REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

 Tome XXVI, Nas ${ }^{\text {as }} \mathbf{1 - 2 , 1 9 9 7 , ~ p p . ~ 3 3 - 3 8 ~}$
HERMITE-TYPE SHEPARD OPERATORS

GHEORGHE COMAN

Let $P_{i}, P_{i}:=\left(x_{i}, y_{i}\right), i=1, \ldots, n$ be distinct points in a plane domain D, f a real-valued function defined on D and $\mathscr{\mathscr { H }}(f):=\left\{\lambda_{i} f \mid i=1, \ldots, N\right\}$ a given set of information about f.

The original Shepard interpolation operator S_{0} is defined by [6]

$$
\begin{equation*}
S_{0} f=\sum_{i=1}^{N} A_{i} f\left(x_{i}, y_{i}\right) \tag{1}
\end{equation*}
$$

with

$$
A_{i}(x, y)=\prod_{\substack{j=1 \\
j \neq 1}}^{N} d_{j}^{\mu}(x, y) / \sum_{\substack { k=1 \\
\begin{subarray}{c}{j=1 \\
j \neq k{ k = 1 \\
\begin{subarray} { c } { j = 1 \\
j \neq k } }\end{subarray}}^{N} d_{j}^{\mu}(x, y),
$$

where $d_{j}(x, y)$ is the distance between the point $(x, y) \in D$ and $\left(x_{i}, y_{i}\right)$ and $\mu \in \mathbf{R}_{+}$. As can be seen, the information here is $\mathscr{\mathscr { I }}(f)=\left\{\lambda_{i} f=f\left(x_{i}, y_{i}\right) \mid i=1, \ldots, N\right\}$, i.e., a Lagrange-type information.

It is well known that S_{0} is an interpolative operator

$$
\left(S_{0} f\right)\left(x_{i}, y_{i}\right)=f\left(x_{i}, y_{i}\right), i=1, \ldots, N
$$

and the degree of exactness (abbreviated by "dex") of S_{0} is zero, i.e., $\operatorname{dex}\left(S_{0}\right)=0$: $S_{0} f=f$ only for the constant function f. The second property follows from the relation

$$
\begin{equation*}
\sum_{i=1}^{N} A_{i}=1 \tag{2}
\end{equation*}
$$

which is easy to verify.
A way to generalize the Shepard operator is to increase the degree of exactness.

Such an extension can be given by using Hermite-type information about f $\mathscr{I}_{H}(f)=\left\{\lambda_{k}^{(p, q)} f \mid \lambda_{k}^{(p, q)} f=f^{(p, q)}\left(x_{k}, y_{k}\right), k=1, \ldots, n ; p, q \in \mathbf{N}, p+q \leq s_{k}\right\}$ with $\left|\mathscr{I}_{H}(f)\right|=N$. A similar extension was given in [1] for $s_{1}=\ldots=s_{n}=m$

$$
\begin{equation*}
\left(S_{m}^{T} f\right)(x, y)=\sum_{k=1}^{n} A_{k}(x, y) T_{m}\left(x, y ; x_{i}, y_{i}\right) \tag{3}
\end{equation*}
$$

where $T_{m} f$ is the Taylor polynomial for the node $\left(x_{i}, y_{i}\right)$

$$
\begin{equation*}
\left(T_{m} f\right)\left(x, y ; x_{i}, y_{l}\right)=\sum_{p+q \leq m} \frac{\left(x-x_{i}\right)^{p}}{p!} \frac{\left(y-y_{i}\right)^{q}}{q!} f^{(p, q)}\left(x_{i}, y_{i}\right) \tag{4}
\end{equation*}
$$

It is proved that, for $\mu \geq m$

$$
\left(S_{m} f\right)^{(p, q)}\left(x_{i}, y_{i}\right)=f^{(p, q)}\left(x_{i}, y_{i}\right), p, q \in \mathbf{N}, p+q \leq m
$$

for all $i=1, \ldots, n$ and

$$
\operatorname{dex}\left(S_{m} f\right)=m
$$

Remark 1. The operator S_{1} was given by Shepard [6].
The so-called Shepard-Taylor operator $S_{m}{ }^{T}$ has the degree of exactness m. But it involves as information the values of the partial derivatives of the function f up to the order m, that make its applications difficult for large m.

