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POINT PROPERTY FOR CONTRACTIONS
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1. INTRODUCTION

In his communication [4], I. A. Rus has mentioned the following result of
Hu from 1967, which gives a characterization of metric completeness:

THEOREM 1.1. [2] 4 metric space (X, d) is complete if and only if for each
closed subset Y of X any contraction ;Y — Y has a fixed point.

Hu has made the remark that “closed subset” can be replaced by “infinite
denumerable closed set”, and it is sufficient to consider contractions with a given
constant r,

As stated in [4], for the fixed point structure theory it would be desirable to
have a result related to that of Hu, namely: given a complete metric space (X, d)
and a nonvoid subset ¥ such that any contraction f:Y — Y has a fixed point, the
subset Y is necessarily closed. Unfortunately, some examples given by Connell [1]
in 1959 for cross products show that there are nonclosed subsets of a complete
metric space for which each contraction has a fixed point. The paper of
Subrahmanyam [3] includes an abstract generalization of such an example. "

In the second section we describe an example of Connell and the way it
provides a nonclosed set on which each contraction (in fact, any continuous function)
has a fixed point. The set is connected but not path connected. A second example,
also appearing in Connell’s paper, provides a path connected, nonclosed set in R 2
on which each continuous function has a fixed point. In fact, Connell is not
concerned about the connectedness properties of these sets.

In the third section we prove a theorem which, in the setting of Banach spaces,
gives a class of sets which are necessarily closed if they have the fixed point
property for contractions. So, in this case, Rus’ problem has an affirmative answer.

The final section contains some remarks on another class of sets and on the
way of providing contractions without fixed points in the case of normed spaces.
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2. EXAMPLES IN COMPLETE METRIC SPACES OF NONCLOSED SETS
HAVING THE FIXED PCINT PROPERTY FOR CONTRACTIONS

In [1], Connell has been interested in giving examples of bounded, but
nonclosed sets Y, each continuous function S'Y —> Y having a fixed point.
Actually, these examples are also good for our purposes. As these sets have in
addition some connectedness properties, we mention the following definitions:

A topological space X is connected if it cannot be written as a disjoint union
of two open nonvoid sets; it is path connected if for every pair X, X, of points in X
there exists a continuous function ¢:[O,1] —> X such that ¢(0) = x, and ¢(1)=x,.

Example 1. A set Y < R* which is nonclosed but has the fixed point property
for each contraction f:Y — Y, The set Y is connected but not path connected,
Let there be given the function ¢ [0, 1]- [0, 1],

sin—— 21
o(t) = j

Lt =1,

In R 2 one considers the connected but not path connected set
Y = {(t,(p(t)) eR:0<r< 1},

forwhich ¥ = ¥ U({1} x [, 1]), so ¥ is nonclosed. The set ¥ is connected because

sinhes )70, where Y, = (t,' (p(t)) eRZ:0<t < 1; is connected as a conti-
nuous image of the interval [0, 1). The assertion that Y is not path connected
follows from the fact that no path can join the point (0, 0) to (1, 1), because
otherwise ¥ would be locally connected, which obviously is not the case.

We show that each continuous function S:¥ — Y (hence each contraction)
has a fixed point. Let us suppose that there is such a function f without fixed
points, Denoting with indices 1 and 2 the first, respectively the second, component
of'a point in R 2 we define

A= {x = (x1,x) &Y f(x) < xl},
Bis {x = (%1, %) e r 7 )s xl}.

Both 4 and B are open in ¥, since f'is continuous. They are nonvoid, because
(I, 1)e 4 and (0, 0)e B. More than that, X = 4 B, Indeed, we have f(x) # x,
(if we suppose ( x)l = x,, it will follow f ()c)2 = X, since ¢ is a function, and
x=(x, x,) would be a fixed point for J, contradiction with our assumption),

To summarize, 4 and B are open disjoint nonvoid sets such that ¥ = 4 U B,
which contradicts the fact that ¥is connected.
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Example?2. A set 7 < R? which is nonclosed but has the fixed point property
for each contraction g:7Z — Z . Obviously, the set Z is in this case path connected
and a fortiori connected.

Let 7, c R? 1, =0, 1] x {0} and I, = {%} x [0, 1]k e N The set
e U:ozo I, < R* is path connected, hence connected, We have Z = Z U({0} x[o0,1)),
so Z is nonclosed. Each continuous function g:Z — Z (hence each contraction)
has a fixed point.

