REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

Tome XXVI, ${ }^{\text {os }} 1 \mathbf{1 - 2 , 1 9 9 7 , ~ p p . ~ 2 4 9 - 2 5 8 ~}$

ON THE BOHR-MOLLERUP-ARTIN CHARACTERIZATION OF THE GAMMA FUNCTION

ROGER WEBSTER

1. INTRODUCTION

Bohr and Mollerup [2] were the first to prove that the only log-convex solution $f: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$to the functional equation $f(x+1)=x f(x)$ for $x>0$ satisfying $f(1)=1$ is the gamma function Γ. Their proof was simplified by Artin [1], who based his celebrated treatment of the gamma function on the result. Consequently, this has become known as the Bohr-Mollerup-Artin Theorem, and was adopted by Bourbaki [3] as the starting point for his exposition of the gamma function. Further discussion of the theorem can be found in Leipnik and Oberg [6], and Webster [9], while an appreciation of the result and a historical profile of the gamma function are to be found in Davis [4].

A question that naturally arises is: for which functions $g: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is there a unique eventually log-convex solution $g^{*}: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$to the functional equation $g^{*}(x+1)=g(x) g^{*}(x)$ for $x>0$ satisfying $g^{*}(1)=1$? Our main result, a generalization of the Bohr-Mollerup-Artin Theorem, is that a sufficient condition on g for this to occur is that it is eventually log-concave and has the property that for each $w>0, g(x+w) / g(x) \rightarrow 1$ as $x \rightarrow \infty$. Moreover, g^{*} is determined by the formula

$$
\begin{equation*}
g^{*}(x)=\lim _{n \rightarrow \infty} \frac{g(n) \ldots g(1) g^{x}(n)}{g(n+x) \ldots g(x)} \text { for } x>0 \tag{1.1}
\end{equation*}
$$

We call a function g^{*} arising in this way a Γ-type function. When g is the identity function on \mathbf{R}^{+}, g^{*} is simply the gamma function Γ restricted to R^{+}, this showing that Γ is itself a Γ-type function; in this case (1.1) becomes Gauss wellknown limit for $\Gamma(x)$.

One can establish for Γ-type functions analogues of: Euler's constant, Weierstrass' infinite product, Wallis's Formula, Gauss' and Legendre's Multiplication Formulas, and Stirling's Formula for gamma function. The backdrop of Γ-type functions serves to place the classical theory into perspective with individual results often appearing more intuitive in this wider setting. For example, it makes clear why some analogue of Legendre's Duplication Formula must hold, almost rendering formal proof unnecessary! Not surprisingly, Γ-type functions play a part in finding log-convex solutions to particular functional equations of the form $f(x+1)=g(x) f(x)$ such as those studied by John [5] and Mayer [7].

In this introductory paper, we content ourselves with proving the existence of Γ-type functions and establishing for them an analogue of the classical Gauss, Multiplication Formula.

2. CONVEX AND LOG-CONVEX FUNCTIONS

Here we collect together those results about convex and log-convex functions that will be helpful in our discussion of Γ-type functions. In addition to recalling some of their well-known properties, we also mention a few seemingly unrecorded ones. An excellent account of convex functions is given in Roberts and Varberg [8].

Throughout, I denotes an interval on the real line \mathbf{R} whose interior is nonempty. A function $f: I \rightarrow \mathbf{R}$ is convex if $f(\lambda x+\mu y) \leq \lambda f(x)+\mu f(y)$ whenever $x, y \in 1$ and $\lambda, \mu>0$ with $\lambda+\mu=1$, and is eventually convex if f contains a subinterval that is unbounded above, and on which the restriction of f is convex.

An easy consequence of the definition of convexity is that if $f: I \rightarrow \mathbf{R}$ is convex, I is unbounded above and $\delta>0$, then the function $f: I \rightarrow \mathbf{R}$ defined by the equation

$$
f_{\delta}(x)=f(x+\delta)-f(x) \text { for } x \in I
$$

is increasing. A convex function is continuous on the interior of its domain. A differentiable function $f: I \rightarrow \mathbf{R}$ is convex if and only if f is increasing on I, so a twice differentiable function $f: I \rightarrow \mathbf{R}$ is convex if and only if f is nonnegative on I. A function $f: I \rightarrow \mathbf{R}$ is said to be (eventually) concave if its negative. $-f: I \rightarrow \mathbf{R}$ is (eventually) convex. The results stated above for convex functions have obvious analogues for concave functions, and these we take as read.

