REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Tome XXVI, N° 1-2, 1997, pp. 49-51

CAUCHY STRUCTURES AND CONTIGUITIES

m continuity, their exist a contact (- smallent configuity 3 1744) units collected

(2. W) P (Compression of the Akos Császár

A screen (= filter merotopy) on a set $X \neq \emptyset$ is a collection S of filters in X such that

$$S_1$$
 $x \in X$ implies $\dot{x} \in \mathcal{S}$,

$$\mathcal{S}_2$$
 $\mathcal{S} \in \mathcal{S}, \ \mathcal{S} \subset \mathcal{S}' \in \operatorname{Fil} X \text{ imply } \mathcal{S}' \in \mathcal{S}.$

 \mathcal{Z} is a Cauchy structure iff further

$$\mathcal{S}_3$$
 $\mathcal{S}, \ \mathcal{S}' \in \mathcal{S}, \ \mathcal{S} \Delta \mathcal{S}' \text{ imply } \mathcal{S} \cap \mathcal{S}' \in \mathcal{S}$
$$\left(\mathcal{A} \Delta \mathcal{B} \text{ means } A \cap B \neq \emptyset \text{ for } A \in \mathcal{A}, B \in \mathcal{B} \right).$$

It is well-known that a *contiguity* on X may be defined as a family $R \subset \Phi(X)$ (= the collection of all finite subsets of $\exp X$) such that

$$R_1$$
 $\emptyset \in \underline{r} \text{ implies } \underline{r} \in \underline{R} \left(\underline{r} \in \Phi(X)\right),$

$$R_2$$
 $r \in \mathbb{R}$ implies $\bigcap r = \emptyset$,

$$\mathcal{L} \in \mathcal{R}, \, \mathcal{L} \ll \mathcal{L}' \in \Phi(X) \text{ imply } \mathcal{L}' \in \mathcal{R},$$

$$R_4 = \{R_0, R_1, \dots, R_s\}, \{R_0', R_1, \dots, R_s\} \in \mathbb{R} \text{ imply} \{R_0 \cup R_0', R_1, \dots, R_s\} \in \mathbb{R}$$

 $(\underline{r} \ll \underline{r}' \text{ iff } R \in \underline{r} \text{ implies the existence of } R' \in \underline{r}' \text{ with } R \supset R')$.

For $2 \le m \in \mathbb{N}$, the definition of an *m*-contiguity is obtained if $\Phi(X)$ is replaced by $\Phi_m(X) = \{ \underline{r} \in \Phi(X) : |\underline{r}| \le m \}$. For m = 2, we obtain the concept of a Č ech proximity.

¹⁹⁹¹ AMS Subject Classification: 54AOS.

Let $2 \le m < n \in \mathbb{N}$. If R is a contiguity or an n-contiguity, then $R = R \cap \Phi_m(X)$ is the m-contiguity induced by R. Conversely, if M is an m-contiguity, there exist a coarsest (= smallest) contiguity $R^0(M)$ and a coarsest n-contiguity $N^0(M)$ inducing M.

If S is a screen, then the systems $T \in \Phi(X) (T \in \Phi_m(X))$ such that $T \Delta S$ does not hold for any $S \in S$ constitute the contiguity (*m*-contiguity) $S(T^m S)$ induced by S. Conversely, if T is a contiguity or an T-contiguity, there exists a coarsest (= largest) screen $S^0(T)$ inducing T.

We look for conditions on R implying that $S^0(R)$ is a Cauchy structure.

If R is a contiguity or an m-contiguity on X and $r \in R$, then an R-swelling of r is a mapping $\sigma: r \to \exp X$ such that $\{R, X - \sigma(R)\} \in R$ for $R \in r$. We say that σ is free iff $\Gamma \sigma(r) = \emptyset$, and it is $\Gamma \sigma(r) = R$ admits a free $\Gamma \sigma(r) = R$. The $\Gamma \sigma(r) \sigma(r) = R$ admits a free $\Gamma \sigma(r) \sigma(r) = R$ admits a free $\Gamma \sigma(r) \sigma(r) \sigma(r) \sigma(r) \sigma(r)$ iff the same holds with a loose $\Gamma \sigma(r) \sigma(r) \sigma(r) \sigma(r) \sigma(r)$. Effemovich $\Gamma \sigma(r) \sigma(r) \sigma(r) \sigma(r) \sigma(r) \sigma(r)$ is uniform iff the same holds with a loose $\Gamma \sigma(r) \sigma(r) \sigma(r) \sigma(r) \sigma(r)$. Effemovich $\Gamma \sigma(r) \sigma(r) \sigma(r) \sigma(r) \sigma(r) \sigma(r) \sigma(r)$ is uniform iff $\Gamma \sigma(r) \sigma(r) \sigma(r) \sigma(r) \sigma(r) \sigma(r)$ is the collection of all finite coverings in a uniformity.

THEOREM 1. For a contiguity \Re , the following statements are equivalent:

- a) $S^0(R)$ is a Cauchy structure.
- b) R is Efremovich.
- c) R is uniform.
- d) For each $2 \le n \in \mathbb{N}$, $\mathbb{N}^{=n} \mathbb{R}$ is uniform and $\mathbb{R} = \mathbb{R}^0(\mathbb{N})$.
- e) The statement in d) holds for a single n.
- f) If u_1, \ldots, u_s and v_i are ultrafilters in X such that $U \in u_i$, $V \in v_i$ imply $\{U, V\} \notin R$ $(i = 1, \ldots, s)$, then $U_i \in u_i$ implies $\{U_i, \ldots, U_s\} \notin R$.

THEOREM 2. For an n-contiguity $N(2 \le n \in \mathbb{N})$, the following statements are equivalent:

- a) $S^0(N)$ is a Cauchy structure.
- b) N is Efremovich.

- c) N is uniform.
- d) M = N is uniform and $N = N^0(M)$.
- e) $R^0(N)$ is uniform.
- f) If $\underline{u}_1, \dots, \underline{u}_s$ $(2 \le s \le n)$ and \underline{v} are ultrafilters such that $U \in \underline{u}_i$, $V \in \underline{v}$ imply $\{U, V\} \notin \underline{N}$ $(i = 1, \dots, s)$, then $U_i \in \underline{u}_i$ implies $\{U_1, \dots, U_s\} \notin \underline{N}$.

For n = 2, a) \Leftrightarrow b) \Leftrightarrow f) is contained in [1] and b) \Leftrightarrow f) in [2]. A detailed version of this paper is in print in *Acta Math. Hung.*

REFERENCES

Department of an even our operator" of 1 and 2 (A. Halle to

1. Á. Császár, Acta Math. Hung. 66 (1995), 201-215.

2. L. Haddad, Ann. Fac. Sci. Clermont-Ferrand 44 (1970), 3-80.

Received May 15, 1996

Párizsi u. 6/A Budapest 1052 Hungary