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If the interpolation nodes P o, k : I,. .., fr are such that

a)xt*¡*x¡,í:I,2

b) ++ * ¡ !øz2t-, for all k : 1,..., n, therr there exists the Hermite-' xk*t - xk xk*z - x* "
type Shepard operator jf , deJìned by

Sï'f =f nonîr,
k=r

where fr'l is th" n.rmite interpolatíon operator correspondíng to the information
.økU) from(tl),with oex(3r") = z,

Proof.Lemma2 assured the existence and uniqueness of all Hermite operators
fr|, tt: 7,..., n, Now, from Remark 2, the proof follows.
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CONVEXITY RELATED TO THE COARSENESS

OF CONCAVITY

GABRIELA CRISTESCU

1. IIITRODUCTION

During the meetings of the Interdisciplinary Researches Laboratory of
Cluj-Napoca "Babeç-Bolyai" Universifybetween 1980 and 1983, Elena Popoviciu
discussed about the significance ofa notion ofbehaviour, establishinf a connec-
tion with the property of convexity of a function and obtaining one of its generali-
zations in [11]. This notionwas defined by the same author in 1965 and published
in 1983 [11], in order to describe the situation when an object a belonging to a
given set A cart be transformed by means of a known transformation T i A -> B
into an object Z(a) belonging to aparticular subset D c. .8, The pair (D, T) is said
to be the behaviour of ¿, In [3] this type of behaviours is called strict. Elena
Popoviciu also used another notion of behaviour, called in [3] a strong behaviour
and defined as follows: if { ís a set of transformations T : A -+ B and for every

T e {, f (a) e D is true, then the pair (D, Ø) is said to be the behaviour of the

element a e.A. A weaker notion of behaviourwas considered in [3] by means of
the same type of set of transformations {, T : A -+ A, If for the element s eA
there is a transformation T < î, sttchthat f (a) e D is true, then the pair (D, {)is
called a weak behaviour of the element ¿. Strict behaviours, strong behaviours and
weakbehaviours are calledbehaviours inl bymeans of.B. The set ofthebehaviours
defined in Aby means of B was denoted in [3] by Comp(A, B) and described by

Comp(A,B)={C =(n,r)lnc B,T:Ar+ B}U

(1,1) u{o= '-(o,r)lnc.B,{ c{flf :e+B}}u

u{" =, - (n, r¡ln c. B, { c {flf :.e-r B}}.
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40 Gabriela Cristoscu

If C eComp(A,B), then the set of all these elements a eA such that T(a) e D (or

f (a) eD forevery T eî,orthere is atmnsfonnation T eî,suchthat f(a) e D) is

said to be the set of the elements of ,4 having the behaviour C and is denoted by

C(A). A possibility of orgarizing Comp(A, ^B) as a preinductive semilattice with

respect to the union is presented in [3], The shict behaviours and the strong

behaviours that are allures of functions have been studied by R, Precup in his

thesis [12], Two properties of convexity of a set with respect to a given set and

two behaviours have been defined and studied in [4] and are quoted in Section 2 of

the present paper,

In 1983 J, M. Chassery [1] defined anotion of discrete convexity, using it in

cytology investigations. He was interested in detecting these images appearing on

the screen of the computer, after dígitization, as convex sets, according to his

notion of discrete convexity. In [5] the converse problem was studied: What type

of properties can a set that is transformed by means of a digitization method into a

convex-like set have? The result of these investigations is the remark that these

types of sets have some special type of convexity properties that are described in

Section 3 of this paper, More oxamples are presented, showing that even some

bounded fractals are convex in this manner. The aim of Sections 3 and 4 is to

establish the connection between the properties defined in [4], the convexities

from [5] and thenotion ofcoarseness oftheconcavity definedbyA. Rosenfeld in [13].

