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CONVEXITY RELATED TO THE COARSENESS
OF CONCAVITY

GABRIELA CRISTESCU

1. INTRODUCTION

During the meetings of the Interdisciplinary Researches Laboratory of
Cluj-Napoca “Babeg-Bolyai” University between 1980 and 1983, Elena Popoviciu
discussed about the significance of a notion of behaviour, establishing a connec-
tion with the property of convexity of a function and obtaining one of its generali-
zations in [11]. This notion was defined by the same author in 1965 and published
in 1983 [11], in order to describe the situation when an object a belonging to a
given set 4 can be fransformed by means of a known transformation 7:4 — B
into an object 7(a) belonging to a particular subset D < B. The pair (D, T) is said
to be the behaviour of a. In [3] this type of behaviours is called strict. Elena
Popoviciu also used another notion of behaviour, called in [3] a strong behaviour
and defined as follows: if & is a set of transformations 7:4 — B and for every
T € J, T(a) € D is true, then the pair (D, ) is said to be the behaviour of the
element a € 4. A weaker notion of behaviour was considered in [3] by means of
the same type of set of transformations &, T: 4 — B, If for the element g € 4

there is a transformation 7' € 7, such that T(a) € D is true, then the pair (D, ) is
called a weak behaviour of the element a. Strict behaviours, strong behaviours and
weak behaviours are called behaviours in 4 by means of B. The set of the behaviours
defined in 4 by means of B was denoted in [3] by Comp(4, B) and described by

Comp(4,B)={C =(D,T)\D< B,T:4% BJU
(1.1) Uc=s-(D,7\Dc 8,7 <{s]f:4~ B}}U

U{c=w-(D,7)|Dc B9 {flf:4- B}}.
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If C e Comp(4, B), then the set of all these elements ¢ € 4 such that T(a) € D (or
T(a) e D forevery T e g, or there is a transformation T € &, such that T(a)eD)is
said to be the set of the elements of 4 having the behaviour C and is denoted by
C(4). A possibility of organizing Comp(4, B) as a preinductive semilattice with
respect to the union is presented in [3]. The strict behaviours and the strong
behaviours that are allures of functions have been studied by R. Precup in his
thesis [12]. Two properties of convexity of a set with respect to a given set and
two behaviours have been defined and studied in [4] and are quoted in Section 2 of
the present paper.

In 1983 J. M. Chassery [1] defined a notion of discrete convexity, using it in
cytology investigations. He was interested in detecting these images appearing on
the screen of the computer, after digitization, as convex sets, according to his
notion of discrete convexity. In [5] the converse problem was studied: What type
of properties can a set that is transformed by means of a digitization method into a
convex-like set have? The result of these investigations is the remark that these
types of sets have some special type of convexity properties that are described in
Section 3 of this paper. More examples are presented, showing that even some
bounded fractals are convex in this manner. The aim of Sections 3 and 4 is to
establish the connection between the properties defined in [4], the convexities
from [5] and the notion of coarseness of the concavity defined by A. Rosenfeld in [13].

2. CONVEXITIES WITH RESPECT TO A SET AND TWO BEHAVIOURS

X is assumed to be a nonempty set so that for every two points x, y of X the
closed straight line segment determined by these points, (x, y), is defined. Let Mbe a
nonempty subset of X; B' and B" two nonempty sets, D'c B',D"c B" nonempty
subsets, T":.X x M — B',C'=(D',T') abehaviourin X x M, T": M x Z(X) — B"
and C"= (D", T") the corresponding behaviour in M x Z(X).

DEFINITION 2.1. 1) The set Y < X is said to be slackly convex with respect
fo the set M and the behaviours C' and C" if it is emply or if for every two poinis
x,y €Y andforeveryt € (x,y), iftheelement (t,a) € C'(X x M), with a e M,
then the element (a,Y) € C"(M X Q(X))

ii) Theset Y < X is said to be strongly convex with respect to the set M and
the behaviours C' and C" if it is empty or if for every two points x,y € Y and
forevery t e (x, y> there is an element g < M such that the following implica-
tion takes place: (t,a) e C'(X x M) involves that (a,Y) € C"(M x #(X)).

~and 8>0, if 4 is the chessboard distance d(a,b) = max([x, — x,|,|y, - ¥,
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It is obvious that Definition 2.1 does not depend on the strictness, Weakness
or strongness of the behaviours C'and C".

