REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Tome XXVI, N° 1-2, 1997, pp. 203-208

EXISTENCE AND APPROXIMATION OF POSITIVE FIXED POINTS OF NONEXPANSIVE MAPS

RADU PRECUP

1. INTRODUCTION

Throughout this paper E will be a real Banach space and $K \subset E$ a cone, i.e., a closed convex set such that $\lambda K \subset K$ for all $\lambda \geq 0$. Since we do not assume $K \cap (-K) = \{0\}$, the cone K can be, in particular, the entire space E. We shall denote by K^* the *dual cone*, i.e.,

$$K^* = \left\{ x^* \in E^*; \left(x^*, x \right) \ge 0 \text{ for all } x \in K \right\}.$$

Also, by U and U_1 we shall denote open bounded subsets of E containing the origin; we shall assume that

$$\overline{U}_1 \subset U \subset E$$
,

and we shall write K_{II} instead of $K \cap U$.

The following two fixed point theorems have been established in [8] by means of the continuation method, but without using the index theory. In the particular case when U and U_1 are two balls, $U = B_R(0)$ and $U_1 = B_r(0)$, 0 < r < R, these results have been first obtained by K. Deimling [4] (see also [3] and [5] for related topics) by means of a different method. Although in [8] we have supposed that $K \cap (-K) = \{0\}$, the reader can easily see that such an assumption is not necessary.

THEOREM 1.1 [8]. Let $f: \overline{K}_U \to E$ be α -condensing and suppose that the following conditions hold:

(1.1)
$$(x^*, f(x)) \ge 0$$
 for all $x \in \overline{U} \cap \partial K$ and $x^* \in K^*$ with $(x^*, x) = 0$ (weak inwardness condition);

(1.2) $f(x) \neq \lambda x \text{ for all } x \in K \cap \partial U \text{ and } \lambda > 1.$

Then f has a fixed point $x \in \overline{K}_U$.

Theorem 1.1 is a simple consequence of Theorem 3.1 in [8].

In particular, for K = E, condition (1.1) trivially holds and Theorem 1.1 reduces to the well-known continuation principle for α -condensing maps.

The next theorem is useful when f(0) = 0 and fixed points in $K \setminus \{0\}$ are of

THEOREM 1.2 [8]. Let $f: \overline{K}_U \to E$ be an α -condensing map satisfying (1.1) and (1.2). In addition, suppose

(1.3)
$$x - f(x) \neq \lambda e \text{ for all } x \in K \cap \partial U_1 \text{ and } \lambda > 0$$

for some $e \in K \setminus \{0\}$. Then f has a fixed point in $K \cap (\overline{U} \setminus U_1)$.

For an example illustrating Theorem 1.2 we refer to [3, Example 20.1].

The aim of this paper is to obtain similar results for nonexpansive maps. Moreover, we shall get generalizations of the following continuation theorems for nonexpansive maps recently proved in [9]:

THEOREM 1.3 [9]. Suppose E is uniformly convex and that, in addition, U is convex. Let $f:\overline{U}\to E$ be a nonexpansive map such that

(1.4)
$$f(x) \neq \lambda x \text{ for all } x \in \partial U \text{ and } \lambda > 1.$$

Then f has a fixed point in \overline{U} .

and we shall write A., instead of A. THEOREM 1.4 [9]. Suppose E is a Hilbert space and $f:\overline{U} \to E$ is a nonexpansive map satisfying (1.4) (where U is not necessarily convex). Then f has a fixed point in \overline{U} . related topics) by means of a different method. Althorogicitic [a] we there disposed

2. POSITIVE FIXED POINTS OF WEAKLY INWARD NONEXPANSIVE MAPS

THEOREM 2.1. Suppose E is uniformly convex and that, in addition, U is convex. Let $f: \overline{K}_U \to E$ be a nonexpansive map satisfying (1.1) and (1.2). Then f has a fixed point in \overline{K}_{U} .

Proof. For each $n \in \mathbb{N}$, $n \ge 2$, define the map

$$(2.1) f_n: \overline{K}_U \to E, \ f_n(x) = \left(1 - \frac{1}{n}\right) f(x).$$

Positive Fixed Points

Since f is nonexpansive, f_n is a contraction and, consequently, α -condensing. Moreover, since f satisfies (1.1) and (1.2), it easily follows that f_n also satisfies these conditions. Therefore, by Theorem 1.1, there exists a (unique) fixed point $x_n \in \overline{K}_U$ of f_n , that is, $f_n = f_n = f_n$ and $f_n = f_n = f_n$.

