REVUE D’ANALYSE NUMERIQUE ET DE THEORIE DE L’APPROXIMATION
Tome XXVI, N® 1-2, 1997, pp. 149-163

ON p-DERIVATIVE-INTERPOLATING SPLINE FUNCTIONS

RADU MUSTATA

Following the ideas from [2] and [3], we define the p-derivative-interpolating
spline functions which can be used to approximate the solution of a differential
equation of order p (p € N, p 2 1) with modified argument. For p = 1 one obtains
the spline functions considered in [2] and [3].

Let

An:—00=t_1<a=t0<ll< <t —b<t+1—+00
be a partition of an interval [a, 5] < R.

DEFINITION 1. For n > 1,p 2 1,m > 2, m > p given natural numbers such
that m + p < n+ 2, afunction s:R —> R satisfying the conditions

1) s e C*™27(R),

2)‘5"1,(e Ponep-t> L = [t )k = 1,2, m, and

3) S‘I ’ ’IH eq)n+p laIO o (t l’tO)’ In+l a0 [tn’tn+l)

is called a spline function of degree 2m + p — 1. Here @ denotes the set of all
polynomials of degree at most r.

The set of all spline functions of degree 2m + p — 1 is denoted by S,,,, p_l(A") ¥

Remark 1. For p = 1 one obtains the set S,,,(A, ) of natural polynomial spline
functions of even degree 2m considered in [2] and [3].

The following representation theorem will imply that the set S,,,, A (A,,) is
an (n + p + 1)-dimensional subspace of C*"*#7(R).

THEOREM 2. Every element s € S,,, p_l(A,,) admits the representation

r-

(1) S(t Z +Zak(t 2m+p 1
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where

n Iy
() Satf=0,j=0L.,m-1

k=0

Proof. Taking into account condition 3) from Definition 1, it follows that

S" (1) = 0 for all ¢ € 1,,,, giVing

n n
22m+p——1 (m+p—1)ak(t—t,',)f'l=M2ak(t—tk)i’ L
=0 k=0

m-1 ) m-1 n
MZak SrCh iy MZ (-1 ci_ [Za z’}'" i,

k=0 j=0 : k=0
where M:=(2m+ p-1)..(m+ p-1).

n
The above equalities imply that Z at] =0, for j=0,1,..,m-1. 0O
k=0
THEOREM 3. Let g e N,0 < g<p-—1and let f:R—> R be a function
verifying the conditions

(3) f(q)(to)Zygq), qzo,l,...,p—l,
f(”)(tk) e yS(P), k=01..,n.
Then there exists a unique spline function s, € Somsp1(4,) stich that
4 sgf»(to):ygq), g=01..p-1,
S.(,_I))(tk) = yﬁp)’ k = 0,1,...,”.. .,

Proof. Since the spline function s, admits representation (1), it follows

plbGis (q + k)' L (2m +p- 1)' 2m+ p-g-1

(9, = o/ tk tt
va,(t) k! Aqi-k +§,(2m+p—q—l)!ak( k)+

forg=0,1,..,p.
Imposmg conditions (4) to this function, one obtains the system

& (g + K)! ()

o At =", ¢=0p-1
’;=D k)' ud (2 + 1)1 2m-1
m- p+ ! k m+ p-—1)I 4 m=1 (») | =%
®) ﬁ’;“—‘“k! Aguid) +§Wak(tj k)+ =y s J=0n
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with (p + n+ 1 + m) equations and m + p + n+1 unknowns: 4y,..., 4,500

ay,...,a,.
The system (5) has a unique solution if and only if the associated homogeneous

system y(‘]) -0,g=0,1,...,p-1; v(l’ ) - =0,j=0,1,..,n | hasonly thetrivial solution.
Denoting by s a function in Somsp 1( An) verifying the homogeneous condi-

tions (4) (i.e., s )( ,)=0,g=0,p 0,p—1; s(”)(tk) = 0,k = 0,n), and integrating by
parts, we get

N

m-

_[,:[ ,,,+,,) ] j (m+pe)) (1)s (m+p-j- l)(’)l N

=o fo

-

NE j’"s 1) )P 1)t

Taking into account Definition 1, we further obtain

J‘tnl: m+p)(t)] di = m IZJ"k (2m+p-1 t) p+l)(t)di

_ (_l)m—IJ‘: (p+1) t)dl m lzc [ S(p)(tk_l)] _o

k-1

where ¢, = s(z"'”’_l)(t) Lo k= Ln.

