REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Tome XXVI, Nºs 1-2, 1997, pp. 33-38

Such as extension can be linen by une

HERMITE-TYPE SHEPARD OPERATORS

GHEORGHE COMAN

Shipe i up tubu 2. 2 https://www.entreader.com/anti-terrated by participation in a state of the second second

Let P_i , $P_i := (x_i, y_i)$, i = 1, ..., n be distinct points in a plane domain D, f a real-valued function defined on D and $\mathscr{I}(f) := \{\lambda_i f | i = 1, ..., N\}$ a given set of information about f.

The original Shepard interpolation operator S_0 is defined by [6]

(1)
$$S_0 f = \sum_{i=1}^N A_i f(x_i, y_i)$$

with a take most of the state of the second s

$$A_{i}(x, y) = \prod_{\substack{j=1\\ j\neq 1}}^{N} d_{j}^{\mu}(x, y) / \sum_{\substack{k=1\\ j\neq k}}^{N} \prod_{\substack{j=1\\ j\neq k}}^{N} d_{j}^{\mu}(x, y),$$

where $d_i(x, y)$ is the distance between the point $(x, y) \in D$ and (x_i, y_i) and $\mu \in \mathbf{R}_+$. As can be seen, the information here is $\mathscr{I}(f) = \{\lambda_i f = f(x_i, y_i) | i = 1, ..., N\},\$ i.e., a Lagrange-type information. Lagrange-type information. It is well known that S_0 is an interpolative operator

$$(S_0 f)(x_i, y_i) = f(x_i, y_i), i = 1, ..., N$$

and the degree of exactness (abbreviated by "dex") of S_0 is zero, i.e., dex $(S_0) = 0$: $S_0 f = f$ only for the constant function f. The second property follows from the relation

)
$$\sum_{i=1}^{N} A_i = 1,$$

which is easy to verify.

(2)

A way to generalize the Shepard operator is to increase the degree of exactness.

¹⁹⁹¹ AMS Subject Classification: 65D05,

Hermite-type Operators

34 Gheorghe Coman 2

Such an extension can be given by using Hermite-type information about f

$$\mathscr{I}_{H}(f) = \left\{ \lambda_{k}^{(p,q)} f \middle| \lambda_{k}^{(p,q)} f = f^{(p,q)}(x_{k}, y_{k}), \ k = 1, \dots, n; \ p,q \in \mathbb{N}, \ p+q \leq s_{k} \right\}$$

with $|\mathscr{I}_{H}(f)| = N$. A similar extension was given in [1] for $s_1 = \dots = s_n = m$

(3)
$$(S_m^T f)(x, y) = \sum_{k=1}^n A_k(x, y) T_m(x, y; x_i, y_i),$$

where $T_m f$ is the Taylor polynomial for the node (x_i, y_i)

(4) $(T_m f)(x, y; x_i, y_i) = \sum_{p+q \le m} \frac{(x-x_i)^p}{p!} \frac{(y-y_i)^q}{q!} f^{(p,q)}(x_i, y_i).$

It is proved that, for $\mu \ge m$

 $(S_m f)^{(p,q)}(x_i, y_i) = f^{(p,q)}(x_i, y_i), \ p,q \in \mathbf{N}, \ p+q \le m,$ for all i = 1, ..., n and

$$\det(S_m f) = m.$$

Remark 1. The operator S_1 was given by Shepard [6].

The so-called Shepard-Taylor operator S_m^T has the degree of exactness m. But it involves as information the values of the partial derivatives of the function t up to the order m, that make its applications difficult for large m.

In a recent paper [3], there have been studied some Lagrange-type Shepard operators, i.e., Shepard operators which use Lagrange-type information, as So from (1) does, but with the degree of exactness dex > 0.

Our goal here is to construct Hermite-type Shepard operators, with the degree of exactness dex > 0.

DEFINITION 1. A Shepard operator is called of the Hermite type if the information used, $\mathcal{I}(f)$ is of the Hermite type.

One denotes by $\mathscr{I}_{H}^{s}(f)$ the information $\mathscr{I}_{H}(f)$ for $s_{1} = \dots = s_{n} = s$ (at each point P_i we have the same information about f).

Now, to each point P_i it is associated a Hermite-type interpolation polynomial of the degree *m*, based on some information about *f* at P_i , P_{i+1} ,..., $P_{i+\nu}$, with $\nu < n$. Let $H_i^m f$ for i = 1, ..., n, be these polynomials, if they exist. Then

(5)
$$S_m^H f = \sum_{i=1}^n A_i H_i^m f$$

is the corresponding Hermite-type Shepard operator.

