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NUMERICAL STABILITY OF COLLOCATION METHODS
FOR VOLTERRA INTEGRO.DIFFERENTIAL EQUATIONS

I. DANCru

1. INTRODUCTION

In [3] we have presented a method for the constTuction of an approximation
to the solution of the following initial-value problem for the first-order Volterra
integro-differential equation (VIDE)

(1.1) / (t) = f(t, y(t¡) + ! x(t,", y('))ds, / e J i= l0,rl,
0

with the initial condition -/(0) : !s, by polynomial spline functions, Here, the
givenfunctions /:1x.lR-+,R a'd K:^S x R-+ R (with S,= {(r,s):0 < s < r < Z})
are supposed to be sufficiently smooth for the initial-value piòuré- for VIDE (1,i j
to have a unique solution y e C"(I), with cr e N (see [6]),

In order to describe this method, let lI":0 = /o <tt <,..1tw = Z (with
t,, = tÍN) ) be a quasi-uniform mesh for the givén interval { and set

os:= 
116, \l,ont= (t*rr*,], for n = I,2,...,N - L,

hni= tn*, - tn, foÍ n = 0r1,,,.,N - 1,

h = max{hn in = 0,1, ..,, ¡,/ - I },
Zr:= {t, in = 1,.,,, N - l},2* = ZuU{f}.

Moreover, let Qo denote the space of (real) polynomials of a degree not
exceeding fr. Then we define, for given integers m and dwith m > I and rl > -1,

sfJoØò,= {r,u(,)1,*.=:un(t) een+d ,h = 0,,.., N - r,

"l')lr,) = uÍt)Q,) for .¡ = 0,1,... ,d anJ to ez*],
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to be the space of polynomial splines of degree m* d,whose elements possess the
knots Z, and are d-times continually differentiable on I.If d: -1, then the elements

of Sf J](2")may have jump discontinuities at the knots Z*.

Anelement ,. S!!J,Q") h^forall n = 0,1,,,,,N -l andforall t eon
the following form (see [7])

d

'f),1',¡(L2) u(t) = u,(ù =L rl
t - tr)' +\on,,Q - r,)o*'.

This equation is called the basis test equation and it was suggested by Brunner
and Lambert in 197 4 (see [2]), and then it has been extensivety uséã for investigating
stability properties of s everal methods.

Henceforward, we will refer to a polynomial spline collocation method in
the space S!ÍJoØ ì, simply as an (m, $-method(see [4], [5]).

DBrNrrroNI 2.1. An (m, d)-method is said to be stable if all solutions {u(t,)}
remaínbounded, as n -+ æ,h -+ 0 whílehNremaínsJìxed,

From relation (1.2) we observe that the fîrst d + I coefficients of the
polynomial u e s!!)oQ" ) are determined by the smooth condition, and the last m
coefficients are determined by the collocation conditions. Thus, it is convenient to
introduce the following notations :

1"1,¡ := (n,r,r) 
r=o,ã , with \r,, i= 4P lt' , and,

P, := (Pr,r)r=.- , *ith Þr,, i= or,rhd*' ,(n = 0,1,. ,,, N)

With these noúations, for all t:= t, + rh e o, , (1.2) becomes
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d,l

u(t) = un(tn + rh) = 
,Z^rlr,,r' 

+ZFn,,"o*,,

for all t e (0,1] and n = 0,1, ..., N.

v¡,ri=

if r = 0,

2
C;. if r = l,

J 6l2

r=0 r=l

From (1.2) we see that an element u . SllJoQr) is well defrned when we

know the coefficients {o^,,},=* for all fl:0,...,N- l. In orderto determine these

coefficients, we consider the set of collocation parameterr {r, } . _ , where 0 . "r.

N-l
(2.2)

(2.3)

,m
n=0

2. NUMERICÄL STABILITY

In order to discuss numerical stability, we study the behavior of the method
as applied to the Volterra integro-differential equation

I

(z.r) y'(¿) = f(t) + uy(t) + lJ r(')ds, À * 0,

0

withtheinitialcondition¡{0):/o.Here,thegivenñrnction f :.I + -R issupposed
to be sufficiently smooth (i.e., f' e C'(l), with c, à l).