Central to our discussion are the concepts of log-convexity and log-concavity. Whereas the notion of log-convexity does appear fleetingly in the literature on convex functions, we have been unable to locate a single explicit reference to the idea of log-concavity or even a single occurrence of the word log-concave.

A function $f: I \rightarrow \mathbf{R}^{+}$, where \mathbf{R}^{+}denotes the set of positive numbers, is called log-convex (log-concave) if $\log f: I \rightarrow \mathbf{R}$ is convex (concave) and eventually \log-convex (eventually log-concave) if $\log f: I \rightarrow \mathbf{R}$ is eventually convex (eventually concave). Thus f is (eventually) log-convex if and only if f^{-1} is (eventually) log-concave. The class of all log-convex functions defined on a given interval I is closed under both addition and multiplication, whereas the class of all log-concave functions defined on I is only closed under multiplication. A differentiable function $f: I \rightarrow \mathbf{R}^{+}$is log-convex (log-concave) if and only if the function f^{\prime} / f is increasing (decreasing) on I, so a twice differentiable function $f: I \rightarrow \mathbf{R}$ is log-convex (log-concave) if and only if $f^{\prime \prime} f-\left(f^{\prime}\right)^{2}$ is nonnegative (nonpositive) on I.

The definitions of log-convexity and log-concavity given earlier make it clear why these terms are chosen, but do not provide the formulations of these concepts most useful in practice - these we obtain below. Clearly, a function $f: I \rightarrow \mathbf{R}$ is log-convex if and only if

$$
\begin{equation*}
f(\lambda x+\mu y) \leq f^{\prime}(x) f^{\prime \prime}(y) \tag{2.1}
\end{equation*}
$$

whenever $x, y \in I$ and $\lambda, \mu>0$ with $\lambda+\mu=1$. The arithmetic mean-geometric mean inequality shows that, for $f(x), f(y), \lambda, \mu>0$ with $\lambda+\mu=1$

$$
f^{\prime}(x) f^{\prime \prime}(y) \leq \lambda f(x)+\mu f(y)
$$

whence every log-convex function is convex. The function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by the equation $f(x)=|x|+1$ for $x \in \mathbf{R}$ is positive and convex on any interval I, but is not log-convex there. Thus the concept of log-convexity is stronger than that of convexity. The reformulation of log-convexity implied by inequality (2.1) is equivalent to the following working definition: the function $f: I \rightarrow \mathbf{R}$ is logconvex if and only iffor all $x, y, z \in I$ with $x<y<z$

$$
\begin{equation*}
f^{z-x}(y) \leq f^{z-y}(x) f^{y-x}(z) \tag{2.2}
\end{equation*}
$$

The definition of log-concavity can be reformulated in an analogous way, with the $\leq \operatorname{sign}$ in (2.2) being replaced by a \geq sign. It must be emphasized that the concept of log-concavity is weaker than that of concavity. For example, the exponential function is log-concave on any interval I, but is not concave there. We now introduce a subclass \mathscr{G} of the class of all eventually log-concave function on \mathbf{R}^{+} which plays the central role in constructing Γ-type functions. To be precise, \mathscr{G} consists of all eventually log-concave functions $g: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$with the property that, for each $w>0, g(x+w) / g(x) \rightarrow 1$ as $x \rightarrow \infty$. The single most important function in \mathscr{G} is the function x, here the identity function on R^{+}, which gives
rise to the Γ-type function itself. Other functions in \mathscr{G} are the restrictions to \mathbf{R}^{+}of $x^{2}+a^{2}, x /(x+a)$ and tanh $a x$ where $a>0$. More generally, the restriction to \mathbf{R}^{+}of any real polynomial that is positive on \mathbf{R}^{+}lies in \mathscr{G}. Also, if f is a real rational function that is positive on \mathbf{R}^{+}, then the restriction to \mathbf{R}^{+}of either f or $1 / f$ lies in \mathscr{G}. Clearly, the class \mathscr{G} is closed under multiplication. One crucial property of members of \mathscr{G} is that they are eventually increasing as the next theorem shows.