 $A_i(x_k, y_k) = \delta_{ik}, \ i, k = 1, \dots, n$ $A_i^{(p,q)}(x_k, y_k) = 0, \ k = 1, ..., n; \ 1 \le p + q \le m, \ \text{for} \ i = 1, ..., n,$

it follows that $S_m^H f$ preserves all the interpolation properties of the polynomials H_i^m f for i = 1, ..., n. Also, relation (2) implies that the exactness degree of the Shepard operator S_m^H is equal to the exactness degree of the Hermite operator H_m^m . i.e., $dex(S_m^H) = m$.

The difficult problem here is to prove the existence and the uniqueness of the Hermite operators H_i^m , i = 1, ..., n. A first difficulty is that a two-variate polynomial of the degree m contains (m+1)(m+2)/2 arbitrary coefficients. This means that the number of the interpolation conditions (the cardinality of the information set) must be (m+1)(m+2)/2. A second difficulty arises in solving the linear system of order $(m+1)(m+2)/2 \times (m+1)(m+2)/2$, determined by the interpolation conditions. As the points $P_i \in D$ are arbitrarily distributed, there is no guarantee that the corresponding system has a unique solution. To pass these difficulties we must take a set of (m+1)(m+2)/2 information and organize the interpolation points P_i , i = 1,..., n in such sets $\{P_i, ..., P_{i+m}\}$, i = 1,..., n, that each of the corresponding systems may have a unique solution.

Next we consider some concrete cases.

1. Let $\mathscr{I}(f)$ be the following set of pieces of information

(6)
$$\mathscr{I}(f) = \left\{ f^{(p,q)}(x_i, y_i) \middle| i = 1, ..., n; p, q = 0, 1; p + q \le 1 \right\}.$$

Remark 3. For m = 1,

(7)

$$\mathscr{I}_{k}(f) = \left\{ f(x_{k}, y_{k}), f^{(1,0)}(x_{k}, y_{k}), f^{(0,1)}(x_{k}, y_{k}) \right\}$$

and $H_k^1 = T_k^1$ from (4). Hence, H_k^1 exists and is unique and $S_1^H = S_1^T$ from (3). For m = 2, we must take a set of six pieces of information, in order to determine

the Hermite interpolation polynomials \hat{H}_{k}^{2} , k = 1, ..., n, of the second degree. Let this information be

 $\mathscr{I}_{\mathcal{V}}(f) :=$

$$:= \left\{ f(x_k, y_k), f^{(1,0)}(x_k, y_k), f^{(0,1)}(x_k, y_k), f(x_{k+1}, y_{k+1}), f(x_{k+2}, y_{k+2}), f(x_{k+3}, y_{k+3}), \right\}$$

for all $k = 1, ..., n$, with $P_{n+1} := P_1, P_{n+2} := P_2, P_{n+3} := P_3.$

35

Hermite-type Operators

Gheorghe Coman

4

The existence and uniqueness of the polynomials $H_k^2 f$ are based on the following

LEMMA 1. Let $Q_i := (x_i, y_i)$, i = 0, 1, 2, 3 be given points in the plane such that: a) $x_i \neq x_0$ for i = 1, 2, 3;

b) if l_i is the line determined by the points Q_0 and Q_i then $l_j \neq l_k$ for $j, k = 1, 2, 3, j \neq k$. Then for every function f with the given information $\mathscr{I}(f) = \left\{ f(Q_0), f^{(1,0)}(Q_0), f^{(0,1)}(Q_0), f(Q_1), f(Q_2), f(Q_3) \right\}$

there exists a unique polynomial P_2 of the second degree that satisfies (8) $\begin{cases}
P^{(j,k)}(Q_0) = f^{(j,k)}(Q_0), & j, k = 0, 1; j + k \leq 1, \\
P(Q_i) = f(Q_i), & i = 1, 2, 3.
\end{cases}$ Proof. Let P_2 be an arbitrary second-degree polynomial (9) $P_2(x, y) = Ax^2 + Bxy + Cy^2 + Dx + Ey + F.$ From (8) one obtains a 6×6 algebraic linear system. Let M be its matrix. Then, after some permissible transformations, one obtains

The second s

det
$$M = -\prod_{i=1}^{3} (x_i - x_0)^2 \begin{vmatrix} 1 & \alpha_1 & \alpha_1^2 \\ 1 & \alpha_2 & \alpha_2^2 \\ 1 & \alpha_3 & \alpha_3^2 \end{vmatrix}$$

where

114103

(10)
$$\alpha_i = \frac{y_i - y_0}{x_i - x_0}, \ i = 1, 2, 3.$$

Conditions a) and b) from Lemma 1 imply that det $M \neq 0$, i.e., the system has a unique solution.