X(N), = U X, , with X, i= {tn,¡ := t, r c¡ht, i = 1,2, ]

The approximate solution u e SfJoØì will be determined by imposing
the conditionthat u satisfies the initial-value problem (1.1) onX(N)

t

(r.3) u'(t) = "f(t,"(t¡) + ! r(t,s, ø(s))ds, / e x(N), with u(o):= yo.
0

The above algorithm determines aunique approximate solution u . S!!J,(Z*)
whose convergence and local superconvergence properties have been studied in [3].

In this paper, wewill analyze the numerical stability of thepolynomial spline
collocation method in the case in which the mesh sequences {n"}" are uniform,
i.e., hr: h, for all fl:0, 1,..., N- 1.

Now, for d > l, if we apply the collocation method to test integral equation
(2.1) andweuse the representration (2,3), we obtainthe following collocaãon equation

QA) Vþ, =W\n r hrn, for all n = 0,1,... ,N -1,
where z is the m x m mahix, I4' is the ryx(d+ l) matrix, and rn is the z-vector,
whose elements are

(r.n-ahc¡ #r)",.,',

w¡,r i= U:"
?rh2c¡,

[",.

?.,,
+

,
w
r+1 ci- if r>2;
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f(,.,)-f(tò,ir n=0,

f(r,,,,,¡ - f(,,-r,*) + u)n-r(t,,-r,*) - u',-r(',)+ t.[r,,-t(r,) - un-r(t,-r,,,)f +

+xnf 
,u,-t(tn-t 

+ ú), if n > o.

By direct differentiation of relations (2.3), for the smooth conditions of the

approximation u e SliJrØ.), we get a relation between vector 1,*r and vectors

'r¡n and p, , respectively

(2,5) 1'ì,¡+r= A\n*8p,,,for alln= 0, 1,"',N-2,

where I is the (d + l)x (d+ 1) upper triangular matrix, and B is the (d + l)x 7n

matrix, whose elements are

fo,ifr<i (cl+r'
d¡,r =lt;l , ,'; 

',:; , b¡,vi=f ;')
In order to prove the results conce ning the numencal stability properties 

-of
the polynomial spline collocation method, wè need the following lemma (see IB]):

Letú\4A 2,2. For arry matrix P and aruy e > 0, there exßß a subordínate norm

such that llrll< "f P\'IJ

P is of class M,
BY means the terrns

of eigenvalues o astabilitY

criterion for our method:

TgBonBu2,3'An(m'cl)-methodísstableifandonþifalleígenvaluesoJ
matrix M::A+ BV -r W are in the unít disk anrJ all eigenvalues with lp'l=I
belongto lx I Jordanblock'

Proof.Inordertoprovethistheorenr,wewillshowthatthevectorsnnand
ß - defined bv Q,2), are unifomly boundecl for fr\ 0,n -> oo, while frN remains

frIed, i.e., tháre exist two finite constants Mrand M, stchthat

llÞ,,11,'= ¡¡0,,,1 1 M,, a"o lln,ll, '= 
I,ln,,,l' *"

j=t i=l

uniformly inn, as ft \ 0' These in turn imply, according to Q'3)' that
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u(tn )l= ,t + M2, for all n = o,r, N

and from Definition 2,1, itresults that an (m, cl)-method is stable.

From the form of matrix V we see that for å small enough, this matrix is
nonsingular, Elimination of p, between Q,4) and (2,5) yields

(2'6) 1,, +1 = M\n * BV-lrr, with M := A + BV-lw,

for all n : 0, 1,.. ., N - 2. Thus, relatio ns Q,4) and (2.6) imply that for all n : 0, l,
..,, N- 1, we have

4 5

and

/ .'='n,J '

n-l

(2.7)

(2.8)

(2,e)

(2.10)

