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EXISTENCE AND APPROXIMATION OF POSITIVE FIXED
POINTS OF NONEXPANSIVE MAPS

RADU PRECUP

1. INTRODUCTION

Throughout this paper E will be a real Banach space and K < E a cone,
i.e., aclosed convex set such that AX < K forall A > 0. Since we do not assume
KN(-K) = {0}, the cone K can be, in particular, the entire space £. We shall
denote by K* the dual cone, i.e.,

K = {x‘ € E';(x‘,x) 20 for all x GK}.

Also, by U and U, we shall denote open bounded subsets of E containing the
origin; we shall assume that

U cUCcE,

and we shall write K, instead of K U

The following two fixed point theorems have been established in [8] by
means of the continuation method, but without using the index theory. In the
particular case when U and U, are two balls, U=B(0) and U, = B(0), 0 <r<R,
these results have been first obtained by K. Deimling [4] (see also [3] and [5] for
related topics) by means of a different method. Although in [8] we have supposed
that K ((—K) = {0}, the reader can easily see that such an assumption is not
necessary.

THEOREM 1.1 [8]. Let f:K, — E be a-condensing and suppose that the
following conditions hold:

(1) (x, /()20 forall x eUNOK and x* €K' with (x',x)=0
(weak inwardness condition);
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(1.2) f(x)# % for all x e KOOU and A >1.
Then f has a fixed point x € K-

Theorem 1.1 is a simple consequence of Theorem 3.1 in [8].
In particular, for K = E, condition (1.1) trivially holds and Theorem 1.1
reduces to the well-known continuation principle for a.-condensing maps.

The next theorem is useful when f(0) =0 and fixed points in K \ {0} are of
interest.

THEOREM 1.2 [8]. Let f : K, — E bean o-condensing map satisfying (1.1)
and (1.2). In addition, suppose

(1.3) x— f(x) # Ae for all x e KNoU, and A\ > G

for some e € K\ {0}. Then fhas a fixed point in K ﬂ(U \ Ul).

For an example illustrating Theorem 1.2 we refer to [3, Example 20.1}].

The aim of this paper is to obtain similar results for nonexpansive maps.
Moreover, we shall get gencralizations of the following continuation theorems for
nonexpansive maps recently proved in [9]:

THEOREM 1.3 [9]. Suppose E is uniformly convex and that, in addition, Ulis

convex. Let f:U — Ebea nonexpansive map such that

(1.4)  f(x)# M for all x €U and A> 1.
Then fhas a fixed point in U.

THEOREM 1.4 [9]. Suppose E is a Hilbert space and f:U — E is a
nonexpansive map satisfying (1 4) (where U is not necessarily convex). Then f has

a fixed pointin U.

2. POSITIVE FIXED POINTS OF WEAKLY INWARD NONEXPANSIVE MAPS

THEOREM 2.1, Suppose E is uniformly convex and that, in addition, U is
convex. Let f:K, — E bea nonexpansive map satisfying (1.1) and (1.2). Then
f has a fixed point in K.

Proof Foreach n e Nyn 2 2, define the map

21 fuKy = E, fi(3)= (1 " l)f(JC)-

n
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Since f is nonexpansive, f, is a contraction and, consequently, a-condensing.
Moreover, since fsatisfies (1.1) and (1.2), it casily follows that f, also satisfies
these conditions. Therefore, by Theorem 1.1, there exists a (unique) fixed point
x, € K, of f, that is,

2.2) (l - l)f () = %5

Since any uniformly convex space is reflexive and K, is convex bounded closed,
there is a subsequence of (x,) (also denoted by (x,)) weakly convergent to some
x e K, . Further, f (K,) being bounded, from (2.2) we obtain that

x, — f(x,) = O strongly.
Now the conclusion follows by
LEMMA 2.2 [1]. Suppose E is uniformly convex. Let f:D — E be a

nonexpansive map, where D c E is a convex bounded closed set. If for a
sequence (x,) < D onehas x, —> x wealkly and x, — f(x,) — y strongly, then

x—flx)=y =
In Hilbert spaces, by (2.2) and the identity

2(anxn = Ay Xy Xy T xm) = (an 2 am)lxn = xmlz + (an i am)(lxn|2 - |xm‘2>’

witha, = 1/(n— 1), we can even prove (see [2] or [9]) that the entire sequence (x,)
is strongly convergent, without assuming the convexity of U. Thus, in Hilbert
spaces, we additionally obtain an approximation scheme for a fixed point of f.
More exactly, we have -

THEOREM 2.3. Suppose E is a Hilbert space. Let K, — E be anonex-
pansive map satisfying (1.1) and (1.2) (where U is not necessarily convex). Then
the sequence (x,) C K, given by (2.2) strongly converges o a fixed point of f.