It follows that s"*#)(¢) = 0 for all ¢ € [t,,1,].

Since s € ®,,,; ontheintervals [yand [ ,,, we find that s@*P)(¢) = 0, for all
t € I,UI,,,, too, so that by the continuity we get s7P)(#) =0, forall £ € R,

The equality s*"PX#) = 0, for all # € R implies that .s( ») e®,_1 ONR. Slnce
s(l’)(tk) =0 for k=0,1...,n, because m<n+land 1<p < n—-m+1,
follows s = 0 on R. Now, using the conditions s(q)( 5)=0,g=0,p— 0,p-1,we

obtain s = 0 on R and, consequently, all the coefficients 4y, ..., 4, p_1> %> - 4,
in (1) are null. Taking into account the linear independence of the functions

{1 t, ...yt AT 10)2'"+p G (e )2'"”’ }, it follows that the system (5) has

aunique solutlon [
An immediate consequence of Theorem 3 is the following

COROLLARY 4. There exists a unique subset of n+ p + 1 spline functions

{S()’ Stre- 5 Sp1s S0a Sl: DO Sn} = SZrn+p—l(An)
satisfying the conditions
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(6)

and, respectively,

7

Let f ¢ C(")( R)and S: C(")( R) g S2m+p—1(An)be the spline operator defined
by S(f) = 5.

Obviously, the functions sg, §1,-.., $p-1, S0, S15..., 8, defined by (6) and
(7) form a basis of the space S,,,, ,(A,). Therefore, s has the representation

1

('8) 5;(t) = }i; P),).

qO

“T

In order to study the properties of the space §,,, p—-l(An)’ we consider the
notations

) W5m+p(An)5: {g:[a, b] — R, g("”p_l) is ébs. cont. onl,, k = l,—n
and g™ e Ly[a, b]}
10y  wy*([a,b]):= {g:[a, bl > R, g™ is abs. cont. on[a, b]

and g(m+?) el_.z[a, b]} ;

(11) Wyt P(4,):= {g e (A,),87 (k) = k) ke = 0, "}

) W)= {g e m(a,),69(6) = 1) g = 0 p 1}

THEOREM 5. If s € S,,,,,.4(A,) N WZ";".‘,"(A") , then the inequality

(m+p) (m+p)

<
2

(13)

holds for every g e W' (a,).

A g i

Proof. Observe that the last term of the relations
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(mtp) _ oep)|* _ jb [g(mw)(,) - S(m+p)(,)]2d, il

n

2

- [fe= - e off om0 - oo

a

is null. Indeed,

r = [ g0 - st =

[

N "= (_1)_,-S(m+p+j)(t)[g(m+p—j)(t)_S(m+p—j)(t):|:zg +
j=0
+(_1)m l 2m+p 1 [ p+1 pkl )]dt
but 522 (g) = gorer (b) i om=2,and s G) Lg, k=T,

Therefore,

. m lzj'tk 1 (2m+p [ (p+1)( ) S(p+l)(t)]dt 4

" 1anck[ S(p)(fk) = (8(p)(tk—1) = S(p)(tk—l))] =0.

k=1
. “g(m+p)
2 2

Remark 2. From the proof of Theorem 5 it is clear that

It follows 0 > |5 +2) , which is equivalent to (13). O

s

(m+p) 2 N m+p ll m+p) m+p)
(14) 7] = / 2
for f e W,"**(4A,), implying
(15) m+p llf(m+p
(m+p) _ [(m+p) (m+p)
as) TR T

THEOREM 6. Let [ € W,"*?(A,) and s; € Symsp-1(4,) begiven by Theorem 3.
Then the inequality