THEOREM 1. Let f be a real-valued function for which there exists the information $\mathscr{I}(f)$ from (6). If the interpolation nodes P_k , k=1,...,n, are such that

a) $x_{k+i} \neq x_k, i = 1, 2, 3,$

b) $l_{i+k} \neq l_{j+k}$ for i, j=1, 2, 3 with $i \neq j$, when l_{i+k} is the line determined by P_k and P_{k+i} , for all k = 1, ..., n, then there exists the Hermite-type Shepard operator S_2^H defined by

 $S_2^H f = \sum_{k=1}^n A_k H_k^2 f,$

where H_k^2 is the Hermite interpolation operator corresponding to the information $\mathscr{I}_k(f)$ from (7), and dex $(S_2^H)=2$. The proof follows from Lemma 1 and Remark 2.

2. A second case, for m=2, is obtained by using the information

(11)
$$\mathscr{I}_{k}(f) = \left\{ f(P_{k}), f^{(1,0)}(P_{k}), f^{(0,1)}(P_{k}), f^{(1,1)}(P_{k}), f(P_{k+1}), f(P_{k+2}) \right\},$$

for all k = 1, ..., n.

(1

LEMMA 2. Let $Q_i := (x_i, y_i), i = 0, 1, 2, be given points in the plane such that$

(12)
(12)
a)
$$x_1 \neq x_0$$
 and $x_2 \neq x_0$
b) $\alpha_1 \neq \alpha_2$ and $\alpha_1 \neq -\alpha_2$, for α_1 and α_2 given in (10).

Then for every function f with the given information

$$\mathscr{I}(f) = \left\{ f(\mathcal{Q}_0), f^{(1,0)}(\mathcal{Q}_0), f^{(0,1)}(\mathcal{Q}_0), f^{(1,1)}(\mathcal{Q}_0), f(\mathcal{Q}_1), f(\mathcal{Q}_2) \right\}$$

there exists a unique polynomial P_2 of the second degree that satisfies

3)
$$\begin{cases} P_2^{(j,k)}(Q_0) = f^{(j,k)}(Q_0), \ (j,k) \in \{(0,0), (0,1), (1,0), (1,1) \\ P_2(Q_1) = f(Q_1) \\ P_2(Q_2) = f(Q_2). \end{cases}$$

Proof. Taking P_2 as in (9), we must analyze the system given by conditions (13). But the determinant of its matrix, say Δ , can be written in the form

$$\Delta = (x_1 - x_0)^2 (x_2 - x_0)^2 (\alpha_2^2 - \alpha_1^2).$$

Hence, from conditions (12), it follows that $\Delta \neq 0$.

Now it is very easy to prove the following

THEOREM 2. Let f be a real-valued function for which there exists the information

$$\mathscr{I}(f) = \left\{ f^{(p,q)}(P_i) \middle| i = 1, \dots, n; (p,q) \in \{(0,0), (0,1), (1,0), (1,1)\} \right\}.$$

36

If the interpolation nodes P_k , k = 1, ..., n are such that

a) $x_{k+i} \neq x_k, i = 1, 2$

b) $\frac{y_{k+1} - y_k}{x_{k+1} - x_k} \neq \pm \frac{y_{k+2} - y_k}{x_{k+2} - x_k}$, for all k = 1, ..., n, then there exists the Hermite-type Shepard operator \widetilde{S}_2^H , defined by

$$\widetilde{S}_2^H f = \sum_{k=1}^n A_k \widetilde{H}_k^2 f,$$

where \widetilde{H}_k^2 is the Hermite interpolation operator corresponding to the information $\mathscr{I}_k(f)$ from (11), with $\operatorname{dex}(\widetilde{S}_2^H) = 2$.

Proof. Lemma 2 assured the existence and uniqueness of all Hermite operators \widetilde{H}_k^2 , k = 1, ..., n. Now, from Remark 2, the proof follows.

REFERENCES

- 1. Gh. Coman, A Shepard-Taylor approximation formula, Studia Univ. Babeş-Bolyai, Mathematica 33 (1988), 65-73.
- 2. Gh. Coman, Shepard-Taylor Interpolation, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1988, pp. 5-14.
- 3. Gh. Coman and R. Trîmbițaș, Lagrange-type Shepard operators, Studia Univ. Babeș-Bolyai, Mathematica 42 (1997) (to appear).
- 4. R. Franke, Scattered data interpolation: Tests of some methods, Math. of Comput. 38, 157 (1982), 181-200.
- L. L. Schumaker, Fitting Surfaces to Scattered Data, In: Approximation Theory II, G. G. Lorentz, C. K. Chui, L. L. Schumaker (Eds), Academic Press Inc., 1976, pp. 203–268.
- D. Shepard, A Two-Dimensional Interpolation Function for Irregularly Data, Proc. 1964 ACM Nat. Conf., pp. 517–524.
- 7. D. Stancu, On some Taylor expansions for functions of several variables, Rev. Roumaine Math. Pures Appl. 4 (1959), 249-265 (in Russian).

Received December 15, 1996

Faculty of Mathematics "Babeş-Bolyai" University Str. M. Kogălniceanu, nr. 1 3400 Cluj-Napoca Romania

dilor in (21) structure of a source

6