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APPROXIMATION OF COMPLEX VARIABLE FUNCTIONS
AND APPLICATIONS FOR SOLVING SINGULAR
INTEGRAL EQUATIONS

V. ZOLOTAREVSK], V. SEICHIUK

The direct methods of solving singular integral equations (SIE) use results
concerning the approximation of functions of complex variables by polynomials.
These functions are defined on closed smooth contours. Some results have been
given in our papers [1-3] without proof. In this Note we will prove some assertions
about the approximation by polynomials of functions defined on arbitrary closed
smooth contours. These results have been used in numerical analysis (collocation,

quadrature, reduction and spline methods) for solving SIE.

1. Further we need the following definitions and notations: By I" we will
denote an arbitrary closed smooth contour bounding a simply-connected region F,
containing the point 1= 0. By F_we will denote the complement of F, UT' in the
entire complex plane. Let C(I') be the space of continuous functions onI". Assume
that H, p(l") is a set of functions defined on I" and satisfying a Holder condition
with the exponent B, 0 < < 1. The norm on H,(T) is defined [4, p. 173] by

(P(t)|+ s o) - (P(tz)i

4#1ty |tl - tz‘ﬂ

45 €l

= lofl; + H(e:B).

1) “q’“p s ngx

From [4, p. 173] we know that Hy(T') with the norm (1) is 2 Banach space.
According to [5, p. 109],if 0 < <a <1, then H,(T) c Hy(T). In this case

it also holds “(p“'3 < p.lucp“a, where ¢ € H,("). This is a consequence of the
relation
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o(t,) - o(t,)
sup

ttlrf%l“ |£1 - tzlp

s 1"’(‘1) = ¢£’2}|}

o<y -y} |x| LA 32[
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lt~ty]21 I _tzlﬂ
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t#l 't -t
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Let X, = X, (I") be the set of all polynomials of the type

n
@) ¢,(t) = D ontt, t e,
k=-n

where r, are arbitrary real or complex numbers.
. For the function ¢ the value E, (o) = inf,

0, <X, | is called the best

uniform approximation by polynomials of the form (2). The polynomial (p; for

which E,(¢) = "(p =@, "C is called the best polynomial uniform approximation of

¢. Recall [6, p. 432] that for each function ¢ e C(I") in' X, 'there always exists
such a unique polynomial (p; ]
The module of continuity [5, p. 107] of function¢ is

co_(S,(p) su}I) ,(p f)— (P(tz)l (8 > 0 tl,iz el),

|1 £}<d

If ¢ € H, () (0 <o <1), then

(3) ‘ o(8,¢) < H(p; )5

Itis known [7, p. 311] that if ¢ € C(T'), then E,(¢) < p, - o (l,q)g, where w1,
: . p;

are constants not depending on n and on the function ¢. From these two last
inequalities we deduce that if ¢ € H,(T"), then

(4) E,(¢) < 1, M%H(w;a)-

THEOREM 1. Let ¢ € H,(T') and ¢, be the polynomial of the best uniform
approximation of ©. Then

* 1 B
®) ’|¢—¢nBSHjF§H(@;a) (0<B<a<l),
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1
Proof. Let us first assume that |t, - t,| > = (1,7, € T'). Then, from (4),
n

we have

o) - e0) -olb) r o)
ltl Vi tZIB tel

. 2}14
o) - @y(t)n° < o H{®; ).

If |y, — ) < i , according to [3, p. 42], we receive
n

(6) 0)(8’([):) < My CO(B,(p)
Since ¢ € Hy(T), then |o(t,) = ¢(t,)] < | — &,|" H(@s o). From (3) and (6)

we deduce |, (1) — @, (tz)‘ < wlt, — &y H(@; ). Therefore,

|(P(t1) — (1) - 9(t2) + (P;(tz)l _ o) - olzz ) - on(t1) = @ (fz)l
I - nf - I -

led
Itl _t2| H(g;00) + ”4|t1 - t2| H(g; o))

: 5 )
|t1 - tzll3 |t1 ) t2|

LEMMA 1. For each polynomial ¢, ' from X, we have
leillc = we - il

Proof

n z
_ 2 = .
- Zrktk =t "(r_n + ropgat . it ") =1 "R, 1),

—_— N - ] 1 - 1
@ (1) = —n IR () + T (Br(1)) = —n?(pn(t) + 7" (Pay (1))
Assume that the function ¢ = w(w) = cw + ¢, + ¢w™' +... performs a
conformal mapping of the exterior of the unit circle {| w.| > 1} onto F_so that
y(o0) = oo and y'() = ¢ > 0. . .
According to the Cauchy theorem about derivatives of the analytic functions,
we have

1 1 2u(t) 4
@) 2—11. 2mi 1{ "z - l‘)2 i
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| =1,p > 1} is the level line for some p > 1. We

where T, = {r;1 = y(pw),
may construct a circle ]‘L‘ - t| = b(p - 1), b > 0, with the center on an arbitrary
point ¢ e " such that it does not intersect the level line T',. Let us choose
t = y(w), T = y(pw). Then we obtain

[© = | = pwlow) — w(w) = [w' (&) low — w| = [w' (€ )(p - 1)
From [7, p. 181] 0 e |\|f'(§)| < M <,|&|>1. Then
mp-1)<|t—f<Mp-1).