For various particularizations of the behaviours, more notions of convexity
are obtained. It has been proved in [4] that all the convexity properties used by
Liana Lupsa in solving various optimization problems ([7], [8], [9]) are convexi-
ties with respect to a given set M/ and two behaviours C, and C Also the convexity
studied by S. V. Ovchinnikov in subsets of d1str1but1ve latt1ces [10], in connection
with the geometry of preference spaces [6], is a property of this type [4].

3. THE CONNECTION WITH THE DISCRETE CONVEXITY

In the plane R 2, for every two points x and y the straight line segment from
the Euclidean geometry is denoted by (x, y) and foraset 4 c R’ conv4 means
the union of all straight line segments determined by pairs of points of 4.

Let >0, £>0, §>0, the set of all the grid knots having the step % be

denoted by Z(h) = { (ih, jh |i €el,je Z} and d be a distance in R2, Let us take
M = Z(h),B'= B"= R,D'=[0,¢], D"=[0,8]. The behaviours C'and C" are de-
fined by means of the distance d as follows: T':R* x Z(k) - R, C'= ([0,&],T"),
T'(a, b) = d(a, b),(a,b) € R x Z(h), T":Z(h) x Z(R*) > R, C"= ([0,8], "),
T"(x, 4) = d(x, 4) = inf{d(a, x)a € 4}(x, 4) € Z(h) x #(R?). The closed ballin
Z.(h), having the center s and the radius g, will be denoted by
B(s,e) = {m e Z(h)|d(m,s) < 8} .

DEFINITION 3.1, The set AcR? is said to be slackly (strongly) (s, §)-
convex with respect to L(h) iff it is slackly (strongly) convex with respect to Z(h) i
and the behaviours C' and C".

It means that the set 4 <= R? is slackly (g, 8)-convex with respect to Z(h) iff
it is empty or if for every two points x,y € A and for every ¢t € <x, y>, if there is an
element a €Z(h) such that d(,a) <e, then d(a, 4)< 5. Theset 4 =R is strongly
(g, 8)-convex with respect to Z(h) iff it is empty or if for every two points x,y € 4
and for every ¢ €(x, y), there is an element a Z(h) suchthat d(z,a)<e involves
that d(a, 4)<3.

Example 3.1. The set 4= ([0,1]—Q)><([0,1]—Q), where Q is the set of
rational numbers, is strongly (g, 8)-convex with respect to Z? for every £ >1/2
), for

a=(x,y,) €R* and b = (x,,y,) € R%
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Example3.2. By G < [0,1] the set of Cantor is denoted and A=Gx G is the
fractal called the carpet of Sierpinski. If the chessboard distance is used, then 4 is
strongly (1/2, 0)-convex with respect to Z2, In a similar way, the fractal called
the sponge of Sierpinski, Gx Gx G, is strongly (1/2, 0)-convex with respect to Z,3.

The relationship between these convexities is studied in [5]. They are not
similar and none of them involves the other one. The following properties are
proved in [5].

PROPOSITION 3.1 [5]. If the set 4 c R” is strongly (h/2, 8)-convex with
respect to L(h), for & > h, then it is slackly (h/2, 8)-convex with respect to L(h).

PROPOSITION 3.2 [5]. If the set A — R? is slackly (g, 8)-convex with respect
to Z(h), with ¢ e [h/ 2, h[ and § > 0, then it is strongly (g, 8)-convex with
respect to 7.(h).

PROPOSITION 3.3 [5]. If the set A < R” is slackly (strongly) (g, 8')-convex
with respect to L(h), then it is slackly (strongly) (g, 8")-convex with respect to
Z(h), for §'< §".

PROPOSITION 3.4 [5]. If the set A = R* is strongly (¢, 8")-convex with
respect to L(h), then it is strongly (e", 8")-convex with respect to L(h), for every
g'<e" and §'< "

Two general properties proving the consistence of the notions defined by
means of Definition 3.1 are the following theorems. In the following properties the
chessboard distance is used and the corresponding ball B(a, #) is denoted by B (a 7).

THEOREM 3.5. For every bounded set A = R? there are three real numbers
h>0,e >0,8 20, such that A is strongly (g, 8)-convex with respect to Z(h).