2. CONVEXITIES WITH RESPECT TO A SET AND TWO BEHAVIOURS

Xis assumed to be a nonempty set so that for every two points x, y of Xthe

closed straight line segment determinetl by these points, (*, y), is defined. Let Mbe a

nonempty subset of X B' and .B " two nonempty sets, D'r_ B' ,D" c B" nonempty

subsets, T'',XxM-+B',C'=(D',7') abehaviourin X x M, T":M x 9(X) -) Bu

and C" = (D", f ") the corresponding behaviour in M x 9(X).

DEFINITION 2,1. i) The set Y c. X is said to be slackly conyexwith respect

to the set M and the behaviours C and C" if it is emply or iffor every two points

x,y eY andforeveryt =(*,y),iftheelement(t,a) ec'(X x M),with a e M,

then the element (a,Y) e C" (M x g(X)) 
,

ä) The set Y c. X is said to be strongþ conyexwith respect to the set M and

the behaviot¿rs C' and C" íf it is empty or if for every two points x,! e Y and

for every t e (x,l) there is an element a e M such that thefollowing implica-

tion talces place: (t, a) e C'(X x U) involves that (a,Y) e C" (U " V(x)),
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It is obvious that Definition 2,1 does not depend on the strictness, weakness
or strongness of the behaviours C' and C",

For various pafücularizations of the behaviours, more notions of convexity
are obtained. It has been proved in [4] that all the convexity properties used by
Liana Lupça in solving various optimization problems ([7], [8], [9]) are convexi-
ties with respect to agiven setM and two behaviours q and Cr. Also, the convexity
shrdiedby S, V, Ovchinnikov in subsets of distributive lattices [10], in connection
with the geometry ofpreference spaces [6], is aproperty of this type [4].

3. TIIE CONNECTION WITH THE DISCRETE COI'{VEXITY

2 J

In the plane R 2, for every two points x andy the straight line segment from
the Euclidean geometry is denoted by (r,-l) and for a set A c R2 convA means

the union of all straight line segments determined by pairs of points of l.
Let h>0, e)0, ô>0, the set of all the grid knot's having the step å be

denoted by z(h) = {(rtt, ¡h)lt e Z, i e Z} añ dbe adistance in R 2. Let us take

U = Z(h),8,= B,= R,D'= fo,e],Di'= [0,0].ThebehavioursC'andC" arede-

fined by means of the distance d as follows: 7' : R2 x Z(h) Ð R, C'= ([0, uf,T'),

T' (a, b) = rJ(a, b),(a, b) e R2 x z(n), r" :z(h) x v(tt'z) -) R, c" = ([0, a], r") ,

T"(x,A) = d(*,,t) = int{a(a,x)lo e A}(x,a) ez(h) " v(n'),Theclosedballin
Z(h), having the center s and the radius e, will be denoted by

,B(s, e) = {m . z(n)la(m,s) < e} .

DEFII.üTIoN 3,L The set Ac R2 is said to be slackly þtrongly) (e, ô)-

convex with respect to Z(h) íff it ís slaclcþ (strongly) convex with respect to Z(h) 
.

and the behaviours C' and C".

It means that the set A c. R2 is slackly (e, ô)-convex with respect to Z(h) iff
it is empty or if for every two points x,y e A and for every t .(*,y), if there is an

element ø ez(h) such that a(t,a) ( e, then r)(a,A) < ô. The set A c.R2 is strongly

(e, ô)-convex with respect toZ(h) iff it is empty or if for every two points x,y e A

and for every t .(*,y),there is an element a <Z(h) suchthat d(t,a)< e involves

that d(a, A) < õ .

Example 3,1. The set A=([n,t]-a)x(lo,t]-Q), where Q is the set of

rational numbers, is strongly (e, ô)-convex with respect to Z2 for every e> Il 2

and ô> 0, if d is the chessboard distance d(a,ó) = tta*(lt 
" - rrl,ly, - lul), fot

o = (*o,.y") . R' and b = (*u,yr) . Rt.
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Example3.2, By G c [0, 1] the set of Cantor is denoted and A:GxG is the
ftactal called the carpet of Síerpinski, If the chessboard distance is used, thenl is
strongly (r/2, O)-convex with respect to 22.In a similar way, the fractar called
the sponge of sierpinslci, Gx Gx G, is strongly (l/2,0)-convex with respect to Z 3.

