REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Tome XXVI, No 1-2, 1997, pp. 221-227 $m_{\rm c} = 1000$ mass of active another the classical plant $m_{\rm c} = 1000$ mass $m_{\rm c} = 1000$

In this paper we prove that the geored docutor Q, promoves the linear

forcings and we establish extends expressions for the remainder term in the ON AN APPROXIMATING LINEAR POSITIVE OPERATOR OF CHENEY-SHARMA

THE NATURE OF THE OSCILLATION OF HOR THE MONOMBAL D. D. STANCU, C. CISMAŞIU In [11] it type pointed out that the operator On preservis only the constant

functions, after calculation of some integrals involved. But we shall prove that Q

1. INTRODUCTION

Position polyconial () It is known that by starting from two combinatorial identities of Abel-Jensen

areserves the linear linuations.

We shalf prove that we also ha

$$(1.1) (u+v+m\beta)^m = \sum_{k=0}^m {m \choose k} u(u+k\beta)^{k-1} [v+(m-k)\beta]^{m-k},$$

$$(1.2) (u+v)(u+v+m\beta)^{m-1} = \sum_{k=0}^{m} {m \choose k} u(u+k\beta)^{k-1} v [v+(m-k)\beta]^{m-1-k}$$

Cheney and Sharma [1] have introduced and investigated two linear polynomial positive operators, of Bernstein type, P_m and Q_m , defined – for any function $f:[0,1] \to \mathbf{R}$ – by the following formulas Let us consider next the monomia

(1.3)
$$(P_m f)(x;\beta) = \sum_{k=0}^{m} p_{m,k}(x;\beta) f(\frac{k}{m}),$$

$$(2_m f)(x;\beta) = \sum_{k=0}^m q_{m,k}(x;\beta) f\left(\frac{k}{m}\right),$$

where

where
$$p_{m,k}(x;\beta) = {m \choose k} \frac{x(x+k\beta)^{k-1} [1-x+(m-k)\beta]^{m-k}}{(1+m\beta)^m},$$

(1.6)
$$q_{m,k}(x;\beta) = {m \choose k} \frac{x(x+k\beta)^{k-1}(1-x)[1-x+(m-k)\beta]^{m-1-k}}{(1+m\beta)^{m-1}}.$$

It is obvious that for $\beta = 0$ these operators reduce to the classical operator B_m of Bernstein.

In this paper we prove that the second operator Q_m preserves the linear functions and we establish several expressions for the remainder term in the corresponding approximation formula.

2. THE VALUE OF THE OPERATOR Q_m FOR THE MONOMIAL e_1

In [1] it was pointed out that the operator Q_m preserves only the constant functions, after calculation of some integrals involved. But we shall prove that $Q_{...}$ preserves the linear functions.

It is easy to see that the following theorem is true.

THEOREM 2.1. The approximating polynomial Q_m f is interpolatory at both sides of the interval [0, 1], for any nonnegative value of the parameter β .

Proof. In order to prove this result, we have only to observe that we can write

$$(Q_m f)(x;\beta) = \frac{1}{(1+m\beta)^{m-1}} \left\{ (1-x)(1-x+m\beta)^{m-1} f(0) - x(x-1) \sum_{k=1}^{m-1} {m \choose k} (x+k\beta)^{k-1} \left[1-x+(m-k)\beta \right]^{m-1-k} f\left(\frac{k}{m}\right) + x(x+m\beta)^{m-1} f(1) \right\}.$$

Let us consider next the monomials $e_i(t) = t^j (j \ge 0)$ for any $t \in [0,1]$ We shall now state and prove

THEOREM 2.2. The operator Q_m reproduces the linear functions.

Proof. As it has been observed in [1], if we replace in the identity (1.2) u = xand v = 1 - x, we find that $Q_m e_0 = e_0$, that is, the operator Q_m reproduces the constants.

We shall prove that we also have $Q_m e_1 = e_1$. Indeed, one can see that we can write

$$(2.1) \qquad (1+m\beta)^{m-1}(Q_m e_1)(x;\beta) =$$

$$= \sum_{k=1}^m \frac{k}{m} \binom{m}{k} x(x+k\beta)^{k-1} (1-x) [1-x+(m-k)\beta]^{m-1-k} =$$

$$= \sum_{k=1}^m \binom{m-1}{k-1} x(x+k\beta)^{k-1} (1-x) [1-x+(m-k)\beta]^{m-1-k},$$