) |
holds for all s € Sy, ,1(A,).

f(m+p) m+p

" flmep) _ glmer)

2
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Proof. The last term of the identity
2 2
\S(1n+p) N f(m+p) 2 _ J.b[ m+p) (t) m+p)( )] dt +

+J"’ [s(f'”p) - f("’”’):zdt + sz [s("'“’)(t) B sy“p)(t)][s(f'“}’)(t) Fy f("'”’)(t)]dt

a

is null. Indeed,

7, = [ [0 - s st - 7 P00t =

- Sty sl -1

=0

t=b

f=a

+

+(—1)m_] J;b [S(2m+p--l)(t) I S&?mi-p—l)(t)][s'(fpﬂ)(z) i f(‘pﬂ)(t)]dt

and, since (s("'””j) - s(f"”pfj))(a) = (s(m+P+j) - ssf“p”))(b) =0, j=0,m-2
and s(2m+p—l)(t) v s(j?m'i-p—l)(t)

4l ck(s) (constants) forall ¢t € I,k = 1,n,one

obtains
1= () D e [500) - 16)] - [0 - 7P )] = 0.
Therefore, =
Jm+p) _ f(m+P) E ik ls(m+P)(t) . Synw)(t)“z u ‘S(fmﬂv)(t) | f(m+p)(t)\z’

implying (17). 0

1. APPLICATIONS

In the following we shall use the spline functions in S, ,  to approximate
the solutions of Cauchy problems for differential equations w1th modlﬁed argument

of order p(p > 1).
Consider the Cauchy problem

Wey= f(t, (0), W0(0))), ¢ €[a,8]
(PXYa) = my,q =0,p-1
¢:[a,b] > [a, b]
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and suppose that the conditions ensuring the existence and uniqueness of the solution
y of this problem are fulfilled (see [4]).
From Theorem 3 one obtains’

THEOREM 7. If 'y is the exact solution of the problem (P), then there exists a

unique spline function s, € S,,,, p—l(An) verifying the conditions

(9) )
8y ) =y a)=m,, 0, 1
(18) ¥y (0) ( ) q q= p-

sg'p)(tk) =ly'?(5)s k=
Consider the notations
(19) { (t") Vs Y ( ( )) Ve k= 6*
g'p)(tk) f(tk’ Yis yk) k = 0_

Using Corollary 4, we obtain

THEOREM 8. If {5, 81,..., $,-1, S0, 81, S, |, the basis of S,,,.,, (A, is
given by Corollary 4, then the spline function s, € S,, ., \(A,) given by Theorem
7 admits the representation

r-1

(20) s,(t) = 3 s,(t)m +Zsk S (£ 10 )

g=0
We call the spline function s, given by (20) the approximate spline solution
of the problem (P).

THEOREM 9. If y € W,"*¥[a, b] is the exact solution of the problem (P) and
s, is its approximate spline solution, then

s m(m =1)...(m

(21) ”y(m+p—r) _ S;m+p—r)

r~% ”y(m+p)

2

r = 2,3,...,m;||A"" = max{t Li=1, n}

Proof. Since y\* )(t.) - .s( )( t,) = 0,i = 0,n, by an application of Rélle’s
theorem we obtain the existence of points t} ) €t t,),i = 0,n —1, such that

(AR

N R I ) W e}

Applying again Roile’s theorem, it follows that there exists rﬁ’"'}) € (tf'"_z) ) t,(i"'fz) ) )

i=0,n-m -_e-_'_]., such that
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y 1

YD) - ) <, i =

It is obvious that

() )l < Ko, k= 0m—1.

