REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Tome XXVI, ${ }^{\text {os }} 1 \mathbf{1 - 2 , 1 9 9 7 , ~ p p . ~ 2 9 - 3 2 ~}$

NOTE ON THE PAPER OF I. MUNTEAN "ON THE METHOD OF NEAR EQUATIONS"

S. COBZAS

For two normed spaces X, Y over the field of real or complex numbers, denote by $L(X, Y)$ the space of all continuous linear operators from X to Y, and let $L(X)=L(X, X)$.

Recall, for convenience, Banach's theorems on the invertibility of perturbed operators (see [1], Theorems V.4.3 and V.4.4).

THEOREM A. If X is a Banach space and $A \in L(X)$ is such that $\|A\|<1$, then the operator $I-A$ is invertible and

$$
\begin{equation*}
\left\|(I-A)^{-1}\right\| \leq \frac{1}{1-\|A\|} . \tag{1}
\end{equation*}
$$

Theorem B. Let X be a Banach space and Y a normed space. If $S, T \in L(X, Y)$ are such that S is invertible and $\left\|S^{-1} T\right\|<1$ then $S+T$ is invertible and

$$
\begin{equation*}
\left\|(S+T)^{-1}\right\| \leq \frac{\left\|S^{-1}\right\|}{1-\left\|S^{-1} T\right\|} \tag{2}
\end{equation*}
$$

For a normed space X, an operator $A \in L(X)$ and an element $y \in X$, consider the equation

$$
\begin{equation*}
(I-A) x=y . \tag{3}
\end{equation*}
$$

Approximating the operator A by another operator $\tilde{A} \in L(X)$ and the element y by $\tilde{y} \in X$, one obtains a new equation

$$
\begin{equation*}
(I-\tilde{A}) \tilde{x}=\tilde{y} \tag{4}
\end{equation*}
$$

easier to solve and called a near equation to (3). The problem considered in [2] was to give estimations of the error $\|x-\tilde{x}\|$ in terms of $\|A-\tilde{A}\|$ and $\|y-\tilde{y}\|$

The main result in [2] is the following Kantorovich-type theorem:
Theorem 1. Let X be a Banach space and let $A, \tilde{A} \in L(X)$ be such that $I-A$ is invertible. Suppose that α, β, γ are three nonnegative real numbers such that (5)

$$
\alpha \beta<1
$$

and
(6)

$$
\left\|(I-A)^{-1}\right\| \leq \alpha,\|A-\tilde{A}\| \leq \beta,\|y-\tilde{y}\| \leq \gamma .
$$

Then the operator $I-\widetilde{A}$ is invertible, too, and the solutions x, \tilde{x} of equations (3) and (4) verify the estimations

$$
\begin{equation*}
\|x-\tilde{x}\| \leq \alpha \gamma+\frac{\alpha^{2} \beta}{1-\alpha \beta}\|\tilde{y}\| . \tag{7}
\end{equation*}
$$

The key tool we shall use in the proof of Theorem 1 is the following
PROPOSITION 1. Let X be a normed space and let the operators A, \tilde{A} in $L(X)$ be such that $I-A$ and $I-\widetilde{A}$ are invertible. Then the solutions x, \widetilde{x} of equations (3) and (4) verify the identities
(8)
$x-\tilde{x}=(I-A)^{-1}(y-\tilde{y})+(I-A)^{-1}(A-\tilde{A})(I-A)^{-1} \tilde{y}$
(9) $\quad x-\tilde{x}=(I-\tilde{A})^{-1}(y-\tilde{y})+(I-A)^{-1}(A-\widetilde{A})(I-A)^{-1} y$.

Proof. The identity

$$
\begin{equation*}
U^{-1}-V^{-1}=U^{-1}(V-U) V^{-1} \tag{10}
\end{equation*}
$$

is true for any pair U, V of invertible operators in $L(X)$
Writing

$$
\begin{gathered}
x-\tilde{x}=(I-A)^{-1} y-(I-\tilde{A})^{-1} \tilde{y}= \\
=(I-A)^{-1}(y-\tilde{y})+\left[(I-A)^{-1}-(I-\tilde{A})^{-1}\right] \tilde{y}
\end{gathered}
$$

and applying formula (10) to $U=I-A$ and $V=I-\widetilde{A}$, we get (8).
A similar argument applied to
yields (9).

