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NOTE ON THE PAPER OF I. MLINTEAN
"oN THE METHOD OF NEAR EQUATIONS"

S. COBZAS

i:!'

For two notmed spaces X, Y ovet the field of real or complex numbers,

denote by L(X, Y) the spãce of all continuous linear operators fromXto { and let

L(X): L(X, X),' 
Reòall for convenience, Banach's theorems on the invertibility ofperhrrbed

operators (see [1], Theorems V.4'3 and V.4,4).

THEoREM A. IfX is a Banach space and A e L(X) is such tnat lldll < I, then

the operator I - A is invertible and

(1) llr'-rl 'll ..h
TneoRBÀ4 B. Let x be a Banach space and Y a normed space. IJ

S,T e t(X,f) arestrchtlatsisinvertibleandllt-ttll < I thens+T ísinvertibleand

(2) llt'.'r'll

For a normed space x, an operator A e L(X) and an element y e x, consider

the equation

(3) (I-A)x:Y.

Approximating the operator Aby anotheroperator Á e L(X) and the element

Vby 7 e X, one obtains a new equatio

(4) (r -À)r =i,
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easier to solve and called anear equatíon to (3), The problem considered in [2]
was to give estimatl:l:l 

ln.. 
.ool ll, - ;ll in terms or l! _ Ãll 

""a lly 
_ Tll

The mainresult in [2] is the following üantorovich-t]pe theorem:

TnBoRnu l. Let x be a Banach space and let A,Ã e L@)ae such that
I - A is invertible. suppose that u, þ, y are three nonnegative real numbers such thar

(s) Gp<l
and

(6) li.'-nl'll<",llt-Àll.p, llr- yll<y

Then the operalor I - Ã is ínvertible, too, and the solutions x,7 of equations (3)
and (4) verify the estimations

(7) ll, -;ll < cry +;$rrorr

The key tool we shall use in the proof of rheorem 1 is the following

PRopostrroN r. Let x be a normed space and let the operators ,a, Ã in tç4
be such that I -A and I - Ã or" invertibre. Then the solutions x,T of equations
(3) and (4) verify the identities

(8) x-i =(t -.q)'(y-i)+(r - d¡-'(t-Z)g _ ¿)'i
and

(e) x-t =(r -Ã)-'(r-v)+(t - t)-t(e_ Ã)(, - A)-'y.

Proof, The identity

(10) U-t - V-l = g-'(V _ U)rt
is true__for any pair (J, V of invertible operators in Z(X).

Writing

.r - 7 = (t - .q)-' y - (r - Z)' y =

= (r - ¿)-'(y - i) +lt, - o)-' - (r - Z)'lV
andapplying formula(10)to U:I-AandV - I _Ã,weget(S).

A similar argument applied to

x - v = (, _ À)' (, _ y).|f, _ A), _ (r _ Ã),fi
yields (9).

Proof of Theorem l. By (5) and (6), we have

llr, - nr'çu- ?)ll 
= llrr -.nl 'lllln- z¡ r *p < 1,

so thatwe canapplyTheoremB to^g: I -Aand T - A-Ã,b inf"rthatthe
operator I - A is invertible and that

(11)

(16)

hold.

llr'- ,l-'ll

llu - zll

Now, equality (8) and inequaliries (5) and (6) yield

l, - ;l = llr'-,)-'11il, - rl* llø -,r'llll, - 4lll(, 
_ 

4-'lltt,tt =

< .ly + "pållrll,
i,e., (7) holds.

Remarlc. süarting with (9) and taking into accountinequality (11), one obtains
the delimiûation

(t2) ll"-;ll =åy+",plftttrtt
Some variations on the theme of near equations arepresented in the following

proposition (compare to [2, Theorem 3.1]).

PnoposluoN 2. Let X be a Banach spoce, A,À e L(X) and y,V e X,
Suppose that p, q, r are nonnegative numbers such that

(13) p+ q <t
and

(14) lltll = o, lln - zll < q, lly - ill = ,
It follows thaf the operators I - A and I - Z. are invertible and the

following estimations
l

I

I

i

I

i

(1s)

and

llx-;ll <---+, r l,(t- r- ù.qllyll]rr rr (l-zXt-p-q)L' r -t/

llx - ;il < ----1 _ ) V0 - o)* øllyll]rr r¡ (l - pXl - p - q)" / '/ 'ttt/
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32 S. Cobzas 4 REVUE D'ANA.LYSE 
,NUMÉRIQUE 

DT DD THÉORIE DE L'APPROXIMATION

Iome XXVI, N6 1-2, 1997, pp. 33-38
Proof.By (13) and (14), lltll = p < 1, so that, by Theorem A, the operator

I - A is invertible and

(11) llf.-rl 'll "tt(t-p)
Again by (13) and (14) we have

(r8) ll] - nf'çu- i)ll 
= 

q t(r- p) <1,

so that, by Theorem B, the operator ¡ -f,=(t - A)+(A-À) is invertible, too, and

HERMITE-TYPE SHEPARD OPERATORS

GHEORGHE COMAN

llr. 
- ;i 'll . I-A)' Let \, P, : : (x,, | ¡), i : 7, .,,, fl be distinct points in a plane domain D, f a

real-valued function defined on D and g(f)t = {Xrfl¡ = 1,,,,, N} u given set of

information aboutf.
The original Shepard interpolation operator So is defined by [6]

1- r - A)-'(A_A

whichyields

(1e)
llr'-ry'll <ro-p-q) ,¡r'

(1)

with

So-f = ZA,f(*,,y,)
Now, using equality (B) and inequalities (17) and(l9), we obúain

ll, - ;ll < (r - p)', * (t - p)' q(t - p - ù'llill,
which is equivalent to (15).

Similarþ, súarting with (9) and applying again inequalities (17) and (19),
one obtains the delimitation (16),

i=1

NìV
A,(*, t) = llal(*,y) tZII¿TQ, ù,

j=1
j11

k-r j=l
j+k
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where dr(x, Ð isthedistancebetweenthepoint (x,y)e D and (*,,y,) and p e R*.

As can be seen, the information here is "ø(f)= {Xt.f : .f(r¡,y)li = 1,,,,,N},
i. e,, a Lagr ange-typ e information.

It is woll known that 
^So 

is an interpolative operator

(so/Xr,, y,) = .f (r,, y,), i = 1, . , ,, N

and the degree ofexactness (abbreviated by "dex") ofSo is zero, i.e,, dex(S): 0:

So./: f only for the constant functionl The second property follows from
the relation

Recoived Octobor 15, 1996 Faculty of Mathematics
" B a b eS - B o ly ai " Univers ity

RO-3400 Cluj-Napoca
Romania

E -mai l : s co bz as @ma th.u b b cluj. ro

(2) ZA, = 7,
i=\

which is easy to veriff.
A way to generalize the Shepard operator is to increase the degree of exactness
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