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ON THE BOHR-MOLLERUP-ARTIN
CHARACTERIZATION OF THE GAMMA FUNCTION

ROGER WEBSTER

1. INTRODUCTION

Bohr and Mollerup [2] were the first to prove that the only log-convex solu-
tion /:RT - R* to the functional equation f(x + 1) = x f(x) for x > 0 satisfy-
ing (1) =1 is the gamma function I". Their proof was simplified by Artin [1], who
based his celebrated treatment of the gamma function on the result. Consequently,
this has become known as the Bohr-Mollerup-Artin Theorem, and was adopted by
Bourbaki [3] as the starting point for his exposition of the gamma function.
Further discussion of the theorem can be found in Leipnik and Oberg [6], and
Webster [9], while an appreciation of the result and a historical profile of the
gamma function are to be found in Davis [4].

A question that naturally arises is: for which functions g:R" 5 R is
there a unique eventually log-convex solution g*:R* — R* 1o the Sunctional

equation g"(x+ 1) = g(x)g"(x) for x> 0 satisfying g (1) = 12 Our main result, a
generalization of the Bohr-Mollerup-Artin Theorem, is that a sufficient condition
on g for this to occur is that it is eventually log-concave and has the property that
for each w > 0, g(x +w) / g(x) - 1 as x — w. Morcover, g" is determined by
the formula

ST g(n.)...g(l)gx(n) iy
(1.1) g (x) = ’L”o g(n+x)...g(x) fi 0.

We call a function g” arising in this way a ["-type function. When g is the
identity function on R*, g" is simply the gamma function I" restricted to R*, this
showing that I is itself a ['-type function; in this case (1.1) becomes Gauss well-
known limit for I'(x).
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One can establish for I"-type functions analogues of: Euler’s constant,
Weierstrass’ infinite product, Wallis’s Formula, Gauss’ and Legendre’s Multipli-
cation Formulas, and Stirling’s Formula for gamma function. The backdrop of
I-type functions serves to place the classical theory into perspective with indi-
vidual results often appearing more intuitive in this wider setting. For example, it
makes clear why some analogue of Legendre’s Duplication Formula must hold,
almost rendering formal proof unnecessary! Not surprisingly, I'-type functions
play a part in finding log-convex solutions to particular functional equations of the
form f(x + 1) = g(x)f(x) such as those studied by John [5] and Mayer [71.

In this introductory paper, we content ourselves with proving the existence
of I'-type functions and establishing for them an analogue of the classical Gauss’
Multiplication Formula.

2. CONVEX AND LOG-CONVEX FUNCTIONS

Here we collect together those results about convex and log-convex func-
tions that will be helpful in our discussion of I'-type functions. In addition to
recalling some of their well-known properties, we also mention a few seemingly
unrecorded ones. An excellent account of convex functions is given in Roberts and
Varberg [8].

Throughout, I denotes an interval on the real line R whose interior is nonempty.
A function f:1 — R is convexif f(Ax + py) < M(x) + w/(y) wheneverx,ye!
and A, p>0 with A +p =1, and is eventually convex if fcontains a subinterval
that is unbounded above, and on which the restriction of f is convex.

An easy consequence of the definition of convexity is that if f:7 — R is
convex, / is unbounded above and 8> 0, then the function f:I — R defined by
the equation '

fs(x)= f(x+8)— f(x) for x el

is increasing. A convex function is continuous on the interior of its domain. A
differentiable function f:7 — R is convex if and only if f is increasing on /, so
a twice differentiable function f:I —> R is convex ifand only if f is nonnegative
on I. A function f:I — R is said to be (eventually) concave if its negative.
— f:I — R is (eventually) convex. The results stated above for convex functions
have obvious analogues for concave functions, and these we take as read.

Central to our discussion are the concepts of log-convexity and log-concavity.
Whereas the notion of log-convexity does appear fleetingly in the literature on
convex functions, we have been unable to locate a single explicit reference to
the idea of log-concavity or even a single occurrence of the word log-concave.
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A function f:I — R, where R* denotes the set of positive numbers, is called
log-convex (log-concave) if log f 11 — R is convex (concave) and eventually

log-convex (eventually log-concave) if log f 1] — R is eventually convex (even-
tually concave). Thus fis (eventually) log-convex ifand only if /! is (eventually)
log-concave. The class of all log-convex functions defined on a given interval [ is
closed under both addition and multiplication, whereas the class of all log-concave
functions defined on I is only closed under multiplication. A differentiable func-
tion f:/ — R™ islog-convex (log-concave) if and only if the function f 'V f is
increasing (decreasing) on /, so a twice differentiable function f:7 — R is
log-convex (log-concave) if and only if /" /" — ( f')z is nonnegative (nonposi-
tive) on /.

