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1. INTRODUCTION

It is known that by starting from two combinatorial identities of Abel-Jensen
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Cheney and Sharma [1] have introduced and investigated two linear polynomial
positive operators, of Bernstein type, P,, and O, defined — for any function
f:[O, 1] 5 R — by the following formulas
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It is obvious that for B = 0 these operators reduce to the classical operator B,
of Bernstein.

In this paper we prove that the seccond operator = preserves the linear
functions and we establish several expressions for the remainder term in the
corresponding approximation formula.

2. THE VALUE OF THE OPERATOR O FOR THE MONOMIAL e,

In [1] it was pointed out that the operator Q  preserves only the constant
functions, after calculation of some integrals involved. But we shall prove that O
preserves the linear functions.

It is easy to see that the following theorem is true.

THEOREM 2.1. The approximating polynomial Q f'is interpolatory at both
sides of the interval [0, 1], for any nonnegative value of the parameter [3.

Proof In order to prove this result, we have only to observe that we can write

B) = — {1 - x)1 - x + mp)" " (0) -
(@ufxi8) = o {a-x0 p)"" 1 (0)
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Let us consider next the monomials e(t) = ¢/(j 2 0) for any ¢ € [0,1].
We shall now state and prove

THEOREM 2.2. The operator Q, reproduces the linear functions.

Proof. As it has been observed in [1], if we replace in the identity (1.2) u=x
and v=1 —x, we find that Q ¢ = ¢, that is, the operator O reproduces the
constants.

We shall prove that we also have 0, e, =e,.

Indeed, one can see that we can write
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because

10

If we change k— 1 =j and then denote again the index of summation by £,
we have

(2.3) = (1 + mB)m_l(Qmel)(x ] [3) =
= 2, (mk— 1) x(x+ B+ kB)(1- x)[l —x+(m-1- k)B]m_H( -
=(1+ mﬁ)g (m . 1) x(x+ B+ kB (U — X1 x4 (m-1-kB]" -
—g mk— 1) x(x + B+ kB)k_l(l - x)[l —x+(m-1- k)p]"'_l_k,

since ‘
x+B+kB=(1+mp)—[l—x+(m—1-kB].

In order to find the first sum, we replace in the identity (1.2) m by m — 1 and
u=x+p,v=1-x
We get

(1+B)(1+mp)™” —( +[3)Z( Jx+ﬁ+k[3)k"l(1—x).

]m—2—k

fl-x+(m-1-k)p
If we multiply by x and divide by x + B, we obtain

m-1

ZO( J (x+P+ )" l—x)[l—x+(m_1_k)B]m—2—k

= (1+p)1+mp)"" =,
e
which represents the first sum.
For finding the second sum we shall use the identity (1.2). We replace m by
m—1andu=x+p, v=1-—x and we find '