Remark. For K= E, Theorems 2.1 and 2.3 reduce to Theorems 1.3 and 1.4,
respectively.

3. NONZERO FIXED POINTS

This section deals with the existence and approximation of fixed points in
K\ {0} of weakly inward nonexpansive maps which may have 0 as a fixed point.

THEOREM 3.1. Suppose E is uniformly convex. In addition, assume that
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3.1 0 ¢ conv(K [ 8B,(0))
and that U'is convex. Let K, — E be anonexpansive map satisfying (1.1) and
(1.2). Also, suppose that there is e € K \ {0} such that

(3.2) {x-s(x)x e KNOU}NR e =0

Then f has a fixed point in IZU \{o}.

Proof. For each n € N, n > 2, the map f, given by (2.1) satisfies (1.1), (1.2)
and also (1.3) for n large enough, say n > n,. Indeed, otherwise it would exist the
sequences (n,) < N,(x,)c KNoU, and (1) c Ry such that n, — co and

—(I—L)f(xk) = Age for all k.

ny

Clearly, (A,) is bounded and so we may suppose A, — A, forsome A, eR,. It
follows

Xy — f(Xk) g )\/Oe,
which contradicts (3.2).
Therefore, according to Theorem 1.2, foreach n > n,, there exists x, € KN(U\U; )

a fixed point of f,. Further, as in the proof of Theorem 2.1, there is a subsequence
of (x,) weakly convergent to some x e K, . Since x, ¢U,, by (3.1), we see that
x # 0. Finally, by Lemma 2.2, we obtain f(x) = x.

Remark. Condition (3.1) implies that K is hormal, i.e.,

;x,y € KNoB(0)} > 0.

In Hilbert spaces we have a more precise result.

THEOREM 3.2. Suppose E is a Hilbert space. Let f:K, — E be a nonex-
pansive map satisfying (1.1), (1.2) and (3.2). Then the sequence (x s W © K ﬂ(U\ u 1\)
given by (2.2) strongly converges to a fixed point x € K ﬂ((7 1) of f.

4. OPERATOR INCLUSIONS WITH HYPERACCRETIVE MAPS

Amap 4:E — 27 is said to be hyperaccretive provided that the following
two conditions hold:
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(u—v,x—y) 20forall x,ye D(A), ueA(x) and v € A(y),
(4 + I)(E) = E,
where (x, ). |y| lim ¢~ (|y+tx|—|yl)
Fora hyperaccrgtlve map A4 one considers the nonexpansive map
4.1) f:E——)E,f(x)z(A-I-I)— (x)

In this section we deal with the solvability of the inclusion 0 e A(x), or,

equivalently, of the equation (4 + I )_l(x) = x, where 4 is a hyperaccretive map.
The results are direct consequences of the theorems of Sections 2 and 3.

THEOREM 4.1. Suppose E is uniformly convex and A:E — 2° is a
hyperaccretive map. In addition, assume that

(4.2) A4+ 1) (K) ¢ -K,

(4.3) (w,x), 20 for all x e K with |x|>R and u e A(x)
(coerciveness with respect to zero),

for some R > 0. Then there exists x € K with |xl <R and O¢ A(x).

Proof. Take U= B,(0) and f given by (4.1). Then check that (4.2) implies
(1.1), while (4.3) implies (1.2). Thus the conclusion follows by Theorem 2. l.e

Remark. If instead of (4.3) we require that fis coercive on K 1.e.,
(4.4) (u,x)+/|x|——>oo as x € K and |x|—>oo
for each selection u € 4(x), and instead of (4.2) that
(4.5) A4 +1)(K) c K,
then foreach 4 € K thereexists x € K with & € A4(x) (apply Theorem 4.1 to A—h).

THEOREM 4.2. Suppose E is uniformly convex and K satisfies (3.1). Let
A: E — 2F be a hyperaccretive map satisfying (4.2), (4.3) and

(4.6) A(4+1)(KN3B(0)NRe =0

forsome e € K\ {0} and r €0, R[. Then there exists x e K \ {0} with I < R
and 0 € A(x).

Proof. Apply Theorem 3.1 to U = B(0),U, = B,(0)and fgiven by (4.1). m
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THEOREM 4.3, Suppose E is a Hilbert space. Let 4: E — 2% be a hyper-

accretive map salisfying (4.2), (4.3) and (4.6). Then the sequence (x,) < K,

2

nxzn,

< ’xn| <R,

(i (4+ 1) (5,) = 5,
(173

n

strongly converges to a solution x € K of 0 € A(x), and r <[ < R

For other applications of the continuation principles to the theory of nonlinear

maps of monotone type we refer to [6] and [7].
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