Proof. 1) If A ={a}, then forevery 4 > 0, > /2 and & > } the set 4 is
strongly (g, 8)-convex with respect to Z (k).

2) If 4 isnota singleton set, then let 4 > diamd = sup{d(x, y)x € 4, y e 4},
€ 2 h/ 2,8 = h.In that case four situations are possible:

a) There s a pair of integer numbers (; ) such that 4 < [ih, (i + 1)h] x| jh,(j + 1)A].
IfS={(in, jh),(ih,(j+1)h),((i+1)h,jh),((i+1)h,(j+1)h)}, then for every
x €4 there is a point y e such that d(x, y) <h/2<e. This property is particu-
larly validated for x e <a, b), a € A, b € A. In addition to that property, for every
y €8,d(y, 4) < h, and therefore 4 is strongly (e, h)-convex with respect to Z (k).

b) There is a pair of integer numbers (i, j) such that 4 < [(z —h, (i + l)h] %
% [jh, (j+ l)h] (a similar situation is 4 c [ih, (i + l)h] % [(] — Dk, (j + l)h]).
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Then the reasoning from a) remains valid if Sis replacedby 7 = § U{((i - Dh, jh),
(= DA, (7 + DR)}.

c) Thereis (i, j) e Z* suchthat 4 {[(z ~ D, (i + l)h] X [jh,(j + l)h]}U
U{[ih, (i + 1)h] X [( j=Dh, jh]} (or all the situations when three grid squares having
a similar position are considered). Then the reasoning from a) remains valid if §'is
replaced by ¥ = TU{(i#, ( = DA), (¢ + DA, (j — DA)} and h/2 <& < b

d) If there is a point y e Z(h) such that y eint(conv4), then
4 < convB_(y, h). Therefore, for every x € 4 thereisapoint y e B_(y, #) such

that d(x, y) < h/2 £ g and, using the previous reasoning, the ex_pected result is
obtained. 0O '

THEOREM 3.6. For every bounded set A — R* there are three real numbers
h>0,e >0,8 >0, such that A is slackly (¢, 3)-convex with respect to Z(h).

Proof. 1) If A ={a}, then let h>0, & < d(a,Z(h)), 8 = & and the result
follows.
2) If 4 is not singleton, then 4 > diamd is considered. The proof is similar

with that of the previous theorem for 0 <& < 4 and & > sup{d(x, A)’x es } . o
The first connection between the notion of discrete convexity defined by
J. M. Chassery in 1983 and that from Definition 3.1 is:

DEFINITION 3.2 [1]. 4 set 4 < Z(h) is said to be discretely convex if for
every x,y €A and t e [0, 1], there are a number € € [h/ 2, h] and a point
a € Z(h) such that tx +(1-t)y € B_(a,¢).

The following result is now obvious:

COROLLARY 3.7. 4 set A < Z{(h) is discretely convex iff there exists a real_ -

number & € [h/ 2 h] such that A is strongly (g, 0)-convex with respect to Z.(h).

It is obvious that the property of strong (g, 0)-convexity with respect to Z (k)
is more general than the discrete convexity. This is proved by means of Examples
3.1 and 3.2. But there is an important connection between these convexities. To
obtain it, it is necessary to define a method of digitization in R? with respect to Z(#).

DEFINITION 3.3. 4 function f:R* — Z(h) such that for every x e Z{h),
f(x) = x, is said to be a method of digitization of R? with respect to Z,(h).

THEOREM 3.8, If a set 4 = R* is both strongly and slackly (g, 0)-convex
with respect to L(h), for & e[h/ 2, h), then there is a method of digitization
f:R* — Z(h) such that f(A4) is discretely convex.



44 Gabriela Cristescu 6

Proof. Consider the method of digitization defined by f(a)=(x, ) if
a e[x—h/Z,x+h/2]x[y—h/2,y+h/2] forevery (x,y) e Z(h) and a e R?.
Suppose that 4 is both strongly and slackly (g, 0)-convex with respect to Z(A).
Then forevery x,y € 4 and ¢ €[0,1] thereis an a € Z(h) suchthat d(tx+(1-1)y,a)<e
involves that a € 4. To prove that f(4) is discretely convex, let us suppose that x
and y are two points of f(4). Two situations are possible:

1) xeAN f(4)and y e AN f(4);

2) x or y belongs to f(4)—A.