(2.2)
$$\left(1 - \frac{1}{n}\right) f(x_n) = x_n.$$

Since any uniformly convex space is reflexive and \overline{K}_U is convex bounded closed, there is a subsequence of (x_n) (also denoted by (x_n)) weakly convergent to some $x \in \overline{K}_U$. Further, $f(\overline{K}_U)$ being bounded, from (2.2) we obtain that

$$x_n - f(x_n) \to 0$$
 strongly.

Now the conclusion follows by

LEMMA 2.2 [1]. Suppose E is uniformly convex. Let $f:D \to E$ be a nonexpansive map, where $D \subset E$ is a convex bounded closed set. If for a sequence $(x_n) \subset D$ one has $x_n \to x$ weakly and $x_n - f(x_n) \to y$ strongly, then f(x) = y.
In Hilbert spaces, by (2.2) and the identity x - f(x) = y. which contradicts (3i2) n =

$$2(a_nx_n - a_mx_m, x_n - x_m) = (a_n + a_m)|x_n - x_m|^2 + (a_n - a_m)(|x_n|^2 - |x_m|^2),$$

with $a_n = 1/(n-1)$, we can even prove (see [2] or [9]) that the entire sequence (x_n) is strongly convergent, without assuming the convexity of U. Thus, in Hilbert spaces, we additionally obtain an approximation scheme for a fixed point of f. More exactly, we have

THEOREM 2.3. Suppose E is a Hilbert space. Let $f: \overline{K}_U \to E$ be a nonexpansive map satisfying (1.1) and (1.2) (where U is not necessarily convex). Then the sequence $(x_n) \subset \overline{K}_U$ given by (2.2) strongly converges to a fixed point of f.

Remark. For K = E, Theorems 2.1 and 2.3 reduce to Theorems 1.3 and 1.4, TO THE REAL PROPERTY OF THE PR

3. NONZERO FIXED POINTS

This section deals with the existence and approximation of fixed points in $K \setminus \{0\}$ of weakly inward nonexpansive maps which may have 0 as a fixed point.

THEOREM 3.1. Suppose E is uniformly convex. In addition, assume that

 $(3.1) 0 \notin \overline{\operatorname{conv}}(K \cap \partial B_1(0))$

and that U is convex. Let $f: \overline{K}_U \to E$ be a nonexpansive map satisfying (1.1) and (1.2). Also, suppose that there is $e \in K \setminus \{0\}$ such that

(3.2)
$$\overline{\left\{x-f(x);x\in K\cap\partial U_1\right\}}\cap \mathbf{R}_+e=\emptyset.$$

Then f has a fixed point in $\overline{K}_U \setminus \{0\}$.

Proof. For each $n \in \mathbb{N}$, $n \ge 2$, the map f_n given by (2.1) satisfies (1.1), (1.2) and also (1.3) for n large enough, say $n \ge n_0$. Indeed, otherwise it would exist the sequences $(n_k) \subset \mathbb{N}, (x_n) \subset K \cap \partial U_1$ and $(\lambda_k) \subset \mathbb{R}_+^*$ such that $n_k \to \infty$ and

$$x_k - \left(1 - \frac{1}{n_k}\right) f(x_k) = \lambda_k e$$
 for all k .

Clearly, (λ_k) is bounded and so we may suppose $\lambda_k \to \lambda_0$ for some $\lambda_0 \in \mathbb{R}_+$. It follows to the state of the sta

$$x_k - f(x_k) \to \lambda_0 e$$

 $x_k - f(x_k) \rightarrow \lambda_0 e$, which contradicts (3.2).

Therefore, according to Theorem 1.2, for each $n \ge n_0$, there exists $x_n \in K \cap (\overline{U} \setminus U_1)$ a fixed point of f_n . Further, as in the proof of Theorem 2.1, there is a subsequence of (x_n) weakly convergent to some $x \in \overline{K}_U$. Since $x_n \notin U_1$, by (3.1), we see that $x \neq 0$. Finally, by Lemma 2.2, we obtain f(x) = x.

Remark. Condition (3.1) implies that K is normal, i.e.,

$$\inf\{|x+y|;x,y\in K\cap\partial B_1(0)\}>0.$$

In Hilbert spaces we have a more precise result.

THEOREM 3.2. Suppose E is a Hilbert space. Let $f: \overline{K}_U \to E$ be a nonexpansive map satisfying (1.1), (1.2) and (3.2). Then the sequence $(x_n)_{n\geq n_0} \subset K\cap(\overline{U}\setminus U_1)$ given by (2.2) strongly converges to a fixed point $x \in K \cap (\overline{U} \setminus U_1)$ of f.