In this case, the circle |t — ¢| = %(p — 1) does not intersect I, . By the Cauchy
theorem and from (7) it follows that

1rive. @,(1)
P'Z (I) = T _n—d'l'
! 2w |t—t}=b(p-1) T n(T i t)z
Further,
- Larig ¢, (%)
t P, () = | =— = ldz| <
R i e
, I | lds) 5 alea 1 t["
. Terﬂt—d: (P,,(T)IE -[_ t_" T— t2 P 2% . J._ Idtl’
s 17 e =1 [op = 1] p-ii
=5(p-1} ; =b(p-1) =b(p-1)
where
B= max @, (7).
=b(p-1)}

Let 1—t=b(p-1)®(0< @< 2m). Then t=t+b(p-1)e*; dr = b(p-1)ie*dg;
ldt|=(p—1)bde. Let ¢ = x +iy. Then

1
27‘[1; ~1)]

t_nPIZn (r)l =

Jll : [ b(P - 1)de =
0

n
|x+ly+b —1)(cos<p+ls1n(p)l
_1 j x+iy ldq)
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n/2
g T (x+b(p—1)coscp)2+(y+b(p—1)sin(p)2 e
2n b(p - 1) X’ + y

n/2
11 Zj-’[xz + " +b(p —1)" +2b(p — 1)(xcos @ + ysin q))} do =
¥
0

C Tom b(p X +y
n/2
{ . é(fz__l), + (x cos @ + ysin )
= B— 1+2b(p—1 de.
2m b(p — 1) -([ (p-1) %+ 3 .

Letp=1+L.Then
nb

n/2

bp-1 .
2n (p2 )+(xcoscp+ y sin @)
14+ 2b(p-1 dep =
_([ (p-1) [ ¢
nl2
| : LN
2n g 5o HXcosQ+ ysing o ) 2 A
=+ d¢=j[1+—-A] do <
/ n x+y 4 n
1 ;
|| gyt ECOSQH ysin g
= Iexp : 7] hm dop =
4 x+y

n
+
=cxp———21—2 Jex (xcosq) ysm(P}d(P,
2n(x +y) 5 2t + )P

where
1 0
— +xcosS®+ ysin@
A= 2n .
= ) 2
x“+y
Howeyver,
XCOS(P+yS]n(p 5 2cosq)-{- 2Sin(p=COS('Y_‘P)Sl'

xt + y? x'+y x+y
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Hence

Let us denote by ¢~ the inverse of the function y. Then we perform a
conformal mapping of the exterior of I" onto {|w| > 1} so that ¢™(w0) = co. Recall

that @~ has the form ¢ () = &g +BTO +E2L +.o.
& t
Let R > 1 and ', be a level line of mapping y for |w|= R. Consider the

Py
function T » . This function is analytic on F , including the point «. Therefore,

by the maximum principle, we have

30) o) _

¢
max|———| = max = max
¢

teDy [(p_'(t)]" - teDy (t)|” tely "(t)

" (t) | max, el’y

n Rn

()]

We note that Dy is apart of F_, which is the exterior for the level line Ty
We also note that for ¢ € ', we have \(p_(t)l = R.Since Dy — F_, then

max|———= (t) 2,() = max l (P"(t)|

teDy [(P (t)]" teF_. [(P—(t)]" tel ‘(P—(t)

Now we use that for ¢ e T, '(t)’ = 1. Hence

O

@(0)|'s max| @

® o

Further, let w = ¢*(¢) be the mapping which is the interior of I" on {|w| < 1}
such that ¢*(0) = 0. Itisknownthat ¢*(¢) = ¢ + yyt> + v, +... . Then [(p+]n(p”
is an analytic function on F . Let 7 < 1, T, be the level line of the mapping ¢ (1)

for |w[ = r. Note that [(p ] is an inverse function of ¢@* and D] is a part of
F,, which is in the interior of ", . Then, by the maximum principle,

ot (o' )] | = mar{ oo} = o b,
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-n o _l_ 1 — _.__L_
Py, (t)ISanneXP[2n| 7 +1]2“ exp{n2n|t|2]nllwnllcqr-tl:b(p-l))-

Since D} < F*,then

ston(0o"(0)]

< max max

teF*

max

o0 ]| =m0}

ool

- )‘ = 1. Therefore,

In this relation we consider that for ¢ € T,

Q) . "‘Pn"c(r, rt < "(Pn"c(r)

The function ¢, is analytic in the ring F bounded by I, and T . Hence, by
the maximum principle and by inequalities (8) and (9), it follows that

"C(rx)} . max{"(pn "C(F) 7:1—; “(Pn ||c(r)Rn} .

max (p,,(t)l = max{“(P,,"C(r,)’

' 1
Letr:l——l- and R=1+l.ThenR" <eand " > —.
n n 4

So "(P.,HC(F) = 4||‘Pn“c(r) and, finally, "(p’n"c(r) = ”6"“‘P"||c(r)’ where

d*) 1
uﬁ_max{l |+4exp[l+ nl |]}s[d+4cxp(l+7)}d_m,teF.