In a recent paper [3], there have been studied some Lagrange-type Shepard operators, i.e., Shepard operators which use Lagrange-type information, as S_{0} from (1) does, but with the degree of exactness dex >0.

Our goal here is to construct Hermite-type Shepard operators, with the degree of exactness dex >0.

Definition 1. A Shepard operator is called of the Hermite type if the information used, $\mathscr{I}(f)$ is of the Hermite type.

One denotes by $\mathscr{I}_{H}^{s}(f)$ the information $\mathscr{I}_{H}(f)$ for $s_{1}=\ldots=s_{n}=s$ (at each point P_{i} we have the same information about f).

Now, to each point P_{i} it is associated a Hermite-type interpolation polynomial of the degree m, based on some information about f at $P_{i}, P_{i+1}, \ldots, P_{i+v}$ with $v<n$. Let $H_{i}^{m} f$ for $i=1, \ldots, n$, be these polynomials, if they exist. Then

$$
\begin{equation*}
S_{m}^{H} f=\sum_{i=1}^{n} A_{i} H_{i}^{m} f \tag{5}
\end{equation*}
$$

is the corresponding Hermite-type Shepard operator.

Remark 2. Taking into account that [1]

$$
\begin{gathered}
A_{i}\left(x_{k}, y_{k}\right)=\delta_{i k}, i, k=1, \ldots, n \\
A_{i}^{(p, q)}\left(x_{k}, y_{k}\right)=0, k=1, \ldots, n ; 1 \leq p+q \leq m, \text { for } i=1, \ldots, n,
\end{gathered}
$$

it follows that $S_{m}{ }^{H} f$ preserves all the interpolation properties of the polynomials $H_{i}^{m} f$ for $i=1, \ldots, n$. Also, relation (2) implies that the exactness degree of the Shepard operator S_{m}^{H} is equal to the exactness degree of the Hermite operator H_{i}^{m}, i.e., $\operatorname{dex}\left(S_{m}^{H}\right)=m$.

The difficult problem here is to prove the existence and the uniqueness of the Hermite operators $H_{i}^{m}, i=1, \ldots, n$. A first difficulty is that a two-variate polynomial of the degree m contains $(m+1)(m+2) / 2$ arbitrary coefficients. This means that the number of the interpolation conditions (the cardinality of the information set) must be $(m+1)(m+2) / 2$. A second difficulty arises in solving the linear system of order $(m+1)(m+2) / 2 \times(m+1)(m+2) / 2$, determined by the interpolation conditions. As the points $P_{i} \in D$ are arbitrarily distributed, there is no guarantee that the corresponding system has a unique solution. To pass these difficulties we must take a set of $(m+1)(m+2) / 2$ information and organize the interpolation points $P_{i}, i=1, \ldots, n$ in such sets $\left\{P_{i}, \ldots, P_{i+m}\right\}, i=1, \ldots, n$, that each of the corresponding systems may have a unique solution.

Next we consider some concrete cases.

1. Let $\mathscr{I}(f)$ be the following set of pieces of information

$$
\begin{equation*}
\mathscr{I}(f)=\left\{f^{(p, q)}\left(x_{i}, y_{i}\right) \mid i=1, \ldots, n ; p, q=0,1 ; p+q \leq 1\right\} . \tag{6}
\end{equation*}
$$

Remark 3. For $m=1$,

$$
\mathscr{I}_{k}(f)=\left\{f\left(x_{k}, y_{k}\right), f^{(1,0)}\left(x_{k}, y_{k}\right), f^{(0,1)}\left(x_{k}, y_{k}\right)\right\}
$$

and $H_{k}{ }^{1}=T_{k}{ }^{1}$ from (4). Hence, $H_{k}{ }^{1}$ exists and is unique and $S_{1}{ }^{H}=S_{1}{ }^{T}$ from (3).
For $m=2$, we must take a set of six pieces of information, in order to determine the Hermite interpolation polynomials $H_{k}^{2}, k=1, \ldots, n$, of the second degree. Let this information be

$$
\begin{aligned}
& \mathscr{I}_{k}(f):= \\
& :=\left\{f\left(x_{k}, y_{k}\right), f^{(1,0)}\left(x_{k}, y_{k}\right), f^{(0,1)}\left(x_{k}, y_{k}\right), f\left(x_{k+1}, y_{k+1}\right), f\left(x_{k+2}, y_{k+2}\right), f\left(x_{k+3}, y_{k+3}\right),\right\},
\end{aligned}
$$

for all $k=1, \ldots, n$, with $P_{n+1}:=P_{1}, P_{n+2}:=P_{2}, P_{n+3}:=P_{3}$.