Let us suppose that there is a continuous function g:Z — Z without fixed
points. The continuous function g : Iy — I, givenby g(x)= ( g(x)l, 0) obviously
has a fixed point ( p,0) € I,. Since g has no fixed point, there exists k, € N” such

1 1 1
that p = k—,hence g(k—,O) = (k_’y} 0<y<1,
0 0 0

1 1
Let us denote y, = sup{y €[0,1):3z2 o, 1],y <z g(};—,y) = [k—,z)}
0

0

By the continuity of g and the definition of'y,, there exists z, ¢ [0,1], y; < 2 such

that g(ki, le = (;1- ] zl). If we suppose y, < z,, using again the continuity of
0 0

, 1 1
g, we can find y, z, € [0, 1], Y1 <y, <z, such that g k—,y2 = k—,zz )
0 0

1 )
contradiction with the definition of ;. It follows that y, =z, and ( P le Isa
0

fixed point for g, contradiction with our assumption that g has no fixed points.

3. CONVEX SUBSETS WITH NONVOID INTERIOR IN BANACH SPACES

In this section, in the setting of Banach spaces, we give a class of sets for
which one can prove that if any of their contractions has a fixed point, they are
necessarily closed.

We mention the following definitions: A set 4 in a linear space is convex if

from x, y e 4 it follows that (1 - A)x + Ay e 4 for each A e (0,1); the relative
interior of the convex set 4 is rid = {a € 4:Vx € 4\{a}, 3y € 4 such that
a = (1~ A)x + Ay, for some % e (0, 1)}. In a normed space, from int 4 » @, it
follows obviously thatri 4 # ¥, but the converse is not true.
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We can prove now

THEOREM 3.1. Let E be a Banachspace, 4 — E a convex set with intd # &.
If each contraction h: 4 — A has a Jixed point, then A is closed.

Proof. We have to prove that b c 4 implies b € 4. Let us suppose by
contradiction that there is an element p < A\ 4. Making (if necessary) atranslation,
we can take »=0. Since int 4 # &, there is ¢ < int4. Let o, > 0 be given
such that & +B < 1,7 = a +Bfa| < 1.

We define a function H: E — .

H(x) =ax+BMa.

I +1
For x € A, we have y = ”H%a € int 4 (since 0 € 4, q € int 4). Then
X|
the convex combination
v = s SVE u

o+ o+pB
is contained in int 4, so o + Pu = (@ +B)v+(1-a- B)O € int 4o + B < 1).

It follows that H(4)  int 4 < A, hence H(Z) C HA)c 4.
We prove now that H is a contraction on E with the constant < 1:

X —y
) - O < ol oA RE 2 < o e -

Applying Banach’s theorem for HIZ , it follows that it has a unique fixed point,
which is equal to 0 (because H(0)= 0).

By the hypothesis, the fixed point set of = HIA is nonvoid; it is included
in that of H,Z » Which contains exactly the point 0, so it follows that 0 ¢ 4,

- contradiction. It remains that the set 4 has to be closed. m

The class of convex sets with nonvoid relative interior is larger than that
considered in Theorem 3.1, The problem whether the condition int 4 # & could
be replaced by ri 4 # & remains open.

4. REMARKS

In the case of normed spaces, there are some further comments to be done,

Remark 1. Suppose that the problem at the end of the previous section can be
answered in the affirmative, i.e., Theorem 3.1 s true with vi 4 # &. Then an
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immediate consequence would be that any normed space with the property that each
contraction has a fixed point is in fact a Banach space. Indeed, a zormed space A
can be considered as a convex setwithvi A # & in its completion 4 = E; applying
the theorem, it follows that the normed space A is closed, hence a Banach space.

Remark 2. In a normed space which is not Banach, contractions without
fixed points may exist. But to provide such contractions is not an easy task. For
example, let us consider the space 1° of all real sequences with a finite number of

nonzero terms, endowed with the sup norm, and the shift operator s:1° — | o
s(x, %, = (0, %, %,,...). For Ae (0, 1) and e;=(1, 0, 0,...), we define
P BN (x) = ?»s(x) + ey, Which is a \-contraction. But it has no fixed points,
because f(u)=u implies u=(1,1, A%, 23, ..) e I°
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