The definitions of log-convexity and log-concavity given earlier make it
clear why these terms are chosen, but do not provide the formulations of these
concepts most useful in practice — these we obtain below. Clearly, a function
f:I - R islog-convex if and only if

@.1) S(x + ) < £ () ()

whenever x,ye I and A, p>0 with A+p=1 The arithmetic mean-geometric
mean inequality shows that, for f(x), f(), A, u >0 with A+p=1

L) < M)+ W),

whence eveéry log-convex function is convex. The function f:R —> R defined
by the equation f° (x) = |x| +1 for xe R is positive and convex on any interval
I, but is not log-convex there. Thus the concept of log-convexity is stronger than
that of convexity. The reformulation of log-convexity implied by inequality (2.1)
is equivalent to the following working definition: the function f:I — R is log-,
convex if and only if for all x,y, ze I with x <y <z '

22) ) < £ ).

The definition of log-concavity can be reformulated in an analogous way,
with the < sign in (2.2) being replaced by a>sign. It must be emphasized that the
concept of log-concavity is weaker than that of concavity. For example, the expo-
nential function is log-concave on any interval /, but is not concave there. We now
introduce a subclass @ of the class of all eventually log-concave function on R*
which plays the central role in constructing I'-type functions. To be precise, ¢
consists of all eventually log-concave functions g: R — R™ with the property
that, for each w > 0, g(x + w) / g(x) — 1 as x —> o. The single most impor-
tant function in @ is the finction x, here the identity function on R*, which gives
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rise to the I"-type function itself. Other functions in ¢ are the restrictions to R* of
x?+a?, x/(x+ a) and tanh ax where a> 0. More generally, the restriction to R* of
any real polynomial that is positive on R™ lies in 4. Also, if /'is a real rational
function that is positive on R*, then the restriction to R* of either for 1/flies in &
Clearly, the class ¢ is closed under multiplication. One crucial property of mem-
bers of @ is that they are eventually increasing as the next theorem shows.

THEOREM 2.1. Let g € 9 be log-concave on some unbounded subinterval 1
of R*. Then g is increasing on 1,

Proof. Let a, b e I with a <b. Since log g is concave on J, for all x> 0,

log g(b) - log g(a) = log g(b + x) — log g(a + x),
S0

g(b) / g(a) > g(b + x) / g(a + x).

Since ge %, the right-hand side of the last inequality tends to 1 as x — <, whence
g(b) 2 g(a) and g is increasing on I. O

3. I''TYPE FUNCTIONS

Theorem 3.1 below generalizes the Bohr-Mollerup-Artin Theorem in that it
concerns a whole class of functional equations of the form f(x + 1) = g(x) f(x) for
x > 0, not just the specific one f(x + 1) = x f(x). Incidentally, it assumes only that
the solutions to the equation are eventually log-convex, not log-convex on R* in
the classical result.

THEOREM 3.1. Let the function g:R* — R* have the property that, for
each w > 0, g(x + w)/ g(x) — 1 as x > . Suppose that f:RY > R* isan
eventually log-convex function satisfying the functional equation f(x+1) = g(x) fx)

for x > 0 and the initial condition f(1) = 1. Then f is uniquely determined by g
through the equation

x) = lim g(n)...g(e”(n) or x>
S e g i T

Proof. Let x> 0. Denote by m the largest integer not exceeding x, and let n
be a natural number for which f is log-convex on [# + m, ). The log-convexity
of f'on this interval shows that

flr+x+1)< f"’H_x(n +m+ 1) (n+m +2)
and
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fr+m+l)< f5"(n+ x)me_x(n +x+1).

Since f(x +1) = g(x)f(x) for x > 0 and (1) =al,

f(n+;n+1)= g(n+m)...g(1) and fin+x+1)= gln+x)...g(x)f(x);
also
e )T (A m o+ 2) = f(n+m+1)g* " (n+m+1)

and
"+ ANff x4 )= fnrx+ 1)g"*(n + x).

