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ON THE BOHR-MOLLERUP-ARTIN
CHARACTERIZATION OF T'HE GAMMA FTINCTION

ROGER \ryEBSTER

1. INTRODUCTION

Bohr a'd Mollerup [2] were the first to prove that the only log-convex solu-
tion f :R+ -+ ft+ to the flrnctional equationf(x+ 1) = x.f@jforx > 0 satisff_
ingf(l) : I is the gamma function f . Their proof was simplirìrâ uy arti,, [ 1 ], who
based his cel
this has beco ' consequently,

Bourbaki 13 iffi;T::,l,'J
F'urther discussion of the theorem can be found in Leipnik and oberg [6], and
webster f9l, while an appreciation of the ¡esult and a historical proãte or tn.
gamma function are to be found in Davis [4].

A question that naturally arises is: for which Junctions g :R+ _+ R* ¿r
there a uníque eventually log-convex solutíon g* ,Rr- -+ R+ ro the functional
equation g*(x + 1) : g(x)g-(;) for x> 0 sutisfying g-(1) = I ? Our main result, a
generalization of the Bohr-Mollerup-Artin Theorem, is that a sufficient condition
on g for this to occur is that it is eventually log-concave and has the property ,h"t - '
for each Þ ) 0, g('r + rv) t g(*) -> l as x -) co. Moreover, g* is determinecl by
the formula

(r.l) s-(.r) = ,,* s(it)"'s(t)s'(n) 
ror x > 0.

'r+co g(n + .r)... g("r)

We call a function g* arising in this way a I,-typ is the
identity function o" \i gt i* ri-p-ly the gamma fu'cti ,, this
showing that I- is itself a f-type function; in firis case ( well_
known limit forf(x).
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One can establish for f-type functions analogues of" Euler's constan|

Weierstrass'infiniÍ,eprod.uct, Wallis's Formula, Gauss'andLegendre's Multiplï
cation F'ormulas, and Stirling's Formula for gamma function. The backdrop of

f-type functions serves to place the classical theory into perspective with indi-

vidual results often appearing more intuitive in this wider setting, For exanrple, it
makes clear why some analogte of Legendre's Duplication Formula must hold,

almost rendering formal proof unnecessary! Not surprisingly, f-type functions

play apartin finding log-convex solutions to particular functional equations of the

formf(x+ l) : S(x)-f(x) such as those studied by John [5] and Mayer [7]'
In this introductory paper,we content ourselves with proving the existence

of f -type functions and establishing for them an analogue of the classical Gauss'

Multip li c ati on F ormul a.

2. CONVEX AND LOG-CONVEX FT]NCTIONS

Here we collect together those results about convex and log-convex func-

tions that will be helpful in our discussion of f-type functions. In addition to

recalling some of theii well-known properties, .we also mention a few seemingly

unrecorded ones, An excellent account of convex functions is given in Roberts and

Varberg [8],
Throughout, 1 denotes an interval on the real line R whose interior is nonempty.

Atunction f :I -+R isconvexif f()ú+ py) < MQ)+ ¡y'(v) wheneverx,yel

and À., p >0 with ¡" + p : 1, and is eventualþ conyex if /contains a subinterval

that is unbounded above, and on which the restriction of / is convex.

An easy consequence of the definition of convexity is that if J' : I -+ R is

convex, Iis unbounded above and ô > 0, then the function J' : I -+ R defined by

the equation

,f¡(') = f(*+ô)-/(") for xeI

is increasing, A convex function is continuous on the interior of its domain. A

differentiable function J' : I --> R is convex if and only if / is increasing on d so

atwicedifferentiablefrrnction J':I -+ R isconvexifandonlyif/isnonnegative

on L A function J' : I --> R. is said to be (eventually) concave if its negative.

- J' 
,. I -+ R is (oveníralþ convex. The results stated above for convex functions

háve obvious analogues for concave functions, and these we take as read.

