REVUE D’ANALYSE NUMERIQUE ET DE THEORIE DE L’APPROXIMATION
Tome XXVI, N% 1-2, 1997, pp. 29-32

NOTE ON THE PAPER OF I. MUNTEAN
“ON THE METHOD OF NEAR EQUATIONS”

S. COBZAS

For two normed spaces X, Y over the field of real or complex numbers,
denote by L(X, Y) the space of all continuous linear operators from X'to ¥, and let
LX)=LX X).

Recall, for convenience, Banach’s theorems on the invertibility of perturbed
operators (see [1], Theorems V.4.3 and V.4.4).

THEOREM A. If X is a Banach space and A € L(X) is such that “A" < 1, then
the operator I — A is invertible and
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THEOREM B. Let X be a Banach space and Y a normed space. If
S,T e L(X, Y) aresuch that Sis invertible and |S'T|| < 1 then S+T is invertible and

1
=

@) ”(s + T)“H <

For a normed space X, an operator 4 € L(X) and an element y € X, consider
the equation

®3) (I-4)x=y.

Approximating the operator 4 by another operator de L(X ) and the element
yby ¥ € X, one obtains a new equation

(4) (1-4)%=7,
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casier to solve and called a near equation to (3). The problem considered in [2]
was to give estimations of the error ”x — JT” in terms of "A - ZH and ” y - ;“
The main result in [2] is the following Kantorovich-type theorem:

THEOREM 1. Let X be a Banach space and let 44 e L(X )be such that
I—A4 is invertible. Suppose that a, B, y are three nonnegative real numbers such that

(%) af<l
and
©) (-4 <a, Ja-4|<p, |y-5<y.

Then the operator I — 4 is invertible, too, and the solutions x, X of equations (3)
and (4) verify the estimations

a’p
1-af

(7) e~ < ay + =3,

The key tool we shall use in the proof of Theorem 1 is the following

PROPOSITION 1. Let X be a normed space and let the operalors A, 4 in LX)

be such thatI —A and I — 4 are invertible. Then the solutions x, X of equations
(3) and (4) verify the identities

®) x=F=(I-4) -9+ -4 (4= A 1 - 4)'5

and

©) x=% = (=2 (y=5)% (1= 47 (4= A7 - 47"y,
Proof. The identity

(10) Ul=vt=ulrtup!

is true for any pair U, ¥ of invertible operators in LX).
Writing

-1

x-¥=(I-A)y-(1-4) 5=

-5+ |- - (1-3)

and applying formula (10)to U=/ -4 and V = [ — 4, we get (8).
A similar argument applied to

xX—X = ([ - Z)-l(y - 5)+ [([ - A)’1 - ([ - Z)_l]y
yields (9).
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Proof of Theorem 1. By (5) and (6), we have
A T S

so that we can apply Theorem B to S= /- Adand T = 4 — A4, to infer that the
operator I — 4 is invertible and that

S

< =i = .
] -

~-l
(1) -7
Now, equality (8) and inequalities (5) and (6) yield

be =31 - a7y =51+ e - e - - 3o <

o

Socy+oc[31_aB

5,
i.e., (7) holds.
Remark. Starting with (9) and taking into account inequality (11), one obtains
the delimitation
a o
Y +a
I-apf ' g 1-ap

Some variations on the theme of near equations are presented in the following
proposition (compare to [2, Theorem 3.1]).

(12) =3 < -

PROPOSITION 2. Let X be a Banach space, 4, e L(X ) and y,y € X,
Suppose that p, q, r are nonnegative numbers such that

(13) ptqg<l
and
(14) Il < b, [4-4) < g, |y -5 < r.

It follows that the operators I — A and I — 4 are invertible and the
following estimations

as) -3 g - 2 - )+ ol
and
(1) b -5 Gy 0 2 b

hold.
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Proof. By (13) and (14), ”A“ < p <1, so that, by Theorem A, the operator
I — A is invertible and

(17) [- a7 <1ra-p).
Again by (13) and (14) we have
(18) “(1 A (4- Z)“ <q/(1-p) <1,

so that, by Theorem B, the operator [ — 4 = (I-4) +(A - Z) is invertible, too, and

A
“(I cAls (7 - 4y (4- )
which yields
(19) “(1—2)_1 <1/(1-p-gq).

Now, using equality (8) and inequalities (17) and (19), we obtain

>

e =% < (1= p)'r+ (1= p) 91— p- )75

which is equivalent to (15).
Similarly, starting with (9) and applying again inequalities (17) and (19),
one obtains the delimitation (16).
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