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A METHOD FOR OBTAINING ITERATIVE FORMULAS
OF HIGHER ORDER FOR ROOTS OF EQUATIONS
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1. INTRODUCTION

Formulas of the class which use information at only one point are naturally
called one-point formulas. We shall consider only stationary one-point formulas
which have the form

H Xntl = F(xn)’
with o = F(c), if the method converges, where o is the root of the real or complex

equation f{x) = 0.
For the iterative method (1) which converges to o, we say it is of order & if

2) |xn+1 - al = O(Ixn = 0L|k), n— oo,

If the function F(x) is k-times differentiable in a neighborhood of the limit
point x = a, then [3] the iterative method (1) is of order £ if and only if

@) Fla)=aF(a) = F'() =..= F*a) = 0,F¥ ) # 0.

In Section 2 we give some results which represent the answers of the following -
question: If we have a method of order , how can we obtain from it a method of
order k+ 1?

In Section 3, a family of iterative functions for finding root o is derived. The
family includes the functions presented in Section 2.

2. HIGHER ORDER METHODS

THEOREM 1 [4]. Let (1) be an iterative method of order k(= 2) and let
the function F(x) be k+1-times differentiable in a neighborhood of the limit
point x =o.. Then
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) Kot = F(x) -~ F (x }( Xy & (x.,.,)) =

1
= x, - (x, —F(:cn))(l +~EF'(:£,,)), a=0,12...

is an iterative method of order at least k+ 1. 0

THEOREM 2 [1]. Let (1) be an iterative method of order k. Let the function
F(x) be k+ 1-times differentiable in a neighborhood of the limit point x = o, and let
F'(a) # 0. Then

w i wa
F (x?l) - I; F (xn)xn 6l == F(xn)

(%) Xpi = 1 :xn—-—-l——,n-—-O,l,Z,...
1——=F - = F'(x
k ('x)l) 1 k F (‘x?l)

is an iterative method of order at least k+ 1.

THEOREM 3 [4]. Let (1) be an iterative method of order k. Let the function
F(x) be k+ 1-times differentiable in a neighborhood of the limit point x = o. and let

F'(OL) # 1. Then

1

that is,

) X S, [l +%(l—flj:£'£("%’l—)n))(xn - F(x,)), n=0,1,2,...

is an iterative method of order at least k+ 1.0

Remark 1. 1. If (1) represents Newton 's method for finding simple roots of
the equation f{x) = 0, namely,

(8) x,,,r,:x,,——;%,n:O,l,L...,

which means that

F(xn) = xn _—-_f;&_)—’
J' (%)
then from (4), (5) and (6) we obtain the following methods, respectively:
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X, =X 2(f ) +f ")f"( )
© v = f'(xn) 2 (%))

which is known as Chebyshev's iterative method,

ot () AL ()
(10) "I A ) - ) ()

which is known as Halley's method, and

e (13) e (i) 201 (x)) ~ S (x,)
(11) n+l ") 2(]” (xn))z 2/ ) (x) :

n=0,1,2,..).

Ti he order of these methods is at least 3 but, since they do not involve
derivatives of f higher than the second order, their order of convergence cannot
exceed 3 (see [3]).

2. In[2) it is presented a family of transformations
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where m € N and ay, b, € R, which includes those of Newton and Halley, and
which accelerates the convergence of the ratios of consecutive Fibonacci numbers,
for some values of aj and b,, to ¢ (the golden number).

3. A NEW METHOD

THEOREM 4. Let (1) be an iterative method of order k(> 2). Let the function
F(x) be k+ 1-times differentiable in a neighborhood of the limit point x = o. and let

s be a finite parameter such that 1 — F' (a)(s + 71;) # 0. Then
1- sF'(x,)

(13) xn+1=x"‘(x"_F(x"))'1—( 1]F'(x,,)

,n=012...

is an iterative method of order at least k+ 1.
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Proof. In the method (13) the iterative function is

(14) G(x)zx—(x—F(x)).l E—ﬂ;'(:)( ):
-4 s+; "(x,
- Fla) - 1) | 20

1—(s+£—)F'(xn) |

For the function G(x) we shall prove that

(15) Gla) = o,G'(a) = G"(a) =...= G(k)(a) = 0.

By hypothesis, (1) is an iterative method of order k and, therefore, relations
(3) hold.

We obtain from (14)
(16) Gla) = a
and

)= K - 2| FO(x) 1 ( - f(ji( J {I]F")(x)

—[s+ © "(x
. x — F(x) | i WA x— F(x "
(17) .- (S+jl;]f"(x) +(2)F( )(x) 1_(S+E();'(x) ook
x = F(x) .

+F'(x)

1- (s + %JF’(x)

As regards relations (3), we obtain from (17)

(18) G) =0 for r = 1,2,...,k — 1.
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Since
e (I—F'(x))[l—(s+%)F'(x)]+(x—F(x))(s+%)F"(x)

1- (s + %)F'(x) i [1 u (S + %) F'(x)]n

we obtain

2

G(k)(a) — F(k)(a) il %[kF(k)(a)] =0;
hence conditions (15) are fulfilled. o
Remark 2. For s = —% we obtain the iterative method (4), for s = 0 we

obtain the iterative method (5) and for s = 1 - % we obtain the iterative method (6).
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