DIf x,y € AN f(4), then from the strong (g, 0)-convexity of 4 with respect to Z (%)
it follows that for every ¢ [0,1] there is an @ € Z(h) such that d(x+(1-t)y,a)<e
involves that ae4. But a€4 and q eZ*(h) mean that a € f(4) and, therefore,
the definition of the discrete convexity is fulfilled.

2) Now x € f(4)-4 and y €4 is supposed. Then two situations are pos-
sible in the neighbourhood of x:
a) there is z € 4 such that d(x,z) <h/2;
b) the closest point z € 4 satisfies d(x, z)=h/2.

a) If z € A such that d(x, z) < 4/ 2, then there is a point « €(x, y) satis-
fying (z,u) c convBy(z,h/2) and (u, ) @ convBy(x, h/ 2). If ¢ &[0,1] is cho-
sen such that 1z +(1—1)y e(z,u), then d(1z+(1—t)y,x) < h/2 <&, Therefore, from
the slack (g, 0)-convexity of A with respect to Z(#) it follows that x €4 and the
hypothesis of the situation 2) cannot take place.

b) The slack (g, 0)-convexity of 4 with respect to Z(4) has the conse-
quence that x € 4, by taking =0 in the reasoning above. Therefore, the hypoth-
esis of the situation 2) cannot take place.

The cases x e /(4),y € f(4d)-Aand x € f(4) - 4,y € f(4)~ 4 are similar.]

Two important consequences of the proof of Theorem 3.8 must be regis-
tered, also using the chessboard distance.

COROLLARY 3.9. If the set 4 — R? is both strongly and slackly (g, 0)-
convex with respect to L(h), with ¢ < [h/ 7} h] , then there is a method of digitiza-
tion f ‘R? > Z(h) such that f(A) c 4

COROLLARY 3.10. Iftheset A — R? is slackly (g, 0)-convex with respect to
Z(h), with € € [h/ 2, h[, then it is strongly (g, 0)-convex with respect to 7.(h).

Butif e = 4/2 and 8 >¢, then the situation from Corollary 3.10 does not
take place.
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PROPOSITION 3.11. If the set 4 — R? is strongly (h/2, 8 )-convex with re-
spect to L(h), for 8> h, then it is slackly (h/2, 8 )-convex with respect to Z.(h).

Proof If x,y € 4, and { € <x, y>, then there is a point a € Z(h) such that
d(t,a) < h/ 2 involves that d(a, 4) < 8. Butif B = {b € Z(h)|b ¢ conv4], then

min{d(b, convd)[b € B} < h and for every point z e convA(VZ(h) there is a
point 1 € B such that d(z,u) = h. Therefore, for ¢ € (x, y) and for every point
¢ € Z{h) such that d(t,c) < h/ 2, d(c, 4) < h < 8 is valid and the slack (%/2, 8)-
convexity of 4 with respect to Z(4) is proved. O

Proposition 3.11 is not valid for § <. Also, generally, the convexity property
of a set in R? with respect to Z(h) is not valid if another grid, having the step /' <#,
is considered. Both remarks are proved by the following example.

Example 3.3, In Z 2 the set A={(0, 0), (0, 1), (1, 0), (2, 0), (3, 0)} is taken
into account. This set is strongly (1/2, 1)-convex with respect to Z 2, it is also
strongly (1/4, 1/2)-convex with respect to Z(1/2), but it is not strongly (1/6,1/3)-
convex with respect to Z(1/3). Indeed, if x=(0, 1), y=(3,0), £=(1, 2/3) € <x, y>
and te Z(1/3) but d(t, 4)=2/3>1/3.

DEFINITION 3.4. For a set A = R, the largest h>0 such that A is not
strongly (h/2, h)-convex with respect to L.(h) is called the detectability of the con-
cavity of A,

Now, a method used in [13] to discuss the detectability of a concavity of a
set will be followed in order to suggest the significance of 8. A. Rosenfeld defined
in [13] the notion of concavity coarseness of a set as follows: Let G be a grid of
mesh A. For any region R he defines the G-digital image R; of R as the union of all
the grid squares whose intersections with R have areas at least 4% /2. A union of
grid squares 4 is said to be G-convex [13] if there is a convex region R such that,
R; =4, If no such R exists, then 4 is said to be G-concave.