THEOREM 2.1. Let $g \in \mathscr{G}$ be log-concave on some unbounded subinterval 1 of R^{+}. Then g is increasing on I.

Proof. Let $a, b \in I$ with $a<b$. Since $\log g$ is concave on I, for all $x>0$,

$$
\log g(b)-\log g(a) \geq \log g(b+x)-\log g(a+x)
$$

so

$$
g(b) / g(a) \geq g(b+x) / g(a+x)
$$

Since $g \in \mathscr{G}$, the right-hand side of the last inequality tends to 1 as $x \rightarrow \infty$, whence $g(b) \geq g(a)$ and g is increasing on I. \square

3. Г-TYPE FUNCTIONS

Theorem 3.1 below generalizes the Bohr-Mollerup-Artin Theorem in that it concerns a whole class of functional equations of the form $f(x+1)=g(x) f(x)$ for $x>0$, not just the specific one $f(x+1)=x f(x)$. Incidentally, it assumes only that the solutions to the equation are eventually log-convex, not \log-convex on \mathbf{R}^{+}in the classical result.

THEOREM 3.1. Let the function $g: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$have the property that, for each $w>0, g(x+w) / g(x) \rightarrow 1$ as $x \rightarrow \infty$. Suppose that $f: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is an eventually log-convex function satisfying the functional equation $f(x+1)=g(x) f(x)$ for $x>0$ and the initial condition $f(1)=1$. Then f is uniquely determined by g through the equation

$$
f(x)=\lim _{n \rightarrow \infty} \frac{g(n) \ldots g(1) g^{x}(n)}{g(n+x) \ldots g(x)} \quad \text { for } \quad x>0
$$

Proof. Let $x>0$. Denote by m the largest integer not exceeding x, and let n be a natural number for which f is log-convex on $[n+m, \infty)$. The log-convexity of f on this interval shows that

$$
f(n+x+1) \leq f^{m+1-x}(n+m+1) f^{x-n}(n+m+2)
$$

and

$$
f(n+m+1) \leq f^{x-m}(n+x) f^{m+1-x}(n+x+1)
$$

Since $f(x+1)=g(x) f(x)$ for $x>0$ and $f(1)=1$,

$$
f(n+m+1)=g(n+m) \ldots g(1) \text { and } f(n+x+1)=g(n+x) \ldots g(x) f(x)
$$

also

$$
f^{m+1-x}(n+m+1) f^{x-m}(n+m+2)=f(n+m+1) g^{x-n}(n+m+1)
$$

and

$$
f^{x-m}(n+x) f^{m+1-x}(n+x+1)=f(n+x+1) g^{n-x}(n+x)
$$

It follows that

$$
\begin{aligned}
& \frac{g(n+m) \ldots g(n+1)}{g(n+x) \ldots g(n+x)}\left(\frac{g(n+x)}{g(n)}\right)^{x} \leq \frac{g(n+x) \ldots g(x) f(x)}{g(n) \ldots g(1) g^{x}(n)} \leq \\
& \quad \leq \frac{g(n+m) \ldots g(n+1)}{g(n+m+1) \ldots g(n+m+1)}\left(\frac{g(n+m+1)}{g(n)}\right)^{x} .
\end{aligned}
$$

The property assumed of g ensures that both ends of the last string of inequalities converge to 1 as n tends to infinity, whence

$$
f(x)=\lim _{n \rightarrow \infty} \frac{g(n) \ldots g(1) g^{x}(n)}{g(n+x) \ldots g(x)}
$$

The property assumed of $g: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$in Theorem 3.1 ensures that it is at most one eventually log-convex solution $f: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$to the functional equation $f(x+1)=g(x) f(x)$ for $x>0$ satisfying $f(1)=1$, but does not itself guarantee that such a solution exists. If, however, g is also assumed to be eventually logconcave, so g in fact belongs to the class of functions \mathscr{G} introduced in Section 2, then the existence of such a solution is assured by the following result:

Theorem 3.2. Let $g \in \mathscr{G}$. Then there exists a unique eventually log-convex function $f: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$satisfying the functional equation $f(x+1)=g(x) f(x)$ for $x>0$ and the initial condition $f(1)=1$. Moreover,

$$
f(x)=\lim _{n \rightarrow \infty} \frac{g(n) \ldots g(1) g^{x}(n)}{g(n+x) \ldots g(x)} \text { for } x>0
$$

and fis log-convex on any unbounded subinterval of \mathbf{R}^{+}on which g is log-concave.