Cenhal to our discussion are the concepts of log-convexity arid log-concavity'

whereas the notion of log-convexity does appear fleetingly in the literature on

convex functions, we have been unable to locate a single explícit reference to

the idea of log-concavity or even a single occurrence of the word log-concave'

A function l:I -+ Rf where R+ denotes the set of positive numbets, is called

log-convex (log-concave) if log f : I -+ R. is convex (concave) and eventualþ

log-convex (eventualþ log-concave) if log f: 1 + R is eventually convex (even-

tuatty eoncave). Thus/is (eventually) log-convex if and only if fr is (eventually)

log-óorrcave. The class of all log-convex functions defined on a given interval lis
clãsed underboth addition and multiplication, whersas the class of all log-concave

functions defined on 1is only closed under mtrltiplication. A differentiable func-

tion f :.I + R.+ is log-convex (1og-concave) if and only if the flrnction .f'l f is

increasing (decreasing) on 1, so a twice differentiable function /: 1 + ll is

log-convex (log-concave) if and only if .f" f - (/'')' It nonnegative (nonposi-

tive) on L
The definitions of log-convexity and log-concavity given earlier make it

clear why these terms ur. ðho..t, but do not provide the formulations of these

"o*.pt.'-ost 
useful in practice - these we obtain below. clearþ, a function

J' : I --> R is log-convex if and only if

(2.r) f(^* + p¡y) < f'(*)f" (Y)

whenever x,ye I and 1,,'¡r>0 with À+Lt:1.The arithmeticmean-geometric

mean inequolity 
"how" 

that, forf(x),-f (y),t", p > 0 with l" + F : 1

f'(*)f" (y) < M(') + v+J'(v),

whence evdry log-convex function is convex. The function /:R -+ R defined

by the equation f (*) = lrl + f for .x e R. is positive and convex on any i'terval

.I,but is notlog-coìní.* tnét.. Thus the concept of log-convexity ís strongerthan

tiat of conv.*ity. fn. reformulation of log-convexity implied by inequalify (2'l)
is equivalent tolhe following working definition: thefunclion f : I -+ R ß log-'

convex ifand only iffor all x, y, z e I with x < y < z

(2,2) f"-.(y) < f"-Y(*)f'-'(r).

The definition of log-concavity oan be reformulated in an analogous way,

with the ( sign in (Z,2)biingreplaced by ¿ ) sign, It must be emphasized that the

concept of log-concavi,Iy is weaker thanthat of concavity. For example, the expo-

nential function is log-concave on any intewal l,but is not concave there. we now

introduce a subclass I of theelass of all eventually log-concave function on R+

wlrich plays the central role in constructing f-type functions' To be precise, I
consists of all eventually log-concave functions g : R+ -+ R+ with the property

that, for each w > 0, g(r + tv) lg(r) -+ 1 as x -+ co. The single most impor-

tant fuirctio n in g is tie'function x,'ltere the identity function on R'F, which gives

32

l

ll



252 Rogor Webstor

rise to the f -type function itself, Other functions in g are the restrictions to R+ of
x2 + a2, x I (x + a) andtanh a¡ where a > 0. More generally, the restriction to R+ of
any real polynomial that is positive on R* lies in 9, Also, if/is a real rational
function that is positive on R+, then the restriction to R+ of either/or 7 /flies ing.
Clearly, the class I is closed under multiplication. One crucial property of mem-
bers of I is that they are eventually increasing as the next theorem shows,

TrtoRnu 2.1. Let g e I be log-concave on some unbounded subinterval l
ofR*. Then g ís increasing on L

Proof. Let a,å e 1 with ¿ < ó, Since loggis concave ond forall _x > 0,

logg(å) -togg(a) > logg(¿ + r) - togg(a + x),

SO

s(b)t s(")> g(b+x)/ g(a+x).