It follows that

g(n+m)..gn+1) [g(n + x)]x 4 g(n +x)...g(x)f(x) 2
g(n+x)...g(n+x) g(n) g(n)... g()g” (n)
g(n+m)...gn+1) (g(n+m+l)]x.
T oglntm+1)..gn+m+l) - g(n)

The property assumed of g ensures that both ends of the last string of inequalities
converge to | as » tends to infinity, whence

SO (O
P 5w g+ %) (%)

The property assumed of g:R* — R™ in Theorem 3.1 ensures that it is
at most one eventually log-convex solution f: R*T - R to the functional equa-
tion f(x+1) = g(x)f(x) for x>0 satisfying /(1) =1, but does not itself guarantee
that such a solution exists. If, however, g is also assumfid to be ev?ntually log-
concave, so g in fact belongs to the class of functions ¢ 1ntr9duced in Section 2,
then the existence of such a solution is assured by the following result:

THEOREM 3.2. Let ge 9. Then there exists a unique eventually log-convex
function f R — R satisfying the functional equation f(x + 1) = g(x) Ax) for
x > 0 and the initial condition (1) = 1. Moreover,

g
f(x) = I}_‘E},o g(n+ x)...g(x) 4 ;

and f'is log-convex on any unbounded subinterval of R* on which g is log-concave. _
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Proof. We establish the existence of f; its uniqueness following from Theo-
rem 3.1. For each ne N, define a function £, :R™ — R™ by the equation

g(n)...g()g”(n)

(3.1) fn(X),: 27 ). 209 for x>0.
Then, for ne N, and x>0
> gx+1(n + 1)
(3.2) Sor(x) o 225 0E ) fa(%)
and
n
63 e +) = B0 ()7,

Since g is eventually log-concave, there is some nonnegative integer m such that g
is log-concave on the interval (m, ).

First, let 0 <x < 1. We show that the sequence f}(x), £,(¥), ... is eventually
increasing, and bounded above. Let n e N satisfy the inequality n > m + 1. Then
the log-concavity of g on (m, «) shows that

ng(n +1) 2 g¥(n)g(n + x + 1),

whence (3.2) shows that f, (x) 2 f, (x). Thus the sequence i), £(x), ... is
eventually increasing. The log-concavity of g also yields the # — m inequalities

gm+x+1)2 g™ (m+ Dg*(m +2)

g(n+x) = gl‘x(n)gx(n +1),
and their product, together with (3.1), shows that

g)..gm+1) ( gm) Y ,_
g(x)...g(m + x) (g(n i I)J g (n+1).

But g is increasing on (m, x), whence

flx) <

) g(m+1)

Ju(x) < g
() g(x)...g(m + x)

which shows that the sequence f](x), £,(x),... is bounded above. Thus, for each x in

(0, 1], the sequence f(x), £,(x),... converges and a function f: (0, 1] may be
defined by the equation

(n+1),
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= lim g(n)...s(1)g*(n)
f(x) = nl__)oo g(n + .’C)---g(x)

It follows easily from this last result and (3.3) that a function’ f:R* — R* may
be defined by the equation

for 0<x<1.

for x>0

o g sg )
f(x) = ,,1_)00 g(n+x)...g(x)

and that f(x +1) = g(x)f(x) for x > 0. Also

(1) = lim g(n)—g(l)igﬁz im g(n) =
O nl..-)oo g(n+1)..g(1) nl»éoo g(n+1)

Finally, suppose that g is log-concave on some unbounded interval 1. Then
every f , being a product of functions, each log-convex on 1, is itself log-convex
on . Since f* is a pointwise limit of functions log-convex on 1, it too is log-
convex on 1. O

We are now in a position to introduce the main object of our study here,
I"-yype functions. Theorem 3.2 shows that each member g of ¢ gives rise to a
unique eventually log-convex function f:R* — R™ satisfying the functional
equation f(x + 1) = g(x)f(x) for x > 0 and the initial condition f(1) = 1. We
indicate the dependence of fupon g by writing / = g. Equivalently, g* can be
defined explicitly by the equation

)= i B &(0g*(n)

fi 0.
g (®) n—eo g(n+x)..g(x) 5

We call functions g of the form just described T-type functions. Clearly, a func-
tion f:R* — R™ is of I'-type, precisely when it satisfies the following Sfour”
conditions:

a)f()=1

b) fis eventually log-convex;

c) f(x + 1)/ f(x) is eventually log-concave;

d) foreachw >0, f(x + w + 1) f(x)/ f(x + W) f(x + 1) > lasx - w,

Examples of I'-type functions are readily found. If g:R* — R™ is the
identity function on R*, i.e., g(x) =x forx> 0, thenge %and g*' =T, showing
that I is itself a ['-type function. If g:R* — R™ is constantly equal to a positive
number ¢, then ge 4 and g'(x) = ¢! for x> 0.
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Before constructing further I'-type functions, it will be helpful to consider a
few of their most basic properties.