m—1

(L4 mp)"™" = (x + B)Z(mk_ l)(x B+ ) 1 x o+ (m -1 - 0],

k=0
It follows that we can write
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m—1 m
m-—1 k-1 m-1-k k
Z( i )x(x+[3+kB) (1-2l-x+(m-1-kB]" = (R, @, )(t) = (x = 1), _qu,k(x;p)[;_t) ‘
k=0 k=0 n
1+ mB)m—l x(1-x) _ In order to find explicit expressions of this kernel, we assume that
x+B : -1
Consequently, we have X € [6 ~ ,i] and we can write
R m
1 m-2 X
2.4 Le)lxB) = —<= 14 mB1+BIl+m = | k
ea  (@e)xP) (1+ mp)"” [( BY1+BX B 5 o (3.4) G,(t;%)=x—1- qu,k(x;[})(;n— - t)
k=j
ot (1= %) x it
—(1+m = 1+B-(1-x)|=x f J A ;I e
( B) x+l3] x+l3[ B—( )] ; orte[m ,m,wherels]ss 1%
Therefore we have If we assume that ¢ € [S ml : x] , then we obtain
m
(25) QmeO = €y, Qmel = €, : . I
: - gL e
as in the case of the classical Bernstein operator B, . 3.5) G,(t;x)=x—t- Z Q,n,k(x ; ﬁ)[; i ‘) )
; . kzs
3. THE REMAINDER while'for's '€ [x’ %] we get
S_mce. the operator ) reproduces the linear functions, it 1s clear that the (3.6) G, (t; x) = _z qm,k( oY) A
approximation formula . m
] 1 i
3.0 F(%) = (@S )5 B) + (RS Nox5B) For { e [f ,L]( j > 5) we have
m m
has the degree of exactness N = 1.
First we shall give an integral representation of the remainder. (3.7) G, (t (%) = _Z qm’k(x : B)( LAY t) !
THEOREM 3.1. If the function f has a continuous second derivative on the k2j "
interval [0, 1], then we can represent the remainder of the approximation formula Because the de _ _
W5 T gree of exactness of formula (3.1) is one, by replacin
(3.1) under the following integral form f(x)=x — t, the corresponding remainder vanishes and we obtain b ¢
1
(3.2) (R,)x) = [[Culs2)s"(0) e, . ) IS A )
where S Z q""k(x ) B)(— - t) - z qm,k(x;l?))(_ iV t) + Z 9 k(x,B)(/—c -1,
; £+ |x - S & k=0 s k= &
L id
(3.3) G, (:x) = (R, (1), 0,(1) = ———Tz—' = (x 1), Therefore we can write
and R operates on ¢ (1) as a function of x. m j-1
m x . x_tzzq (xB) _]E__z ___Z L k
Proof. The representation (3.2) can be obtained at once if we apply the well- = LA T i qm,k(x ) 13) £ & el
known theorem of Peano. it . §®
For the Peano kernel associated to the operator O we have Consequently, the representation (3.4) can be replaced by
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if t € [j -1 L] and 1< j < s -1, while (3.5) can be replaced by
K s—1 k
3.9) G,(t; x) = —Z qm’k(x;ﬁ)(t - ——),
k=0

m
when ¢ e[s_l,x:‘.
m

THEOREM 3.2. If f e C*[0,1], then the remainder of the Cheney-Sharma
approximation formula (3.1) can be represented under the following form

310 (Raf o3 B) = 2 (Rue)xi B (8), 0 <6 <.

Proof. From (3.6)—3.9) it is easy to see that on the square D= [0, 1]x [0, 1]
the function y = G, () = G, (& x) represents a polygonal continuous line situated
beneath the x-axis.

" By applying the first law of the mean to the integral (3.2), we get

(Rt Y3B) = £ ()], Gl )

and formula (3.1) becomes

@3.11) £(x) = (@uf)(x3B) + 11 (E) [ G5 )

If we replace here f(x) = e,(x) = x*, we obtain

2 = (0,0, )(x:B) + 2 (t; M)t

Consequently, we can write

1 1 1
61y R = 1 - Q)] = 5 (Reea)ri):
Formulas (3.11). and (3.12) lead us to the desired approximation formula
with the expression (3.10) for the remainder term. i
In the special case p = 0, when Q0 =B, the formulas corresponding to
(3.2)(3.3) and (3.10) were first established in our old paper [3].
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Remark. Since the polynomial Q, f is interpolatory at both sides of the
interval [0, 1], it is clear that (R e,)(x; p) contains the factor x(x — 1).

Since R e,=0, R =0 and R_f# 0 for any convex function of the first
order, we can apply a criterion of T. Popoviciu [2] and we can find that the
remainder is of a simple form.

Consequently, we can state

THEOREM 3.3. If the second-order divided differences of the function f are
bounded on the interval [0, 1], then there exist three points t, , 1, , andt, 5 from
[0, 1] which might depend on f, such that the remainder of the approximation
formula (3.1) can be represented under the form

(313) (Rmf)(x ) B) = (RvnBZ)(x ; B)[tm,l’ tm,2> tm,] ; f] '

It is clear that, if f e C*[0,1] and we apply the mean-value theorem of
divided differences, we can obtain formula (3.10) from formula (3.13).
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