Since g e 9, the right-hand side of the last inequality tends to I as x -) co, whence
g(b)>- g(a) and g is increasing on L n

3. |-TYPE FUNCTIONS

Theorem 3,1 below generalizes the Bohr-Mollerup-Artin Theorem in that it
concerns awhole class of functional equations of the formf(x+ l) : g(x)f(x) for
x > 0, not just the specific onef(x + 1) : xf(x).Incidentally, it assumes only that
the solutions to the equation are eyentually log-convex, not log-convex on R+ in
the classical result,

THnoneNf 3.7. Let the function g : R+ -+ R+ have the property that, for
eachw>0, g(x+w)lS(r) -+ I as x -+ ø.supposethat,f :R* -> R+ ¿san

eventually log-convexfunction satísfying thefunctíonal equationf(x+ l): g(x)flx)
þr x> 0 and theinitial conditionf(l): l. Thenf is uniquely determined by g
through the equation

f(') = j5g for x>0.

Proof. Let x> 0. Denote by m the largest integer not exceeding x, and Let n
be a natural number for which/ is log-convex on [n r m, æ). The log-convexity
of/on this interval shows that

J'(, *x + l) < tnt+t-x(n + rn + t)f'-'(, + m + 2)

and

Charactorization of tho Gamma Function

f(, * nr + r) < f'-'n(, + x)¡m+r-'(n + x + l)'

Since /(x + 1) = sQ)fG) for ¡ > 0 and "f(1) = L

f(,+m+r)= s(n+m)...g(l) an1 f(,+r+1) = g(n+x)" 'g(t)/(');

also

,m+r-x(n+ m+t)f*-o'(n+ m+z) = f(n+ m+l)s'-"(n + m+r)

and

.f*-*(,r+ x)¡'m+r-xrn+ )c+l) = f(n+ x +I)gn-*(n+ x)'

It follows that
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g(n+m g(n + l)
gþt + x)... g(n + x

g(n + x). g(")/(,)

sþ)..'g(t)s'(,)

. s(n + m)" ' sþ +r) (s(n + m + t)\' 
.= s(n+m+t)..,s(n+n+1)[ sln) )

The property assumed of g ensures that both ends of the last string of inequalities

converge to 1 as n tends to infrnity, whence

-, \ .. g(n)'..g(t)g'(') E
J\x)= ìr:_26+-li-ãø

The property assumed of g:R+ + R+ in Theorem 3,1 ensures that it is

atmostone eventually log-convex solution ,f ,R* + R+ to the functional equa-

tion f(x+ 1) = sQ)fQ) for x > 0 satisffing/(1):l,butdoesnotitselfguararrtee

that such a solution exists. If, however, g is also assumed tobe eventualþ log-

concaye)so g in fact belongs to the classìf functions I introduced in Section 2,

then the exirì.rr.. of such a solution is assured by the following result:

THEOREM 3 .2. Let g € g. Then there exists a unique eventually log-convex

function,f ,R* + R+ satisfyingthefunctionalequationf(x + 1): g(x)Í(x) for

x > 0 and. the initial conditionf(l) : 1. Moreover,

f(*) = ri"' 89) q{l)sl-þ) for x > o\ / n+Ø g\n + x¡... S\x)

and. fß log-convex on any unbounded subinterval of R+ on which g ß log-concave'
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Proof. we establish the existence of f, its uniqueness following from Theo-
rem3.1, For each ne N, defineafi.rnction lrtR* + R+ bytheequation

s("),..s(l)s' n
(3,1)

s(n+x .8þc
for .r>0

Then, for n e N, and -r > 0
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,f(r) =,,13x for 0<¡<1.