The relationship between these convexities is studied in [5]. They are not
similar and none of them involves the other, one. The following properties are
proved in [5].

PRoposITIoN 3.1 [5]. If the set A c. Rz is strongþ (h/2, õ)-convex with
respect to z(h),for õ > h, then it is slackþ (h12, E)-convexwith respect to z(h),

PRopostnoN 3 ,2 [5] . If the set A c Rz is slackry (e, õ)-convex with respect
to Z(h), with e .lh I Z,hl and ô > 0, then it is strongly (e, õ)-convex with
respect to Z(h).

PRoposITroN 3.3 [5]. If the set A c. R2 is slackþ (strongly) (e, õ,)-convex
with respect to z(h), then it is slackly (strongly) (t, õ")-convex with respect to
Z(h),.for ô'< ô",

PRoposrrroN 3.4 [5]. If the set A c. Rz is strongly (e', õ')-convex with
respect to Z(h), then ít is strongly (x,,, 8,,)-convex with respect to Z(h), for every
t'( t" and õ'<- õ",

Two general properties proving the consistence of the notions defined by
means of Definition 3, I are the following theorems. In the following properties the
chessboard distance is used and the corresponding ball B(a, r) is denoted by B,(a, r).

TunonEIr¿3,5. For every bounded set A c R2 there are threereal numbers
h > 0, s ) 0, ô > 0, such that A is strongþ (e, õ)-convex with respect to z(h).

Proof, l)If A:{a),thenforevery h> 0,e> h/2 and ô > å the setl is
strongly (e, ô)-convex with respectfo Z(h).

2)IfAisnotasingletonset,thenlet h> diamA = sup{ú/(.r, y)l* . A,y e A},
e > h I 2,õ = h.Inthat case fotr situations are possible:

a)Thereisapairofintegerm'nbers(i7)suchthat Acl¡1,,(¡+f)A]xfin,(i+\nl,
rf s : {(i h, j h), (i h, Ç + t) h), ((r + D h, j h), ((i + 1) h,(i + t) Ð }: thèn for every
x eA there is apoint y e ,S such fhat d(x,y)<hlZ< e. This property is particu_
larþ validated for r e (n.,bl, a e A, b e A. In addition to that property, for every

! e S, d(y, A) t h, and therefore I is shongly (e, å)-convex with respect to Z(h),
b)There is apair ofintegernumbers (2,7) suchthat ¿ ç l(¡ 

_ t)n,(i + \n) x

"lin,(i +ln](a similar siru¿tion is A c lin,(i +t)nl"iU _ r)h,(j * 1);])
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Then the reasoning_from a) remains valid if,Sis replacedby Z = ,S U{(ft - \n, ¡n),
((i-\n,(¡ +r)n)\.

c)rhereis (i,7) e Z2 such that A= t[(, -t)tr,(i+r)ø] x lin,(i + 1)¿]]U

U{[in,(i + \n]- l(; - t)n, ¡nl] (or all the situations when three gricl squares having

a similarposition are considered), Then the reasoning from a) remains valid if .Sis

repraced by v = rO{(tn,(¡ - ùn),((i + r)n,(¡ - t)n)} and h t 2 < e < h.

d) If there is a point y eZ(h) such that yeint(convl),then
A c. convB*(y,h).Therefore, for every x e A there is apoint y e B*(1,å) such

that d(x, y) < h / 2 < e and, using the previous reasoning, the expected result is
obtained. tr

THEOREM 3 .6 . For every bounded set A c. R2 there are three real numbers

h > 0,s ) 0,ô > 0, such that.A is slackþ (e, õ)-convex with respect to Z(h).