A map $A: E \to 2^E$ is said to be hyperaccretive provided that the following two conditions hold:

 $(u-v, x-y)_+ \ge 0$ for all $x, y \in D(A)$, $u \in A(x)$ and $v \in A(y)$, (A+I)(E)=E,

where $(x, y)_{+} = |y| \lim_{t \to 0^{+}} t^{-1} (|y + tx| - |y|)$. For a hyperaccretive map A one considers the nonexpansive map

(4.1)
$$f: E \to E, f(x) = (A+I)^{-1}(x).$$

In this section we deal with the solvability of the inclusion $0 \in A(x)$, or, equivalently, of the equation $(A + I)^{-1}(x) = x$, where A is a hyperaccretive map. The results are direct consequences of the theorems of Sections 2 and 3.

THEOREM 4.1. Suppose E is uniformly convex and $A: E \to 2^E$ is a hyperaccretive map. In addition, assume that

$$(4.2) A(A+I)^{-1}(\partial K) \subset -K,$$

$$(4.3) (u,x)_{+} \geq 0 for all x \in K with |x| > R and u \in A(x)$$

$$(coerciveness with respect to zero),$$

for some R > 0. Then there exists $x \in K$ with $|x| \le R$ and $0 \in A(x)$.

Proof. Take $U = B_R(0)$ and f given by (4.1). Then check that (4.2) implies (1.1), while (4.3) implies (1.2). Thus the conclusion follows by Theorem 2.1. Remark. If instead of (4.3) we require that f is coercive on K, i.e.,

(4.4)
$$(u, x)_+ / |x| \to \infty \text{ as } x \in K \text{ and } |x| \to \infty$$

for each selection $u \in A(x)$, and instead of (4.2) that

$$A(A+I)^{-1}(K)\subset -K,$$

then for each $h \in K$ there exists $x \in K$ with $h \in A(x)$ (apply Theorem 4.1 to A-h).

THEOREM 4.2. Suppose E is uniformly convex and K satisfies (3.1). Let $A: E \to 2^E$ be a hyperaccretive map satisfying (4.2), (4.3) and

(4.6)
$$\overline{A(A+I)^{-1}(K \cap \partial B_r(0))} \cap \mathbf{R}_+ e = \emptyset$$

for some $e \in K \setminus \{0\}$ and $r \in]0, R[$. Then there exists $x \in K \setminus \{0\}$ with $|x| \le R$ and $0 \in A(x)$.

Proof. Apply Theorem 3.1 to $U = B_R(0)$, $U_1 = B_r(0)$ and f given by (4.1).

THEOREM 4.3. Suppose E is a Hilbert space. Let $A: E \rightarrow 2^E$ be a hyperaccretive map satisfying (4.2), (4.3) and (4.6). Then the sequence $(x_n)_{n\geq n_0}\subset K$, $r \leq |x_n| \leq R$,

$$\left(1-\frac{1}{n}\right)(A+I)^{-1}(x_n)=x_n,$$

strongly converges to a solution $x \in K$ of $0 \in A(x)$, and $r \le |x| \le R$.

For other applications of the continuation principles to the theory of nonlinear maps of monotone type we refer to [6] and [7].

REFERENCES

- 1. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Acad. Nat. Sci. USA 54 (1965), 1041-1044.
- 2. M. G. Crandall and A. Pazy, Semigroups of nonlinear contractions and dissipative sets, J. Funct. Anal. 3 (1969), 376–418.
- 3. K. Deimling, Nonlinear Functional Analysis, Springer Verlag, Berlin, 1985.
- 4. K. Deimling, Positive fixed points of weakly inward maps, Nonlinear Analysis 12 (1988), 223-226.
- 5. K. Deimling and H. S. Chuan, Fixed points of weakly inward maps in conical shells, Nonlinear Analysis 12 (1988), 227-230.
- 6. R. Precup, Generalized topological transversality and mappings of monotone type, Studia Univ. Babeş-Bolyai (Mathematica) 35, 2 (1990), 44-50.
- 7. R. Precup, Generalized topological transversality and existence theorems, Libertas Mathematica 11 (1991), 65-79.
- 8. R. Precup, On some fixed point theorems of Deimling, Nonlinear Analysis 23 (1994), 1315–1320.
- 9. R. Precup, On the continuation principle for nonexpansive maps, Studia Univ. Babeş-Bolyai (Mathematica) 41, 3 (1996) (in print).

Received May 15, 1996 Faculty of Mathematics and Computer Science Babes-Bolyai" University 1, M. Kogălniceanu St. 3400 Chij-Napoca

Action At 35 on 2" insaid to be hydrocycle from pervisi