It follows easily from this last result and (3.3) that a function f :R+ -+ R+ may
be defined by the equation

,f(t) =,,13L for ¡>0

andthat f(*+ t) = s(r)/(.r) for x > 0.Also

/(r) =,,1s =,,rlx ffi=r.
Finally, suppose that g is log-concave on sonre unbounded interval 1. Then

every f , being a product of firnctions, each log-convex on l, is itself log-convex
on L Since f is a pointwise limit of functions log-convex on l, it too is log-
convex on l. o

We are now in a position to introduce the main object of our study here,
f -type functíons. Theorem 3.2 shows that each member g of g gives rise to a
unique eventually log-convex function ,f :R* -+ R+ satisfring the functional
equation/(x + 1) : S@)f(x) for x > 0 and the initial condition/(1) : 1. We
indicate the dependence of/upon g by writing/: g. Equivalently, g* can be
defined explicitlyby the equation

g-(r) =rl*" for ¡>0,

We call fl¡nctions g of the form just described f -typefunctions. Clearl¡ a func-
tion f:R+ -+ R+ is of f-type, preciselywhen it satisfies the following four"
conditions:

a)/(l): l;
b)/is eventually log-convex;
c)f(x + t) /f(x) is eventually log-concave;
d)foreachw>O,f(x * w * t)"f(x)lf(x + w)f(x + 1)-+ I asx-+co.

Examples of f-type functions are readily found. If g:R+ -+ R+ is the

identítyfunctíononR+, i.e.,g(x):x forx>0, then ge I andg':1, showing

that f is itseif a f-type function, If g :R+ + R+ is constantly equal to apositive
number c, then g e g and g'(.r) : C-l for x > 0,

76

f"(*)

(3.2)

and

"f,*tQ) = -!!þ!) r,(*)
s(n+x+l)g'(n)'

(3,3) "fnþ+t) =#hsþ).f,(*)
Since g is eventually log-concave, there is some nonnegative integer msuch thatg
is log-concave on the interval (m, n).

First, let 0 < x < 1, We show that the sequenc e fr(x), fr(x), ... is eventually
increasing, and bounded above. Let n e N satisfy the inequality n2 m + l. Then
the log-concavity ofg on (m,n) shows that

g'*t(n+ l) > s*(n)s(r+ .r + 1),

whence (3.2) shows that f,u (r) >f" (x), Thus the sequence fr(x), fz@), ... is
eventually increasing. The log-concavity of g also yields the n - lll inéqualities

g(m +; + t) > st-'(m + t)g'(m + 2)

g(n + x) > st-'@)s* (n + t),
and theirproduct, togetherwith (3.1), shows that

g(n)
g'-t(n + t)

s(n+l
But g is increasing on (m, co), whence

t,(*)<#ffi{-t(n+r),
which shows that the sequence f1@),fr(x),.,. is bounded above, Thus, for eachx in
(0, 11, the sequence fi(x),,f2@),... converges and a fi.rnction f : (0, 1l may be
defined by the equation
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Before consbucting furtherf-type frrnctions, itwill be helpful to considera
few of theirmost basic properties,

THEOREM 3.3. Let g1, gv ... gn, g e g and let g > 0. Let å: R+ _+ R+ åe
thefunctíon defined by the equation h(x): g(x + a) for x> 0. Then:

(i) st,..sn e9 and (sr...g,). = si...sI;
(íí) if gls2 eg, then (sr/ sr). = gi I s;;
(iii) h eg anrl h(x) = s*(x + a)t g(a)g.(") ,for.r > 0.

Proof. We indicate a general method of establishing identities such as occu¡
in (Ð{iiÐ, byproving the secondpart of (iii), Define a function .¡ :R* _+ R+ by
the equation j(*) = g*(x + a) / g(a)g.(a) for x > 0, Thenj is eventually log_
convexj(x + 1): h(x)j(x) for .x> 0 and j(t): L ByTheorem3.2 h,(x):¡(i),
as required. o

consider next the function g:R+ -+ R+ defined by the equation g(x) :: x/(xia) for.r > 0, where a is apositive number. Theng e g andrheorem 3.3
(iÐ, (iiÐ show that s*(x¡ = ar(ø)r(x) /r(x + ø) for r t o. In particular, rhe

(nct.ion ør(ø)r(x) I f (x + ø) is log-co nvex, anot completely trivial result, but a
fact immediate from the approach ûaken here.