H-l

It follows that for every ¢ € [a b] there exists i, such that ‘t - z(’" 1)‘ ml|A,
and, consequently,
-+ m+ b mH- m+
Y 0) = s [y (P 0) = 857 P W) <
2 : |2
< J.:(m_l) du J:t("_.) (y(m”’) (u) - s§,m+p)(u)) dul <
b,
t m L s 2
< 1’7VI||Ap; "\J:(_m-l) (y( +p)(u) o SE,'HP) (ll)) dul <
i
b +p m+ (m+
< B[ () - el < Jmja e
The last inequality from above follows from (16)
Therefore,
‘y(mﬂ)—l) - m+p 1) l \/;"A " | m+p)
Similarly, forevery ¢ € [a, b] we can find an index i, such that lt - t({;n—z) <(m- 1)" A,,"
so that
y(m+p—2)(t)—b‘§,m+l)_2)(t)| < J;;m_z)(y(nwp—l)(u)_ Sirn+p—1)(u))du <

< y(ma-p—]) = .S‘E,"Hp—l) m+p)

1
ot 3

2

L

forall 1 € [a b] implying

l (m+p-2) _ (m+p—2)‘ (m+p)

< Jm(m - Dt 2]y

We obtain, in general,

I

r=2,3,..,m0

\ (m+p)

() _r#0)| < fom (m=1).(m-r+ )JA] 2y

2

Remark 3. For = m one obtains the evaluation

22) [~ ] < mm-1yfan 3y
COROLLARY 10. The inequality
@3) -5, (6= Vim0,

holds for every y € W;"*|a, b].
Proof. We have

) - 5,0 = |f] (' () = o, ()

Similarly,

< |t = t°“|y'~s'y||w <(b- a)”y‘—s'ynw.

=5, < (- ar=s 1,
and, finally,

(») (p)

“y I S)‘"c: < (f a)P i/ IS0,

Now (23) follows from (22). O
COROLLARY 11. The relation

oc

(24) lim y(k) - sE,k) )

A, [0 =0,k=p,p+L..,p+m-2

holds for every y e W,"[a, b].

Proof. 1t follows immediately from (21).

Now we shall show how the above results can be applied to obtain the
approximate spline solution (20) of the problem (P).

Denote
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p-1 n il
W= sy(ti):= qu(t,.)y(q)(to) +ZS () (8> Ve Vi), i=0,n
(25) q=0 )i k=0
W= Sy(q’(ti)):: 5q( i )y (to) + ZSk( )f(rkayk’ Vi), i=0,n
g=0

and let
e,:=e(t;) = y(t;)—5,(), i =0,L..
2= e(9(t)) = (o(1)) - s,(9(t)), i=0,L....n

denote the deviation of the approximate sphne solutlon 5. from the exact solution y

of the problem (P), on the knots ¢ and ¢(z); i = ;1.
We have
Ve =W e
V=Wt

for k=0, 1, ..., n and the system (25) can be written in the following form

p 1 n
Sq(t ))’(q t() Z Sk(ti)f(tk’wk + ek’Wk + Ek), i=0,1,...,n
q=0 k=0
p-1 (@) n
w; = Sq(¢(fi))y 4 (to) + Z Sk(¢3(tl-))f(tk,wk + ek,Wk + Ek)’ i=0,1,...,n
g=0 k=0

with w, and w;,i=0,1,..,nas unknowns.

If the derivatives of the function f(t,u,v),/:DCR > R; (Dca,b]x R %)
with respect to u, vare continuous, then

(‘krgw"’lx) +af(‘k:§kmk)-é
&, - A

S (txwy + 4,9 +e,)= f(tk,wk,wk)+

where
min(w, wy + &) < & < max(wy, w, + e;)
min(w,, W, + &) < My < max(W,, W, + ).

One obtains the system
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.-

= Z sq(ti)mg + Z St f (tr wis i) + Ei

—IO

(26)

’gﬂ

= sq((p(t )m, rZS,‘(q)(t S (ts Wies W) + By »

0

€
I

where

G EksME) = . o
K, ‘ZSk(‘ k,ék ) AUST I +Zsk @"(k,aéi n")ek,-z=0,n
k=0 -

i (1)) L\t ) (tk’ail,imk)e +ZS )5f‘kéi,ﬂk) 5, i=0n.