The existence and uniqueness of the polynomials $H_{k}^{2} f$ are based on the following

LEMMA 1. Let $Q_{i}:=\left(x_{i}, y_{i}\right), i=0,1,2,3$ be given points in the plane such that:
a) $x_{i} \neq x_{0}$ for $i=1,2,3$;
b) if l_{i} is the line determined by the points Q_{0} and Q_{i} then $l_{j} \neq l_{k}$ for $j, k=1,2,3$, $j \neq k$. Then for every function f with the given information $\mathscr{I}(f)=\left\{f\left(Q_{0}\right), f^{(1,0)}\left(Q_{0}\right), f^{(0,1)}\left(Q_{0}\right), f\left(Q_{1}\right), f\left(Q_{2}\right), f\left(Q_{3}\right)\right\}$
there exists a unique polynomial P_{2} of the second degree that satisfies
(8) $\begin{cases}P^{(j, k)}\left(Q_{0}\right)=f^{(j, k)}\left(Q_{0}\right), & j, k=0,1 ; j+k \leq 1, \\ P\left(Q_{i}\right)=f\left(Q_{i}\right), & i=1,2,3 .\end{cases}$

Coitalactutus
Proof. Let P_{2} be an arbitrary second-degree polynomial
(9) $\quad P_{2}(x, y)=A x^{2}+B x y+C y^{2}+D x+E y+F$.

From (8) one obtains a 6×6 algebraic linear system. Let M be its matrix. Then, after some permissible transformations, one obtains

$$
\operatorname{det} M=-\prod_{i=1}^{3}\left(x_{i}-x_{0}\right)^{2}\left|\begin{array}{lll}
1 & \alpha_{1} & \alpha_{1}^{2} \\
1 & \alpha_{2} & \alpha_{2}^{2} \\
1 & \alpha_{3} & \alpha_{3}^{2}
\end{array}\right|
$$

where

$$
\begin{equation*}
\alpha_{i}=\frac{y_{i}-y_{0}}{x_{i}-x_{0}}, i=1,2,3 \tag{10}
\end{equation*}
$$

Conditions a) and b) from Lemma 1 imply that $\operatorname{det} M \neq 0$, i.e., the system has a unique solution.

THEOREM 1. Let f be a real-valued function for which there exists the information $\mathscr{F}(f)$ from (6). If the interpolation nodes $P_{k}, k=1, \ldots, n$, are such that
a) $x_{k+i} \neq x_{k}, i=1,2,3$,
b) $l_{i+k} \neq l_{j+k}$ for $i, j=1,2,3$ with $i \neq j$, when l_{i+k} is the line determined by P_{k} and P_{k+i}, for all $k=1, \ldots, n$,
then there exists the Hermite-type Shepard operator $S_{2}{ }^{H}$ defined by

$$
S_{2}^{H} f=\sum_{k=1}^{n} A_{k} H_{k}^{2} f
$$

where H_{k}^{2} is the Hermite interpolation operator corresponding to the information $\mathscr{I}_{k}(f)$ from (7), and $\operatorname{dex}\left(S_{2}{ }^{H}\right)=2$.

The proof follows from Lemma 1 and Remark 2.
2. A second case, for $m=2$, is obtained by using the information
(11) $\mathscr{I}_{k}(f)=\left\{f\left(P_{k}\right), f^{(1,0)}\left(P_{k}\right), f^{(0,1)}\left(P_{k}\right), f^{(1,1)}\left(P_{k}\right), f\left(P_{k+1}\right), f\left(P_{k+2}\right)\right\}$,
for all $k=1, \ldots, n$.
LEMMA 2. Let $Q_{i}:=\left(x_{i}, y_{i}\right), i=0,1,2$, be given points in the plane such that
a) $x_{1} \neq x_{0}$ and $x_{2} \neq x_{0}$
b) $\alpha_{1} \neq \alpha_{2}$ and $\alpha_{1} \neq-\alpha_{2}$, for α_{1} and α_{2} given in (10).