T, = M''10 +ll4'-t-iBV-rr,,
i=0

n-1
p M'\o +lmn-r-¡BV-tr,V_ + V-rr,n

i=0

Because the first derivative of the given function/is a continuous funotion

on { it results that there exists a positive consúant Z such thatlJ'' (ùl 
= 

L,for all
t e I ; and, for alI n : 0,,.,, N- 1, we have

llr,ll, ,= >1,,)=ältrl- c^ * 
",)*lu',, ,(,,-,,,) - u,n-1 (,,,)l *

+olu,,-r(t,,-r,,,) - u,-r(t,,)l + ll,løJ lu,-r(r,, , +"ch)lar
cn

In the case in which c^: l, relation (2, B) becomes

m

ll,;ll, = 
hL\c, <hL¡, with L¡:= Llc, 1mL,

j=t j=1

arrd from relation (2.7)we obtain

Using Lemma 2,2, itresults from (2,10) that

I I 
n, 

I l, = I le¡l l" ll n, I l, + nr.,lla r - 1ll,ì), lli-'',

llp"ll, . llr-'rll, iln,ll, * nll,-'ll,+, n = 0,r,, N - 1
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lln, ll, = 
z(s(ø))' lln oll, + n4lla r-' 

ll, à 
(s(ø))' -'-',

(2.r1\

llB,ll, = lln-'*ll; lln,ll, * nll,'ll¡.,, (n = 0,...,N -1).

From these relations, it results ttrat lln,ll, u"¿ llp,ll, remain bounded for

n ) @,h --> 0 arrdNh: T,if and only if S(ø) < t,
In the case in which c^ t l, then we will prove by induction that relations

Q.9) and (2.10) hold if we change the constant Lr,in (2,9), with anew finite
constant Lr, n, deftnedby

Retnnrk 2.4. From (2.6) we see that the dimension of matrix M is
dim M : : d +1 . Moreover, íf we denote by M o the matrix M wíth h" : 0, and by pe)
and¡t theeìgenttalues ofMoandM, respecfivëly, thenitfollows thattiematíix'Mo
Itn" ¡"\o) = ptlo) = l, for all n > 0 and d > 1,

f ,_L2,n '- (t - "^ 
+ 

",) 
+ m(r - ",)(uf,) 

* ouÍ\ + l!øio)), ir n ) t,

In the following we will investigate some special cases,

l. d -= r. In this ca-se the approxirnation space is sf],(2"). F'rom Theorem
2.3 and lìemark 2.4, the following theorem results:

THEoREM 3.1. An (m,O)^method is stablefor all nr) l, andfor every

choice of the collocation parameters {:r}
The abot'e theo^rem may be directly /roiüed by using the sarne tech¡ique as in

the first application from [4].

Il. m: 1. This choice of llr corresponds to aclassical spline function, i.e,,

u . sfJrçz*), cl >1, using notations from Remalk 2.4 (|e,,Mo is ilre matrix M,
withh: 0, and by ¡1(o) ¿urd p, the eigenvalues of Moand M, respeetivell), we have

p = ¡r(o) + CS(h),

If c, e (0, t] is the collocation parameter, then, tbr all (l > l, using the
binomial expansion, we find for matrix Mo the trace

(3.1) rr(M) =, ct + 2-t 1 ( 1 \d

;T-['.r)
As regards thestability ofthe spline collocation rnethod, we have the following

result:

THEOREM3 .2. A (7, d)-method is statsre tf and only íf onefrom rhefollowing
condítionc is true:

(i) d: I and c, e (0, r];
(ii)d-2andcr:1.
Praof. In the case r/ : 1, this theorem fo[ows fi-om Theor em 3, I . lf cl =. 2,

tlre¡: the third eigenvalue of lulo i:; Þ!o) = t - ? t --t , fbr¡ c, .: (0, l], and it.s

absolute value is 1, if ancl only if cr: l. For ,t >'à,from relatio,, qr.r¡, we obtain

h,
,n

L>
j=r

if 0,n

fo'
Mti) i= 

{-..1¡,p,r,)l:r 
e o,_,

and, respectively, in (2,10) we take

n=0,
lor i = 0,I,2,,if n)-1,

(2.12) Lr:= rnax{Lr,, ifl = 0,1,,. , ,¡/ - 1} ,

For n:0, relations (2.7) become: îo = Io and Bo =It-1W\o+V-1r,
respectively. Because the matrices V-|, W and the vector ro are bounded in norm

for h -+ 0, it results that the vector po is bounded, too, Thus, by the definition

relation (2.3), we obtain lur(ar)l < co, and lu'o þn)l < .o, for all t e [0, 1] , hence,

by(2,8), itresults ttrat llall, t hLr,r, with lr,, < co,

Now we suppose th"t llp/ll, I æ antlllr¡rll, . oo, for alli:0, 1,.", n-t.