(2.2)
$$\frac{k}{m} \binom{m}{k} = \binom{m-1}{k-1}.$$

If we change k-1=j and then denote again the index of summation by k, we have

A Linear Positive Operator

$$(2.3) \qquad (1+m\beta)^{m-1}(Q_m e_1)(x;\beta) =$$

$$= \sum_{k=0}^{m-1} {m-1 \choose k} x(x+\beta+k\beta)^k (1-x) [1-x+(m-1-k)\beta]^{m-2-k} =$$

$$= (1+m\beta) \sum_{k=0}^{m-1} {m-1 \choose k} x(x+\beta+k\beta)^{k-1} (1-x) [1-x+(m-1-k)\beta]^{m-2-k} -$$

$$-\sum_{k=0}^{m-1} {m-1 \choose k} x(x+\beta+k\beta)^{k-1} (1-x) [1-x+(m-1-k)\beta]^{m-1-k},$$

$$x + \beta + k\beta = (1 + m\beta) - [1 - x + (m - 1 - k)\beta]$$

In order to find the first sum, we replace in the identity (1.2) m by m-1 and $u = x + \beta$, v = 1 - x. We get it is another ment the manufactors it is some

$$(1+\beta)(1+m\beta)^{m-2} = (x+\beta)\sum_{k=0}^{m-1} {m-1 \choose k} (x+\beta+k\beta)^{k-1} (1-x) \cdot \left[1-x+(m-1-k)\beta\right]^{m-2-k}.$$

If we multiply by x and divide by $x + \beta$, we obtain

$$\sum_{k=0}^{m-1} {m-1 \choose k} x (x+\beta+k\beta)^{k-1} (1-x) [1-x+(m-1-k)\beta]^{m-2-k} =$$

$$= (1+\beta)(1+m\beta)^{m-2} \frac{x}{x+\beta},$$

which represents the first sum.

For finding the second sum we shall use the identity (1.2). We replace m by m-1 and $u = x + \beta$, v = 1 - x and we find

$$(1+m\beta)^{m-1} = (x+\beta)\sum_{k=0}^{m-1} {m-1 \choose k} (x+\beta+k\beta)^{k-1} [1-x+(m-1-k)\beta]^{m-1-k}.$$

It follows that we can write

$$\sum_{k=0}^{m-1} {m-1 \choose k} x (x+\beta+k\beta)^{k-1} (1-x) [1-x+(m-1-k)\beta]^{m-1-k} =$$

$$= (1+m\beta)^{m-1} \frac{x(1-x)}{x+\beta}.$$

Consequently, we have

$$(2.4) (Q_m e_1)(x;\beta) = \frac{1}{(1+m\beta)^{m-1}} \left[(1+m\beta)(1+\beta)(1+m\beta)^{m-2} \frac{x}{x+\beta} - \frac{1}{(1+m\beta)^{m-1}} \frac{x(1-x)}{x+\beta} \right] = \frac{x}{x+\beta} \left[1+\beta - (1-x) \right] = x.$$

Therefore we have

$$(2.5) Q_m e_0 = e_0, \ Q_m e_1 = e_1,$$

as in the case of the classical Bernstein operator B_m .

la order to find the fire SEDNIAMAN SHOT Stock doming (1,2) m by m-1 and

 $x + 3 + 43 = (1 + m3) - [1 - x_1 + (m - 1 - k)3]$

Since the operator Q_m reproduces the linear functions, it is clear that the approximation formula

(3.1)
$$f(x) = (Q_m f)(x; \beta) + (R_m f)(x; \beta)$$

has the degree of exactness N=1.

First we shall give an integral representation of the remainder.

THEOREM 3.1. If the function f has a continuous second derivative on the interval [0, 1], then we can represent the remainder of the approximation formula (3.1) under the following integral form

(3.2)
$$(R_m f)(x) = \int_0^1 G_m(t; x) f''(t) dt,$$

where

where
$$(3.3) G_m(t;x) = (R_m \varphi_x)(t), \varphi_x(t) = \frac{x-t+|x-t|}{2} = (x-t)_+$$

and R_m operates on $\varphi_x(t)$ as a function of x.

Proof. The representation (3.2) can be obtained at once if we apply the wellknown theorem of Peano.

For the Peano kernel associated to the operator Q_m we have

$$(R_m \varphi_x)(t) = (x-t)_+ - \sum_{k=0}^m q_{m,k}(x;\beta) \left(\frac{k}{m} - t\right)_+.$$

In order to find explicit expressions of this kernel, we assume that $x \in \left[\frac{s-1}{m}, \frac{s}{m}\right]$ and we can write

(3.4)
$$G_m(t;x) = x - t - \sum_{k \ge j} q_{m,k}(x;\beta) \left(\frac{k}{m} - t\right)$$

for
$$t \in \left[\frac{j-1}{m}, \frac{j}{m}\right]$$
, where $1 \le j \le s-1$.