Then for every function f with the given information

$$
\mathscr{I}(f)=\left\{f\left(Q_{0}\right), f^{(1,0)}\left(Q_{0}\right), f^{(0,1)}\left(Q_{0}\right), f^{(1,1)}\left(Q_{0}\right), f\left(Q_{1}\right), f\left(Q_{2}\right)\right\}
$$

there exists a unique polynomial P_{2} of the second degree that satisfies

$$
\left\{\begin{array}{l}
P_{2}^{(j, k)}\left(Q_{0}\right)=f^{(j, k)}\left(Q_{0}\right),(j, k) \in\{(0,0),(0,1),(1,0),(1,1)\} \tag{13}\\
P_{2}\left(Q_{1}\right)=f\left(Q_{1}\right) \\
P_{2}\left(Q_{2}\right)=f\left(Q_{2}\right)
\end{array}\right.
$$

Proof. Taking P_{2} as in (9), we must analyze the system given by conditions (13). But the determinant of its matrix, say Δ, can be written in the form

$$
\Delta=\left(x_{1}-x_{0}\right)^{2}\left(x_{2}-x_{0}\right)^{2}\left(\alpha_{2}^{2}-\alpha_{1}^{2}\right)
$$

Hence, from conditions (12), it follows that $\Delta \neq 0$.
Now it is very easy to prove the following
THEOREM 2. Let f be a real-valued function for which there exists the information

$$
\mathscr{U}(f)=\left\{f^{(p, q)}\left(P_{i}\right) \mid i=1, \ldots, n ;(p, q) \in\{(0,0),(0,1),(1,0),(1,1)\}\right\}
$$

If the interpolation nodes $P_{k}, k=1, \ldots, n$ are such that
a) $x_{k+i} \neq x_{k}, i=1,2$
b) $\frac{y_{k+1}-y_{k}}{x_{k+1}-x_{k}} \neq \pm \frac{y_{k+2}-y_{k}}{x_{k+2}-x_{k}}$, for all $k=1, \ldots, n$, then there exists the Hermitetype Shepard operator \tilde{S}_{2}^{H}, defined by

$$
\widetilde{S}_{2}^{H} f=\sum_{k=1}^{n} A_{k} \widetilde{H}_{k}^{2} f
$$

where \widetilde{H}_{k}^{2} is the Hermite interpolation operator corresponding to the information $\mathscr{I}_{k}(f)$ from (11), with $\operatorname{dex}\left(\widetilde{S}_{2}^{H}\right)=2$.

Proof. Lemma 2 assured the existence and uniqueness of all Hermite operators $\widetilde{H}_{k}^{2}, k=1, \ldots, n$. Now, from Remark 2, the proof follows.

REFERENCES

1. Gh. Coman, A Shepard-Taylor approximation formula, Studia Univ. Babes-Bolyai, Mathematica 33 (1988), 65-73.
2. Gh. Coman, Shepard-Taylor Interpolation, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1988, pp. 5-14.
3. Gh. Coman and R. Tr̂mbitas, Lagrange-type Shepard operators, Studia Univ. Babeş-Bolyai, Mathematica 42 (1997) (to appear).
4. R. Franke, Scattered data interpolation: Tests of some methods, Math. of Comput. 38, 157 (1982), 181-200.
5. L. L. Schumaker, Fitting Surfaces to Scattered Data, In: Approximation Theory II, G. G. Lorentz, C. K. Chui, L. L. Schumaker (Eds), Academic Press Inc., 1976, pp. 203-268.
6. D. Shepard, A Two-Dimensional Interpolation Function for Irregularly Data, Proc. 1964 ACM Nat. Conf., pp. 517-524.
7. D. Stancu, On some Taylor expansions for functions of several variables, Rev. Roumaine Math. Pures Appl. 4 (1959), 249-265 (in Russian).

Received December 15, 1996

> Faculty of Mathematics
> "Baber-Bolyai" University
> Str. M. Kogălniceanu, nr. 1
> 3400 Cluj-Napoca
> Romania