Proof. Ð If A:{a}, then let h>0, e < rt(a,Z(h)), õ > e and the result
follows,

2) If A is not singleton, then h > diamA is considered, The proof is similar
withthatoftheprevioustheoremfor 0 < e< h and ô > sup{d(x,l)lx e S}. tr

The first connection between the notion of discrete convexity defined by
J. M, Chassery in 1 983 and that from Definition 3. 1 is:

DBrnuuox 3.2lll. A set A c Z(h) is said to be discreteþ convex if for
every x,y eA and t efo,If , there are a number E elntz,nl and a point
a e z(h) such that tx + (I - t)y . B-(a,e).

The following resultis now obvious:

coRoLrenv 3.7 . A set I ç z(n) is discretely convex iff there exists a real- .

number e eln I 2,tt] such that A is strongþ (e,O)-convex with respect ro Z(h).
It is obvious that the property of strong (e, O)-convexitywith respect to z(h)

is more general than the discrete convexity, This is proved by means of Examples
3 . 1 and 3 .2. But there is an importiant connection between these convexities, To
obtain it, it is necessary to define a method of digitrzation in R2 with respect to Z(h),

DEFINITIoN 3.3, A function f : R.2 -+ Z(h) such thar þr eyery x e Z(h),

"f (*) = x, is said to be a method of digítization of R2 with respect to z(h).

TnBonBv 3.8, If a set A c. Rz is both strongly and slaclcly (e,O)-convex

with respect to z(h),for e elhlz,ttf, then there is a methorJ of digitization

f :R' -+ Z(n) such thatf(A) is discreÍely convex.

4154



44 Gabriola Cristoscu

Proof. Consider the method of digitization defined by f("):(x, y) if
o.lr-hl2,x+hl2]"ly-hl2,y+h l2] forevery (*,y) =Z(h) and a elR2,

Suppose that A is both strongly and slackly (e, O)-convex with respect to Z(h).

Thenforevery x,y e Aand r e [0,1] thereis aÍ\ a ez(h) wchttnt r\(tx+(t-t)y,a)<e
involves that ae ,4, Toprovethatf(A) is discretelyconvex,letus supposethat.r

and y are two points of f(A). Two situations are possible:

t) x < Al f(A) and y e dl /'(e);
2) x or y belongs to f(A)-A.
l) If x, y .,El f (A),then fi'om the stong (e, O)+onvexity of,4 with resp æt tn Z (h)

it follows that for every t e l0 l] there is an a eZ(h) such that d(n + (t- t)y,o). 
"

involves that aeA.But aeA and aeZz(h) meanthat ae f(,e) and, therefore,

the definition of the discrete convexity is fulfilled.
2) Now x ef(d)-,1and y eA is supposed. Then two situations are pos-

sible in the neighbourhood of .x:

a) there is z e I such that d(x, z) < n / Z;

b) the closest point z e I satisfies d(x, "): h / 2.

a)If z el such that d(x,")<h/2,thenthereis apoint ue(x,y) satis-

fying (z,u) c.convB*(z,hl2) and (",y) oconvB*(x,hl2).If r e[o,t] is cho-

sen such that tz + (t - t) y . (",u), then d (tz + (t - t) y, x) < h I 2 <e, Therefore, from

the slack (e, O)-convexity of A with respect to Z(h) it follows that x eA and the

hypothesis of the situation 2) cannot take place.

b) The slack (e, 0)-convexity of I with respect to 7,(h) has the conse-
quence that x eA,by taking l:0 in the reasoning above, Therefore, the hypoth-
esis ofthe situation 2) cannot úakeplace.

The cases x e f (A), y e ¡ (e) -,e and x e f (A) - l, y e ¡ (d) - d are similar. E
Two importiant consequences of the proof of Theorem 3,8 must be regis-

tered, also using the chessboard distance.

CoRonaRy 3.9. If the set A c.Ñ is both strongly and slackly (e, 0)-

convex with respect to V,(h), with t <ln t Z,tl, then there is a method of dígitiza-

tion .f :R2 -+ Z(h) such that f(A) c A.

CoRor,r,enY 3, 1 0. If the set A c. Ñ is slackly (e, 0)-convex with resp ect to

Z(h), wíth e eln I 2,h1, then it is strongly (e,0)-convex with respect to Z(h).