Proof. We establish the existence of f, its uniqueness following from Theorem 3.1. For each $n \in \mathbf{N}$, define a function $f_{n}: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$by the equation

$$
\begin{equation*}
f_{n}(x)=\frac{g(n) \ldots g(1) g^{x}(n)}{g(n+x) \ldots g(x)} \text { for } x>0 \tag{3.1}
\end{equation*}
$$

Then, for $n \in \mathbf{N}$, and $x>0^{\circ}$

$$
\begin{equation*}
f_{n+1}(x)=\frac{g^{x+1}(n+1)}{g(n+x+1) g^{x}(n)} f_{n}(x) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{n}(x+1)=\frac{g(n)}{g(n+x+1)} g(x) f_{n}(x) \tag{3.3}
\end{equation*}
$$

Since g is eventually log-concave, there is some nonnegative integer m such that g is log-concave on the interval (m, ∞).

First, let $0<x \leq 1$. We show that the sequence $f_{1}(x), f_{2}(x), \ldots$ is eventually increasing, and bounded above. Let $n \in \mathbf{N}$ satisfy the inequality $n \geq m+1$. Then the log-concavity of g on (m, ∞) shows that

$$
g^{x+1}(n+1) \geq g^{x}(n) g(n+x+1)
$$

whence (3.2) shows that $f_{n+1}(x) \geq f_{n}(x)$. Thus the sequence $f_{1}(x), f_{2}(x), \ldots$ is eventually increasing. The log-concavity of g also yields the $n-m$ inequalities

$$
g(m+x+1) \geq g^{1-x}(m+1) g^{x}(m+2)
$$

$$
g(n+x) \geq g^{1-x}(n) g^{x}(n+1)
$$

and their product, together with (3.1), shows that

$$
f_{n}(x) \leq \frac{g(1) \ldots g(m+1)}{g(x) \ldots g(m+x)}\left(\frac{g(n)}{g(n+1)}\right)^{x} g^{x-1}(n+1)
$$

But g is increasing on (m, ∞), whence

$$
f_{n}(x) \leq \frac{g(1) \ldots g(m+1)}{g(x) \ldots g(m+x)} g^{x-1}(n+1)
$$

which shows that the sequence $f_{1}(x), f_{2}(x), \ldots$ is bounded above. Thus, for each x in $(0,1]$, the sequence $f_{1}(x), f_{2}(x), \ldots$ converges and a function $f:(0,1]$ may be defined by the equation

$$
f(x)=\lim _{n \rightarrow \infty} \frac{g(n) \ldots g(1) g^{x}(n)}{g(n+x) \ldots g(x)} \text { for } 0<x \leq 1
$$

It follows easily from this last result and (3.3) that a function $f: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$may be defined by the equation

$$
f(x)=\lim _{n \rightarrow \infty} \frac{g(n) \ldots g(1) g^{x}(n)}{g(n+x) \ldots g(x)} \text { for } x>0
$$

and that $f(x+1)=g(x) f(x)$ for $x>0$. Also

$$
f(1)=\lim _{n \rightarrow \infty} \frac{g(n) \ldots g(1) g(n)}{g(n+1) \ldots g(1)}=\lim _{n \rightarrow \infty} \frac{g(n)}{g(n+1)}=1
$$

Finally, suppose that g is log-concave on some unbounded interval 1. Then every f_{n}, being a product of functions, each log-convex on 1 , is itself log-convex on 1 . Since f is a pointwise limit of functions log-convex on 1 , it too is logconvex on 1 . \square

We are now in a position to introduce the main object of our study here, Γ-type functions. Theorem 3.2 shows that each member g of \mathscr{G} gives rise to a unique eventually log-convex function $f: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$satisfying the functional equation $f(x+1)=g(x) f(x)$ for $x>0$ and the initial condition $f(1)=1$. We indicate the dependence of f upon g by writing $f=g$. Equivalently, g^{*} can be defined explicitly by the equation

$$
g^{*}(x)=\lim _{n \rightarrow \infty} \frac{g(n) \ldots g(1) g^{x}(n)}{g(n+x) \ldots g(x)} \text { for } x>0
$$