Supposing that the derivatives of f(#, u, v) with respect to u, vare bounded on D,
there exist M;, N;> 0 such that

af( ko 5ok > 'flk)
Oyx

and, taking into account Remark 3, we deduce that

AL Yoy etk
£ - ol ) B = of o)

consequently E; —; 0, E; - 0, for |A,] - 0.

af(tk’ék ,le)

Ml" 65)- <N1,k=—6_-_
k

Now, neglecting the quantities E;, E,, i = 0, n,we obtain the following i
system of 2n+2 equations

pl _
W, = qu +ZSk )f tk’wk’wk) 0
27 qu10 n kL
Wt = Z sq((p(t,))mq + Z Sk((p(f ))f(fk, Wk,Wk) 0
¢=0 k=

with 27 + 2 unknowns: wy, Wy, ..., W, Wy, Wi, .o, Wy

o ] n?

Consider the notations
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[ solte) - sp-(to) ]

SO(tn) Sp—-l(tn)

[s] = So(‘P(‘o)) Sp—l(‘P(“o))
SO((.‘;(.tn)) sp—l.(él;(tn))_

Vi
m= (mo, m-l, DHAE mp_,l, mo, ml,. ol ’np_l)

HSO(tO) Sn(to) -‘

) - S

A LS = —\T
W = (wo,wl,...,w,,,wo,wl,...,w,,)

S = (f(ta Wor o)y S (s W )y f (g W0, o) £t War )

Using these notations, the system (27) can be written in the following form

o8 w = s+ 517 7).
We obtain |
(29) _ W =HW),

where 1 Q) — ©, H(W) = [s]m + [8]£(#) and the domain Q < R will be
specified below:

Let M = max{lmq(:q =0,l,...,p~1} a11dN>Osu.chthat |f(tk,wk,Wk)| <N,
k = 0,n. Theset Q c R*"* is defined by

(30) Q= {W e R¥IW = (wb,wl,...,w”,WO,Wl,...,W")T,

p-l n doludy
|w,-| < MZisq(t,-)l + NZ‘Sk(tl.)‘, i=0,n
g=0 k=0

13 Dérivative—interpolating Spline Functions 161

) < S| )]+ NS0} - 0_}

q=0
Since His a continuous application of the compact convex Q into itself, it follows

that equation (29) has at least one solution W* € Q.
Let [F] be the following diagonal matrix

—af(tmwo, Wo) “‘
owy

@{(tn > wn ? Wn )
ow,

Then

2~ [s)F).

THEOREM 12, If %LS 0 < 1, then the solution W’ e Q of equation (29)

is unique and can be found by the iterative process

. = H(W(H)), el 8

where W9 ¢ Q is arbitrarily chosen. Furthermore, the following evaluation holds

- < 25 -

Proof. 1t is an immediate consequence of the Banach’s fixed point theorem. O

<[] < 1 it anc oy if [ < g

1

dH

Remark 4. We have

If the norm of a matrix [4] = (a,.j) is defined by

i,j=1,2n+2
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2n+22n+2

EDDAT e
i=1 j=1

[

then

17 = g(af(ti:a::!ﬁi)J +;Z'0(af('ti’a::5_w“i)J Z\m M,

1 1
where M,=max {M,, N,}. It follows that |[ F ]| <— if and only if A, <—_J__|— .
2n+2|[ 5]

[is]

2. A NUMERICAL EXAMPLE

Consider the Cauchy problem

Y (t) = 1 e’—%y(%) +%y(t), t e [0, 1]
(P)W »0) =1

Its exact solution is

¥t) = €.

Table 1 contains the calculated values of the spline approximating function on
indicated points as well as the absolute errors (in the case m =3, p =3, n=4).

Table 1

x s,(x) le(x)l

0 1 0

1/10 | 1105170755 | 0136107

2/10 | 1221400733 | 02025-107°
3/10 | 1349851256 | 0.7552-107°
4710 | 1491808464 | 0.16234-107*
5/10 | 1648697829 | 0234421074
6/10 | 1822098038 | 0.20762-107*
7710 | 2013753559 | 0.852.107¢

8/10 | 2225585132 | 0.44204-1074
9/10 | 2.459697653 | 0.94542-107*
1 2718385876 | 01040481073
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