But if e : h l2 and ô > e, then the situation from Corollary 3.10 does not
take place,
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PRoPosITIoN 3.11. If Íhe set A c-Ñ is strongly (h12, õ)-convex with re-

spect to Z(h),for õ> h, then it is slaclcly (h12, õ)-convexwith respect to Z(h)'

Proof,If x,y e A, and t e(x,l), thenthereisapoint a eZ(h) suchthat

a(t,a) < hl2 involves that ct(a,l)<ô.Butif u ={,t €Z(h)lb øconvl}, then

min{ct(b,convA)lb . B} < h and for every point z e conv,4 ÀZ(h) there is a

point u e -B such that d(z,r) = h, Therefore, for / e (x,y) and for everypoint

c e Z(h) suchthat d(t,c) < hl2, d(c,A) < å < ô isvalidandthe slack(h|2,õ)-

convexity of I with respect to Z(h) is proved. E
Proposition 3.1 1 is not valid for ô < fr. Also, generally, the convexity property

of a set in R2 with respect to Z(h) is not valid if another grid, having the step h'<h,
is considered. Both remarks are proved by the following example.

Example 3.3, In Z2 the setl:{(0, 0), (0, l), (1, 0), (2,0), (3, 0)} is taken

into account. This set is strongly (112, l)-convex with respect to 22, it is also

strongly (114, Il})-convex with respect to Z(ll2), but it is not strongly (116,l/3)-

convex with respec t to Z (l 13). Indeed, if x : (0, 7), y : (3, 0), t : (I, 2ß) e (x, y)

and t e z(t t:) but d(r, A):2/3>113.

DenINIuoN 3.4. For q set A c RÉ, the largest h>0 such that A is not

strongly (h/2, h)-convexwi.th respect to Z(h) is called the detectability of the con-

cavity of A.
Now, a method used in [13] to discuss the detectability of a concavity of a

setwill be followed in order to suggest the significance of ô. A. Rosenfeld defined

in [13] the notion of concavity coarseness of a set as follows: Let G be a grid of
mesh å. For any region R he defines the G-digital image ¡| of R as the union of all
the grid squares whose intersections with R have areas at least h2 /2. A union of
grid squares,4 is said to be G-convex [3] if there is a convex region,R such that- '

RG:A.If no such R exists, then A is said to be G-concave.

A region R is said to be å-concave [13] if there is a grid G of mesh å such

that Àå is G-concave. Then the concavity coarseness ofÀ is the largest å such that

R is å-concave !31.

Exarnple 3.4. For m )- 2, consider the astroid together with its inner points

6 't

22

)'

2

t
3

2\t
*1 l,-m1x1m

)
A_ (.rc, y) e R2 m3 -x3 3y3 m
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The setl is strongly convex with respect to Z2 if t > m / 4 and ô >

*(Ji -tFor this set I the number L(A) = represents the detectability of con-

cavity ofl. This means that it is po
enabling us to insert a white squáre

ssible to find a network and a digitization of A
(ground point) between two coloured squares
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THEoREM 4.2. The set A cÑ ¡s both slaclcly and strongly (t, õ)-convex

with respect to Z(h) ifffor every x, | € A thefollowing conditions are safisfied:

1) (',y) c U{.a-(o,')lo e Seg(e; *,ù};
2) a e Seg(e; *,y) = B*(a,ô) OA + Ø.

Proof, The condition l) means that for every x, y € A the straight line seg-

ment (.r, /) is covered by e-neighbourhoods centred in grid knots. Therefore, the

existence condition f¡om the definition of the strong (e, ð)-convexity with respect

to Z(h) is satisfied. Now, the proof follows a similar route as that of the previous
theorem, E

According to this geometric characterization of the convexities defined by
means of Definition 3,1, we are able to find the detectability of the concavity of
the set from Example 3.4. Indeed, if x: (m, 0) and y: (0, m), then, considering
the grid Z(m/4), it is easy to see that it is possible to draw a square having the
centre t:(m/2,m12) and the length of its side equal to ô < A(l) such that this
square contains only points that do not belong to l, But this square is situated
between the same type of squares containing points of l. Therefore, applying a
grid of step ô on R2, the image of Aby the digitization method used in the proof
of Theorem 3,8 will not be discretely convex. Therefore, for every grid having the
stepp<ô the concavity of the astroid is detected, and A(A) is the detectability of
the concavity of A.