THEOREM 2. Let ¢, € X,,. Then

(10) "(P""ﬁ < l’L7nﬁ"(|)nl|c , 0<B<l

Proof. Firstassume that |, — t2| > l,(zl, t, € T'). Then

o) 9} _ g,

e
I - of y
Now consider that |t1 = t2| < l . In this case, from

|

< "(P'nnc -lengthtt, < const"(p'n"C Itl v tz|

P, tl (Pn t"

and Lemma 1, we have
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’(Pn(tl) N (Pn(tZ)]
h—hf

1-8

< const - lg n? ||(pn

= gonst . Il ”“‘Pn"C |4 -1 Hc

From these cases we deduce (10), where w, = max(1 + const - ug;3).
Further, we establish the estimation relation of the ‘interpolating Lagrange
polynomial for the function ¢ defined onT.

LEMMA 2. Let ¢ € H,(T") and ¢, € X, be a polynomial such that

lo = @l < (g + o Inn)E,(9).
Then
(11) H@—%MSQEE%FEQH@m) 0<p<a<i).

Proof. Let (p: be the polynomial of the best approximation for the func-
tion ¢. From (5) and (10) it follows that

1
< p’3 OL B H((P, a’) + “’7”3 (Pn v (P"”C 4

lo - @l <[o - @], + o ~ ],

Using (4) for the second term of the last inequality, we deduce that

<o = ol +lon — ol < wam H(@0) + (s + s ), (0) <

1 1
S0+w+mhquFH@mJ=mu+mwwth@w)

Then for p,, = py + popy, &d py; = By, Wwe obtain inequality (11).

2n
Let {t } _be a consequence of 2n + 1 distinct points from I" and
J j=0

o I s
(1) = kzr? jk# ) ( ) ZA (t ell, j =0, 2n).
[T (-4)" b

k=0;k+j
By U, we denote the operator which maps any function g continuous on I"

onto its interpolating Lagrange polynomial defined by using the nodes {t }
This is a polynomial of the form
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ZP gt;):
Itis evident that U X, = X, . As in [5, p. 539], we establish that
[U.(g.1) - &(t) < 1+ 1, )E,(g). &(t) « C(T),

where
2n

0]

A, = max
tel’ “
Jj=0
Let us consider the function w, w(w) = cw + ¢ow ™ +..., Which maps

conformally the exterior of the unit circle with the center 0 onto F7, so that y(ec) = o,
(o) = ¢> 0.

i
Let w; = exp o

2n +1
equidistance points on I’y = {|w| = 1} ,and

(j—n) (i2 il gl = 0,1,...,2n) be a system of

(12) t;=vww,) j=01..,2x

THEOREM 3. If 2, j = 0, 1, ..., 2n are defined by (12), then
A, Spy+ yslnn,
The proof of this theorem is very long. We will omit it.

2. Now, using our previous results, we propose a substantiation of the
collocation method.
We consider SIE with the Cauchy kernel

(13) c(t)o(t) + d(t) ¢ «(r) dt + :ci IK(t, )p(t)de = f(t), t €T,

mios Tt

in the Banach space Hﬂ( ) 0 <p < 1.Herec, d, K and f are known functions in

Hy(T") and ¢ is unknown,
According to the collocation method, we seek an approximate solution of
(13) in the form of a polynomial

(14) o) = Yt

k=—n
The WO oS {“Sc")}n = {ak}z:_" are found from the following
system of linear equations k==n
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n =1 " 1 .
(15) a(tj)gakt;‘ + b(tj)k;"akt}‘ + Zak E}[K(tj’t) thdr = f(tj),

k=-n

where a(t) = ¢(t) + d(2), b(t) = c(t) - d(¢) and t,j=0,1, ..., 2n form a set of
distinct points on I

THEOREM 4. Suppose the functions a, b and K (uniform with respect to both
variables) belong to the space H,(T'), 0 <B < a <1, and let the following
conditions hold:

1) a(t)b(t)# 0, ¢t €T,
2) ind a(t)b”'(t) =0, ¢t €T,
3) the kernel of the operator corresponding to the left side of (13) is empty.

In addition, lett;, j = 0,2n, be calculated according to (12).

Then, for sufficiently large n, the system (15) has a unique solution {ag")}"

k=-n
The approximate solutions (14) converge in the norm of Hy(I') as n — oo lo the

exact solution ¢ of (13), whatever the function f € H,(T'). For the rate of
convergence, the following estimate holds

o - (Pn"p < (g + Py lnm)nP*H(g; ).

For the proof see [1-3].
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