Under this assumption, by (2.3) ítresults Ihat lu,-r(t)l . *, and lø',-r (t)l . -,
for all t e o n-l ; turthermore, by (2.8) it follows that llälll < hL2,,, with Zr,, < co,

Moreover,relations(2,5)and Q.\:rrrryly lln,ll, . co, and llp,ll, . co,respectively,

Thus, using the bound of r,, from (2.7) it results that relations (2.10) and (2.11)

hold with Lrreplacedby L2, for all n:0,1,...,N- l; accordingly, the theorem is

fully demonstrated.
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- oo < rr(u) < -(a + t), ir d' > 3 and ct e (0,1]'

*¿ p!o) +p!o) < -4,if d =2'since rr(M r)= pÍo) *-pto)*"'*ftt?' ' -(a + t)' it

results that there exists an eigenvalue P(0) whose value is smaller than -f i'e''

.l,r(o)l t 1, Thus, from Theorem 2.3we have that, for d > 2, a (I' d)-method is

,lortlUf, for every choice of the collocation param eter c, e (0, t] '

||l.m:2'Inthiscase,wefindforthetraceofmatrixMotherelation

Collocation Mothods 6',7

for all c, e (0, 1), and thus the assertion of this theorem follows from Theorem 2.3.

lv. d :2, In this case, approximation " . sfi)*rçzr ) , the dimension of the

matrix Mo is 3, and plo) = pto) = 1 are its first two eigenvalues. By direct

computation, for the third eigenvalue of Ms, we find

(3.3) plo) =
Sn - zln-t + 3s*-r+., .+(-t)*-t mq + (-r)'(ø + r)

'Sm

if m = 1,2,3,4,5,6,

where

(3,4) S¡:= Zrr,"r"...c¡o,forl<k<m.
lí,<...<4<n

In view of the results obtained for m : I, 2, ..., 6 we are led to the following
affirmation:

Conjecture3, , If d:2, then the third eigenvalue of Momay be calculated

by usíng relatíon (3.3)þr all m > l.
Now, if we denote by Rr,(l) the polynomial of degree m whose zeros are the

collocation parameters {"r} ,=r,r, 
then we have the following stability criterion:

TmonBIi¡ 3 .5. An (m, 2)-method is stable if and only if

[*r' R,(¿))

9I

rr(M)=d+3+
lcz cr- cr-l +(1-c,

nd+l

(", - 'r)
(3.2) )o (", -ct-t)+(t-c')

cl(", - ct)

whero 0 ( c, 1 cz 31 are the collocation parameters. using the above relation,

we obtain the following

THEoREM 3 '3 ' (i) A Q, |)-method is stablefor every choice of the collocation

parameters 
?

(ä) A Q,Z)-method is stable if and onþ if c, + 'c, 2 | '

(äl)Ifcr:l,thena(2,d)-methodisunstableforalld>3'

Proof. Assertion(i) follows fromTheorem3,1. Toproveassertion(ii), itis enough

to obsewe tha! for d: l,the third eigenvalue of Mois p"@) -cf2-2LcL+ca)+3 'ctcz

and the stability condition 
lfrgl 

a f is equivalent to the condition¡,, * "r 
t|

If d:2 and cr: 1, then one of the eigenvalues of Mo is

p!o) : |4?o"l + 4c, +t + zc!-z+cl+4cl+8c, + r);

here we have p!o) > I for every choice of the collocation parameter c1 e (o' t) '

Thus, assertion (ii¡ holds for d = 3' If d> 3, then for cr:1 the formula (3'2)

becomes

&(0)
<1,

(3 .5)

Proof. Since Rr(l) is the polynomial of degree lø whose zeros are the

collocation parameters {",} ,=r, using notation (3.4), itmay be written

(3,6) ft,,(¿) = t' - Sí"-1 + Srt'n-2+,,.+(-1)",S,,

Thus, from (3,3), (3.5) and (3,6), we obtain

(o)
pà' =

[,+r' 
À,,('))],-,

i?,(o)

and so, if Conjecfue 3.4 is tuug the assertion of this theorem follows fom Theorem 2.3.