Now, if the digitization method used in [3] is replaced by that described in
the proof of Theorem 3.8, then it is not difficult to prove that the detectability of
the concavity ofl is exactly the concavity coarseness of A and the connection with
the number ô involved in the (e, ô)-convexities presented aboye is obvious.
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m Ji -t(image points) if the grid step is at most n(,1) = To prove that, the
2geometric significance of this convexity property is used.

4. THE GEOMETRIC CHARACTERIZATION

In what follows, for a point x from R2 and a nonnegative real nunber n thenotation B, (x, n) : convB, (¿ n) will be used for sinrplifiãation,

THE.REM 4.1. The sef. A cñ is slackly (e, õ)-convexwith respect to Z(h)
ff -for every x and y from A and for every ø e conv(B.(x ,e)tJ B*(y,r))nZçn¡
the set B-(o,ô)n I is not empty.

Proof. Let us suppose that A is slackly (e, ô)-convex with respect to z(h).
Then, ifx andyare twopoints of Aand t e(x,l),thecondition d(n,t)=, ìo,
a e z(h) means that ø e conv(,,.(x ,e)l) B*(v,"))nzçn¡.But for every a satis-
ffing this condition, the slack (e, ð)-convexity of A has as a conseqllence the
property that d(a,l) < ô. This means that B_(a,õ)|, + ø.

Now, let us suppose the converse property.If x, y belong to A and
a e 

"onv(,B*(x,e)U n-(y,"))Oz(n), then this means that r)(a,(x,y)) < 
"and, therefore..B*(a,e)[ì(r, fl+ø. Let us consider the set V(e; x, y): U

U{a*ço,e)[ì(.,r, t)1, " conv(B*("r, e)UB*(y,"))nzçn¡]. Then for every
t e v(e;x,y)thereis ¿ e z(h) suchrhat ct(t,o)<" unirorthesepointsathe
condition n*(a,A)) I * Ø mears Ihat rl(a.l) < ô, If t e V(e;_r, y) flren for every
a ez(h), d(t,a) > e. Then the clefinition of flre slack (e, ð)-convexify ofr with
respect fo Z(h) is f,rlfilled. tr

Let us denote, for every two points x and y i' the pla'e and for every real
nunrber e > 0, Seg(e I x, !) = zØ)nconv(,8-(.r, e) U B-(y, e)),
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CAUCHY STRUCTURES AND CONTIGUITIES

,{ros csÁsz,Ân

A screen (: filter merotopy) on a set X + Ø is a collection 
^g 

of filters in,y
such that

,S1 xex impliesi€[,

S2 J € J, J C s'e Fil X imply J'e f.
J is a Cauchy structure jff fixther

^S3 .{, {'e f, .{ Â^{' imply g llJ' . S

(øtÞ nìeans AIA + Ø for A u g, B . þ)
It is well-known that a c ontiguityonxmay be defined as a family f c O(X)(: the collection of all finite subsets of expX) such that

,Rr ØuL implies Le ßþ.e o(x)),

R2 Le B implies|¡L=Ø,

,R3 ! € B, L << L, e o(x) imply¿'e B,

R4 {&, &,..., 4}, {no,^,,.,., q} e À irnply{Rs U.R6, &,. , ,, aJ . ¡
Q .. ,' iff R e ¿ implies the existence of Jl e r, ith 1ì : R,) .

For 21m e N, the definition of anm-contiguity is obtained if o(x) is
replacedby @,, (x) = {r . o(x) :ltlf m},Form:2,weobtaintheconceprofa
ð ech proximity.
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