We call functions g of the form just described Γ-type functions. Clearly, a function $f: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is of Γ-type, precisely when it satisfies the following four ${ }^{\text {- }}$ conditions:
a) $f(1)=1$;
b) f is eventually log-convex;
c) $f(x+1) / f(x)$ is eventually log-concave;
d) for each $w>0, f(x+w+1) f(x) / f(x+w) f(x+1) \rightarrow 1$ as $x \rightarrow \infty$.

Examples of Γ-type functions are readily found. If $g: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is the identity function on \mathbf{R}^{+}, i.e., $g(x)=x$ for $x>0$, then $g \in \mathscr{G}$ and $g^{*}=\Gamma$, showing that Γ is itself a Γ-type function. If $g: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is constantly equal to a positive number c, then $g \in \mathscr{G}$ and $g^{*}(x)=c^{x-1}$ for $x>0$.

Before constructing further Γ-type functions, it will be helpful to consider a few of their most basic properties.

THEOREM 3.3. Let $g_{1}, g_{2}, \ldots g_{n}, g \in \mathscr{G}$ and let $g>0$. Let $h: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$be the function defined by the equation $h(x)=g(x+a)$ for $x>0$. Then:
(i) $g_{1} \ldots g_{n} \in \mathscr{G}$ and $\left(g_{1} \ldots g_{n}\right)^{*}=g_{1}^{*} \ldots g_{n}^{*}$;
(ii) if $g_{1} / g_{2} \in \mathscr{G}$, then $\left(g_{1} / g_{2}\right)^{*}=g_{1}^{*} / g_{2}^{*}$;
(iii) $h \in \mathscr{G}$ and $h(x)=g^{*}(x+a) / g(a) g^{*}(a)$ for $x>0$.

Proof. We indicate a general method of establishing identities such as occur in (i)-(iii), by proving the second part of (iii). Define a function $j: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$by the equation $j(x)=g^{*}(x+a) / g(a) g^{*}(a)$ for $x>0$. Then j is eventually logconvex $j(x+1)=h(x) j(x)$ for $x>0$ and $j(1)=1$. By Theorem $3.2 h^{*}(x)=j(x)$, as required. \square

Consider next the function $g: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$defined by the equation $g(x)=$ $=x /(x+a)$ for $x>0$, where a is a positive number. Then $g \in \mathscr{G}$ and Theorem 3.3 (ii), (iii) show that $g^{*}(x)=a \Gamma(a) \Gamma(x) / \Gamma(x+a)$ for $x>0$. In particular, the function $a \Gamma(a) \Gamma(x) / \Gamma(x+a)$ is log-convex, a not completely trivial result, but a fact immediate from the approach taken here

Now for a more substantial example of a Γ-type function: Let $a>0$. Define a function $g: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$by the equation $g(x)=x^{2}+a^{2}$ for $x>0$. Then g is logconcave on $[\mathrm{a}, \infty$), but on no interval strictly containing this one. Thus, $g \in \mathscr{G}$ and $g^{*}: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is log-convex on $[a, \infty)$. Also, for $x>0$,
$g^{*}(x)=\lim _{n \rightarrow \infty} \frac{\left(n^{2}+a^{2}\right) \ldots\left(l^{2}+a^{2}\right)\left(n^{2}+a^{2}\right)^{x}}{\left((n+x)^{2}+a^{2}\right) \ldots\left(x^{2}+a^{2}\right)}=\frac{\sin h \pi a}{\pi a} \Gamma^{2}(x) \prod_{n=0}^{\infty} \frac{(n+x)^{2}}{(n+x)^{2}+a^{2}}$.
Here we have used Gauss' product for the gamma function and the sine product

$$
\sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2}}\right)
$$

with $z=a i$. The second derivative of $\log g^{*}$ at $x>0$ is

$$
2 \sum_{n=0}^{\infty} \frac{(n+x)^{2}-a^{2}}{\left((n+x)^{2}+a^{2}\right)^{2}}
$$

which is positive at $x=a$, and so, by continuity, is positive to the immediate left of a. It follows that the largest unbounded interval on which g^{*} is log-convex strictly contains the largest unbounded interval on which g is log-concave.