If we assume that $t \in \left[\frac{s-1}{m}, x\right]$, then we obtain

(3.5)
$$G_m(t;x) = x - t - \sum_{k \ge s} q_{m,k}(x;\beta) \left(\frac{k}{m} - t\right),$$

(3.6)
$$G_m(t;x) = -\sum_{k \geq s} q_{m,k}(x;\beta) \left(\frac{k}{m} - t\right).$$

For
$$t \in \left[\frac{j-1}{m}, \frac{j}{m}\right] (j > s)$$
 we have

(3.7)
$$G_m(t;x) = -\sum_{k \ge j} q_{m,k}(x;\beta) \left(\frac{k}{m} - t\right).$$

Because the degree of exactness of formula (3.1) is one, by replacing f(x) = x - t, the corresponding remainder vanishes and we obtain

$$x - t = \sum_{k=0}^{m} q_{m,k}(x;\beta) \left(\frac{k}{m} - t\right) = \sum_{k=0}^{j-1} q_{m,k}(x;\beta) \left(\frac{k}{m} - t\right) + \sum_{k=j}^{m} q_{m,k}(x;\beta) \left(\frac{k}{m} - t\right).$$

Therefore we can write $= (x_1)(x_2(x_1)) - (x_1) = (x_1(x_1)) = (x_1$

$$x - t = \sum_{k=j}^{m} q_{m,k}(x;\beta) \left(\frac{k}{m} - t\right) = -\sum_{k=0}^{j-1} q_{m,k}(x;\beta) \left(t - \frac{k}{m}\right).$$

Consequently, the representation (3.4) can be replaced by

(3.8)
$$G_m(t;x) = -\sum_{k=0}^{j-1} q_{m,k}(x;\beta) \left(t - \frac{k}{m}\right)$$

if $t \in \left[\frac{j-1}{m}, \frac{j}{m}\right]$ and $1 \le j \le s-1$, while (3.5) can be replaced by

(3.9)
$$G_{m}(t;x) = -\sum_{k=0}^{s-1} q_{m,k}(x;\beta) \left(t - \frac{k}{m}\right),$$

when $t \in \left[\frac{s-1}{m}, x\right]$

THEOREM 3.2. If $f \in C^2[0,1]$, then the remainder of the Cheney-Sharma approximation formula (3.1) can be represented under the following form

(3.10)
$$(R_m f)(x;\beta) = \frac{1}{2} (R_m e_2)(x;\beta) f''(\xi), \quad 0 < \xi < 1.$$

Proof. From (3.6)–(3.9) it is easy to see that on the square $D = [0, 1] \times [0, 1]$ the function $y = G_m(t) = G_m(t; x)$ represents a polygonal continuous line situated beneath the x-axis.

By applying the first law of the mean to the integral (3.2), we get

$$(R_m f)(x;\beta) = f''(\xi) \int_0^1 G_m(t;x) dt$$

and formula (3.1) becomes

(3.11)
$$f(x) = (Q_m f)(x; \beta) + f''(\xi) \int_0^1 G_m(t; x) dt.$$

If we replace here $f(x) = e_2(x) = x^2$, we obtain

$$x^{2} = (Q_{m}e_{2})(x;\beta) + 2\int_{0}^{1}(t;x) dt.$$

Consequently, we can write

(3.12)
$$\int_0^1 G_m(t;x) dt = \frac{1}{2} \left[x^2 - (Q_m e_2)(x) \right] = \frac{1}{2} (R_m e_2)(x;\beta)$$

Formulas (3.11) and (3.12) lead us to the desired approximation formula with the expression (3.10) for the remainder term.

In the special case $\beta = 0$, when $Q_m = B_m$, the formulas corresponding to (3.2)–(3.3) and (3.10) were first established in our old paper [3].

Remark. Since the polynomial $Q_m f$ is interpolatory at both sides of the interval [0, 1], it is clear that $(R_m e_2)(x; \beta)$ contains the factor x(x-1).

Since $R_m e_0 = 0$, $R_m e_1 = 0$ and $R_m f \neq 0$ for any convex function of the first order, we can apply a criterion of T. Popoviciu [2] and we can find that the remainder is of a simple form.

Consequently, we can state

THEOREM 3.3. If the second-order divided differences of the function f are bounded on the interval [0,1], then there exist three points $t_{m,1}$, $t_{m,2}$ and $t_{m,3}$ from [0,1] which might depend on f, such that the remainder of the approximation formula (3.1) can be represented under the form

(3.13)
$$(R_m f)(x;\beta) = (R_m e_2)(x;\beta)[t_{m,1},t_{m,2},t_{m,3};f].$$

It is clear that, if $f \in C^2[0,1]$ and we apply the mean-value theorem of divided differences, we can obtain formula (3.10) from formula (3.13).

REFERENCES

1. E. W. Cheney and A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma 5 (1964), 77-84.

2. T. Popoviciu, Sur le reste dans certaines formules linéaires d'approximation de l'analyse, Mathematica 1 (24) (1959), 95-142.

3. D. Stancu, Evaluation of the remainder term in approximation formulas by Bernstein polynomials, Math. Comput. 17 (1963), 270-278.

Received May 15, 1996

D. D. Stancu
Faculty of Mathematics and Computer Science
"Babeş-Bolyai" University
3400 Cluj-Napoca
Romania

C. Cismaşiu Department of Mathematics Transylvania University 2200 Braşov Romania