Rev. Anal. Numér. Théorie Approximation 24, 1-2 (1995), 169-179.
- 3. A. Ralston, A First Course in Numerical Analysis, McGraw-Hill, Inc., 1965.
- 4. D. M. Simeunović, On a process for obtaining iterative formulas of higher order for roots of equations, Rev. Anal. Numér. Théorie Approximation 24, 1-2 (1995), 225-229.

Received January 15, 1997 *Romanian Academy of Sciences "Tiberiu Popoviciu" Institute of Numerical Analysis P.O. Box 68 3400 Cluj-Napoca Romania*

wiek Druges Channey's - a shift, warm, war p,