4. GAUSS' MULTIPLICATION FORMULA

The Bohr-Mollerup-Artin Theorem enables several classical results about the gamma function to be established with ease, none more so than the Gauss Multiplication Formula, and its special case, Legendre's Duplication Formula. A similar situation pertains in the context of Γ-type functions, where the analogue results are almost self-suggestive, and proofs are hardly needed. In this mote general setting, however, Gauss' formula appears in a slightly modified form, the more usual one applying only to a special class of Γ-type functions.

Theorem 4.1 (Gauss' Multiplication Formula). Let $g \in \mathscr{G}$ and $m \in \mathbf{N}$. Define functions $g_{m}, h_{m}: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$by the equations

$$
g_{m}(x)=g\left(\frac{x}{m}\right) \text { and } \quad h_{m}(x)=\frac{g(x)}{g_{m}(x)} \text { for } x>0
$$

Then $g_{m} \in \mathscr{G}$, and for $x>0$

$$
g^{*}\left(\frac{x}{m}\right) g^{*}\left(\frac{x+1}{m}\right) \ldots g^{*}\left(\frac{g+m-1}{m}\right)=g^{*}\left(\frac{1}{m}\right) g^{*}\left(\frac{2}{m}\right) \ldots g^{*}\left(\frac{m-1}{m}\right) g_{m}^{*}(x)
$$

If $h_{m} \in \mathscr{G}$, then for $x>0$

$$
g^{*}\left(\frac{x}{m}\right) g^{*}\left(\frac{x+1}{m}\right) \ldots g^{*}\left(\frac{x+m-1}{m}\right) h_{m}^{*}(x)=g^{*}\left(\frac{1}{m}\right) g^{*}\left(\frac{2}{m}\right) \ldots g^{*}\left(\frac{m-1}{m}\right) g^{*}(x)=
$$

Proof. Clearly, $g_{m} \in \mathscr{G}$. Determine a function $f: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$by the equation

$$
g^{*}\left(\frac{1}{m}\right) g^{*}\left(\frac{2}{m}\right) \ldots g^{*}\left(\frac{m-1}{m}\right) f(x)=g^{*}\left(\frac{x}{m}\right) g^{*}\left(\frac{x+1}{m}\right) \ldots g^{*}\left(\frac{x+m-1}{m}\right)
$$

where $x>0$. Then f is log-convex $f(x+1)=g_{m}(x) f(x)$ for $x>0$ and $f(1)=1$, whence, by Theorem 3.1, $f(x)=g_{m}^{*}(x)$ for $x>0$, and the first form of the multiplication formula is established. If $h_{m} \in \mathscr{G}$, then $h_{m}^{*}(x) g_{m}^{*}(x)=g^{*}(x)$ for $x>0$, which immediately leads to the second form of the formula. \square

REFERENCES

1. E. Artin, Einfïhrung in die Theorie der Gammafunktion, Teubner, Leipzig, 1931.
2. H. Bohr and J. Mollerup, Locrebog i Mathematik Analyse III, Kopenhagen, 1922, pp. 149-164.
3. N. Bourbaki, Éléments de Mathématique, Book IV, Chapter VII: La fonction gamma, Paris, 1951.
4. P. J. Davis, Leonhard Euler's integral. A historical profile of the gamma function, Amer. Math. Monthly 66 (1959), 849-869.
5. F. John, Special solutions of certain difference equations, Acta Math. 71 (1939), 175-189.
6. R. Leipnik and R. Oberg, Subvex functions and Bohr's uniqueness theorem, Amer. Math. Monthly 74 (1967), 1093-1094.
7. A. E. Mayer, Konvexe Lösung der Funktionalgleichung $1 / f(x+1)=x f(x)$, Acta Math. 70 (1938), 57-62.
8. A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.
9. R. Webster, Convexity, Oxford University Press, Oxford, 1994.

Received May 15, 1996

Pure Mathematics Section
School of Mathematics and Statistics University of Sheffield Sheffield S3 7RH England E-mail: R.J.WEBSTER@SHEFFIELD.AC.UK