Now foramore subsúantial example of af-type function: Leta>0. Define a
function g:R+ + R+ bytheequation e(*) = rI * o2 for x>0,Thengislog_
.olluyt on [a, co), but on no intervar stricily containing this one. Thus, g à g Ãd
g :R* -+ R+ is log-convex on la,co), Also, for .x > 0,

("' + "')...(,' * o')(n' + o,)'

whichispositive at x:a,andso,bycontinuity, ispositive totheimmediaÍereftof
¿' It follows that the largest unbounded interval onwhichg* is log_convex strictly
contains the largest unbounded interval on whichg is log--concave,

4. GAUSS, MULTIPLICATION FORMULÀ

The Bohr-Mollerup-Artin Theorem enables several classical results aboutthe gamma function to be established with ease, none more so than the Gauss,Multiplication Formula, and its special case, Legendre,s Duplication Formula. Asimilar situation pertains in the cõntext of f-tj1pe functions, where the analogueresults are almost self-suggestive, and proofs are hardly íeeded. In this mofegeneral setting, however, Gauss' formulaappea¡s in a slightly modified form, the
more usual one applying onry to a special class of f-type-function..

THnonnN4 4'l (Gauss' Murtiprication Formula). Let g e g and n e N.
Definefunctions g*,lrrrrF{* -+ R* by the equatíons

,,,(ù = r(

n(;,)n(#) {eut) =".(;) r.(i) {(';)r;at

Chatactarization of the Gamma Function

s(*)
s*(*)

and h,(x) = for x>0

8 9
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Then g,ne g, andfor x> 0

If hre 9, thenþr x>0

8-(x) = 1i*
n)@ ((, * *)' * o')..,(,2 + o')

=*#.,(ÐII åh
Here we have used Gauss' product for the Eamma.function and the sine product

¿(;);(#) e.(r: u),*ø=,.[*),. A {(T)g.(.}
Proof. Clearly, gne g. Determine a function ,l : R* -+ R+ by the equation

{e){C) ;(+)rat = r.(})r.(+) r.(t:-rt¡,;
wherex > 0. Then /is log-convex/(.r 1 t) : S^@)f(x) for x > 0 andf(I): t,
whence, by Theorem 3.r, f(x) = s^(r) for 

'i 
> 0, and the first form of the

multiplication formula is establishe d. If h n e g, then h;(x)g;e) = g" (x) for
x > 0, which immediately reads to the seco'nd form of the formula. ¡

with z: ai. The second derivative of log g* at x > 0 is

,>
n=0

(r* x 2
-ct

(Ø+ r)" +o')
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The direct methods of solving singular integral equations (SIE) use results

concerning the approximation of functions of complex variables by polynomials'

These functions are defined on closed smooth contours' some results have been

giveninourpapefs[1_3]withoutploof.InthisNotewewillprovesomeassertions
about the approximationuy polynomials of functions defined on arbitrary closed

smooth contours. These resrilts havebeenused in numerical anaþsis (collocation'
-q*O*t 

., reduction and spline methods) for solving SIE'

l.Furtheru'eneedthefollowingdefinitionsandnotations:Byf'wewill
denote an arbitrary closed smooth contour bounding a simply-connected region F+

containing the point i= o. By F_ we will denote the complement of 4 uf in the

entire complex plane. Let c(i¡ be the space of continuous functions on f . Assume

,* ;;(ai is a set of tuncìions defined on f and satisffing a Hölder condition

with the exponent B, 0 < B < l. The nolm on ¡¡u(r) is defined [4, p' 173] by

llqllp Tgl'( )+
q) - .p(t'

= llell" + ã(q;Þ)t sup
lÉ12

lþt2el l', -'rl'(1)

From [4, p' ll3lwe know that Í/u(f) with the norm (l) is a Banach space'

According to [5, p. 109], if 0 < p < ø ( 1' then H*(f) c Au(f)' In this case

it also frol<ls llellu . r',llql[, where tp € /r-(f)' This is a consequence of the

relation
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