A region R is said to be A-concave [13] if there is a grid G of mesh 4 such
that Ré is G-concave. Then the concavity coarseness of R is the largest /4 such that
R is h-concave [13].

Example 3.4. For m > 2, consider the astroid together with its inner points
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m(w/i = I)
._J_E__

represents the detectability of con-

The set 4 is strongly convex with respectto Z2if e >m/4 and § >

m(\/i— 1)

For this set 4 the number A( A) =

cavit}{ of 4. Th_is means that it is possible to find a network and a digitization of 4
enabling us to insert a white square (ground point) between two coloured squares

m(\/z—l)
V2

(image points) if the grid step is at most A(A) = . To prove that, the

geometric significance of this convexity property is used.

4. THE GEOMETRIC CHARACTERIZATION

'In what follows, for a point x from R2 and a nonnegative real number 7 the
notation B, (x, n) = convB, (x, n) will be used for simplification,

THEOREM 4.1. The set 4 — R? is slackly (g, 8)-convex with respect to Z(h)
if for every x and y from 4 and for every a e conv(B,,(x,e)U B, (y, e)) N Z(h)
the set B.,(a,8)(\ 4 is not empty.

Proof. Let us suppose that 4 is slackly (g, 8)-convex with respect to Z(h).
Then, if x and y are two points of 4 and ¢ e (x, y>, the condition d(q,) < ¢ for
a € Z(h) means that a € conv(Bm (x,e)U B, (y, §)) N Z(h). But for every a satis-
fying this condition, the slack (e, 8)-convexity of 4 has as a consequence the

property that d(a, 4) < §. This means that Bo(a,8)NA # .
Now, let us suppose the converse property. If x, y belong to 4 and

a e conv(B,(x,&)U B, (y, &)) Z(k), then this means that d(a,(x,y) < e
and, therefore, B,,(a,8)(\(x, y)#@. Let us consider the set Ve, x y) = U

U{Bw(a, &) N(x, y>la € conv(B,,(x,e)U B,(»,8))N Z(h)} . Then for every
t eV(g;x,y) there is g ¢ Z(h) such that d(t,a) < & and for these points « the
condition B_,(a,8) 4 # & means that da, 4) < 8.1t ¢ ¢ V(s; x, y) then for every

a € Z(h), d(t,a) > &. Then the definition of the slack (g, 8)-convexity of 4 with
respect to Z(#) is fulfilled. O
Let us denote, for every two points x and y in the plane and for every real

number £ >0, Scg(e; x, y) = Z(h)N conv(Bw(x,s)U B.(y,8)).

THEOREM 4.2. The set 4 — R? is both slackly and strongly (g, 8)-convex
with respect to L(h) iff for every x, y € A the following conditions are satisfied:

1) (x,») U{Bw(a, £) la e Seg(s; x, y‘)};
2) a € Seg(e;x,y) = B(a,8)N4 # .

Proof. The condition 1) means that for every x, y € 4 the straight line seg-
ment (x, y) is covered by e-neighbourhoods centred in grid knots. Therefore, the
existence condition from the definition of the strong (g, §)-convexity with respect
to Z(h) is satisfied. Now, the proof follows a similar route as that of the previous
theorem. [J

According to this geometric characterization of the convexities defined by
means of Definition 3.1, we are able to find the detectability of the concavity of
the set from Example 3.4. Indeed, if x = (m, 0) and y = (0, m), then, considering
the grid Z(m/4), it is easy to see that it is possible to draw a square having the
centre 1= (m/2,m/2) and the length of its side equal to 8 < A(4) such that this
square contains only points that do not belong to 4. But this square is situated
between the same type of squares containing points of 4. Therefore, applying a
grid of step 8 on R2, the image of 4 by the digitization method used in the proof
of Theorem 3.8 will not be discretely convex. Therefore, for every grid having the
step p <8 the concavity of the astroid is detected, and A(4) is the detectability of
the concavity of 4.

Now, if the digitization method used in [13] is replaced by that described in
the proof of Theorem 3.8, then it is not difficult to prove that the detectability of
the concavity of 4 is exactly the concavity coarseness of A and the connection with
the number & involved in the (g, §)-convexities presented above is obvious.
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