THEOREM3.3. Let g, g,, ... g, g€ Gandletg> 0. Let h:R* — R* be
the function defined by the equation h(x)= g(x + a) for x> 0. Then:
. * * *
D g1...8n € G and (g1...8,) =g1...27;
oo, * * *
W) if g1/gr €Y, then (g/g;) =g /g5;
(i) h € G and h(x) = g'(x + a)/ g(a)g"(a) for x > 0.

Proof. We indicate a general method of establishing identities such as occur
in (1)(iii), by proving the second part of (iii). Define a function j:R* — R* by
the equation j(x) = g(x + @) / g(a)g"(a) for x> 0. Then  is eventually log-
convex j(x + 1) = A(x) j(x) for x>0 and j(1)= 1. By Theorem 3.2 h*(x) = j(x),
as required. O

Consider next the function g:R* — R* defined by the equation gkx) =
=x/(x+a) for x> 0, where a is a positive number. Then g ¢ ¢ and Theorem 3.3
(if), (i) show that g*(x) = al(a)l(x)/ T(x + a) for x > 0. In particular, the
function al’(a)['(x)/ T'(x + a) is log-convex, a not completely trivial result, but a
fact immediate from the approach taken here. '

Now for a more substantial example of a -type function: Let a> 0. Define a
function g:R* — R* by the equation g(x) = x? + a* for x>0, Then g is log-
concave on [a, ), but on no interval strictly containing this one. Thus, ge & and
g*: R* > R' is log-convex on [a,%0). Also, for x> 0,

ol L (n2 + az)...(l2 + az)(n2 + az)x _sinhma _,, o  (n+x) .
g (X) s "h_’rg ((n +x)’ + az)...(xz + aZ) o ma i (X)g (n+ x)2 +d?

Here we have used Gauss’ product for the gamma function and the sine product

E 2
" X
sin 7z = 'mzH 1~ —2)
n=1 n

with z = ai. The second derivative of log g* at x> 0 is

22“’: (n +x)2 g

n=0 ((n + x)2 + az)

2 »
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which is positive at x =g, and so, by continuity, is positive to the immediate left of
a. It follows that the largest unbounded interval on which g” is log-convex strictly
contains the largest unbounded interval on which g is log-concave,

4. GAUSS’ MULTIPLICATION FORMULA

The Bohr-Mollerup-Artin Theorem enables several classical results about
the gamma function to be established with €ase, none more so than the Gauss’
Multiplication Formula, and its special case, Legendre’s Duplication Formula. A
similar situation pertains in the context of I'-type functions, where the analogue
results are almost self-suggestive, and proofs are hardly needed. In this mote
general setting, however, Gauss’ formula appears in a slightly modified form, the
more usual one applying only to a special class of T -type functions,

THEOREM 4.1 (Gauss’ Multiplication F ormula). Let g € 4 and m e N.
Define functions Ems My RT —> R* by the equations

gn(x) = g(%) and  h,(x) = gi(g) Jfor x>0,

Then g, 4, and for x>0
f X ) «fx+1 Wfg+m-—1 of 1) «f 2 s(m—1Y «
g|—|g 8l T =g | — g — .- g gm(x)'
m m m m)” \m m
Ifh, e G then for x>0
®f X [ x+1 W Xx+m—1}) x # 1 w2 o m—1) « .
— [ =g |— —..g|— ;
U)o (2= (D ) (25 e
Proof. Clearly, g e 4. Determine a function /:R* - R™ by the equation
wf 1) +f 2 *(m—1 #fx ) «[x+1 x4+ m-—1 -
GG (e o (B (5. (2
m m m m m m

where x > 0. Then fis log-convexf()f + 1) =g, () fx) for x>0 andf(1)=1,
whence, by Theorem 3.1, f(x) = g,,(x) for x > 0, and the first form of the

multiplication formula is established. If ¢ @, then o (%) g (%) = g (x) for
x > 0, which immediately leads to the second form of the formula. 0o
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