Proof of Theorem 1. By (5) and (6), we have

$$
\left\|(I-A)^{-1}(A-\tilde{A})\right\| \leq\left\|(I-A)^{-1}\right\|\|A-\widetilde{A}\| \leq \alpha \beta<1,
$$

so that we can apply Theorem B to $S=I-A$ and $T=A-\widetilde{A}$, to infer that the operator $I-\widetilde{A}$ is invertible and that

$$
\begin{equation*}
\left\|(I-\tilde{A})^{-1}\right\| \leq \frac{\left\|(I-A)^{-1}\right\|}{\|A-\tilde{A}\|} \leq \frac{\alpha}{1-\alpha \beta} \tag{11}
\end{equation*}
$$

Now, equality (8) and inequalities (5) and (6) yield

$$
\begin{gathered}
\|x-\tilde{x}\| \leq\left\|(I-A)^{-1}\right\|\|y-\widetilde{y}\|+\left\|(I-A)^{-1}\right\|\|A-\tilde{A}\|\left\|(I-\tilde{A})^{-1}\right\|\|\tilde{y}\| \leq \\
\leq \alpha \gamma+\alpha \beta \frac{\alpha}{1-\alpha \beta}\|\tilde{y}\|
\end{gathered}
$$

i.e., (7) holds.

Remark. Starting with (9) and taking into account inequality (11), one obtains the delimitation

$$
\begin{equation*}
\|x-\widetilde{x}\| \leq \frac{\alpha}{1-\alpha \beta} \gamma+\alpha \beta \frac{\alpha}{1-\alpha \beta}\|y\| . \tag{12}
\end{equation*}
$$

Some variations on the theme of near equations are presented in the following proposition (compare to [2, Theorem 3.1]).

Proposition 2. Let X be a Banach space, $A, \tilde{A} \in L(X)$ and $y, \tilde{y} \in X$. Suppose that p, q, rare nonnegative numbers such that
and

$$
\begin{equation*}
\|A\| \leq p,\|A-\tilde{A}\| \leq q,\|y-\widetilde{y}\| \leq r . \tag{13}
\end{equation*}
$$

It follows that the operators $I-A$ and $I-\tilde{A}$ are invertible and the following estimations

$$
\begin{equation*}
\|x-\widetilde{x}\| \leq \frac{1}{(1-p)(1-p-q)}[r(1-p-q)+q\|\tilde{y}\|] \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x-\widetilde{x}\| \leq \frac{1}{(1-p)(1-p-q)}[r(1-p)+q\|y\|] \tag{16}
\end{equation*}
$$

hold.

Proof. By (13) and (14), $\|A\| \leq p<1$, so that, by Theorem A, the operator $I-A$ is invertible and

$$
\begin{equation*}
\left\|(I-A)^{-1}\right\| \leq 1 /(1-p) . \tag{17}
\end{equation*}
$$

Again by (13) and (14) we have

$$
\begin{equation*}
\left\|(I-A)^{-1}(A-\widetilde{A})\right\| \leq q /(1-p)<1, \tag{18}
\end{equation*}
$$

so that, by Theorem B, the operator $I-\widetilde{A}=(I-A)+(A-\tilde{A})$ is invertible, too, and

$$
\left\|(I-\tilde{A})^{-1}\right\| \leq \frac{\left\|(I-A)^{-1}\right\|}{1-\left\|(I-A)^{-1}(A-\tilde{A})\right\|},
$$

which yields

$$
\begin{equation*}
\left\|(I-\tilde{A})^{-1}\right\| \leq 1 /(1-p-q) \tag{19}
\end{equation*}
$$

Now, using equality (8) and inequalities (17) and (19), we obtain

$$
\|x-\tilde{x}\| \leq(1-p)^{-1} r+(1-p)^{-1} q(1-p-q)^{-1}\|\tilde{y}\|,
$$

which is equivalent to (15).
Similarly, starting with (9) and applying again inequalities (17) and (19), one obtains the delimitation (16).

REFERENCES

1. L. V. Kantorovich and G. P. Akilov, Functional Analysis, Third Edition, Nauka, Moscow, 1984 (in Russian).
2. I. Muntean, On the method of near equations, CALCOLO (in print).

Received October 15, 1996

> Faculty of Mathematics
> "Babes-Bolyai" University
> RO-3400 Cluj-Napoca
> Romania
> E-mail: scobzas@math.ubbcluj.ro