(t+c,

c1

2d+4,o)=d+4+rr(M (t - "r)
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dístributed lil (0, 1.1

method is;;lable.
ìf (lonjecture

become

CoRol-t ¿"Rv 3.6. If the collocation parameters {c,} -t;n 
are uniþrmly

(,.".,r,t=L,.[or all i =1,2,
\tn

( (, ))4,
,m, , then an (m, 2)-

3.4 is true, then for c^:1 the above conjecture and theorem

l*l" l= À,,(0)

Conolmnv 3,7 . If the last collocaÍ'ion parameler is one (i'e', co,: l)' then

(l) The third eigenvalue of Moma! be calculated by using the relation

and so, the seconcl assertion of this corollary follows from Theorem2.3.
In [3] we have proved that, in a suitable choice of the colloeation parameters,

we obúain an approximated solution which has a local convergence oider greater
than the global order, in thepoints fromz*. As regards the stabilify of this local
superconvergent soluti oî u e S!]JrØr), we have

(3.1) p!o)' = (

for all m 2l,where
m-l

(3.8) s'/r=. Xl',"':"'c¡o'forl<k<m-l'
l<ir<...<io3nr-l

(ä) An (m,2)-method is stable if and only if

,,, I - ^9',+,S'r-S'r+, ..+(-1)"--l,S',,, .,

)------- s, -
"r--l

-1

(3.e) 4,(0)

whereR.(| ,,s' the polynomial of degree m defined by (3 '8) '

Proof. (i) If the last collocation parameter is one (i'e', cr: 1), then' from

(3.4) itresults that

,S'r+1 , if k = 1;

if 2<k<m-1,
if k-m

(3.10)
c_r)r- '-

CoRorreRv 3,S, (i) If the collocation parameters {c,},=rn are the Radau
II points from (0, ll, then an (m,2)-method is unstablefor ati m > 2 .

(ii) If the collocation parameters {",} ,=r are the Gauss poínts from (0, l),
then an (m,2)-method is unstablefor all m > 2 .

(äí) If thefirst m- I collocatíon parameters {r,} ,=ro 
are the Gauss points

from (0, I), and the last is c^: l, then an (m,Z)-method is stablefor all m > 2.

Proof. The results from this corollary follow from assefion (ii) of Corollary
3.7 and the properties of the Radau II points and Gauss points, respectively. In this
proofwe will denote byPr(s) the Legendre's poþomial of a degrèe not expanding
m, for s e l-t, t],

(i) If the collocation parameters {",},=, are the Radau II points from '

(0, 1], then the polynomial R-, whose zeros are the collocation parameters

{",} "-, may be writtent J r l=t,tn

R^(t) = r,_r(zt - 1) - p,,(2t - l), for all I e [0, t].

Thus, using the properties of Legendre's polynomial, from (3.9), we obtain

l,rln)'l = ,lP'^-'(t) - P'^(Ðl 
'

ln2 l- ¿14;çffi1= * ,1, for all m 2 2.

(ii) If the collocation parameters {",} ,=ro 
are the Gauss points from (0, l),

then thepolynomial R* is

('))4,

^9 o+,S ¡-1 ,

(

1

S", 1,

where s,, are defined in (3.8), Now, the l=rrst assertion of this corollary follows by

Conj ecttrre 3 .4 a.nd, relatiort (3 . I 0) '

(iÐ Usi'g notations (3.à), thepolynomialÀr, whose zeros are the collocation

parameters {",} ,=.,r, 
may be wlitten

(3,11) R,n(t)=(r -r)(r'-1 - S'rt"' + S'rt''-3 +.,,+(-1)"'-1,s',r-,), fot all r e[0,1]'
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R^(t) = n^(zt - 1), for all r e fo, t] ,

from (3,9) it results that =m(m+1) >1,for

ws:= (roi,r)¡=t,n,r=t,2, with *o¡,r,= 
{^o:,t' 'ri::}'

Flere, matrix V and vector r n are like in (2.4) .

Because V: E'+ O(h), the elimination of B, between (3.14) and (3.15) yields

,', (t,,¡) = (t + o(h))u',,_r(r, ) + (r + o(n))r,,, + o(h)u,_,,(t,),
(3'16) 

for all j = 1,2,...,^ (r= 0,1, ,,,, N - 1),

_For 
all r e [0,t], the first derivatives of the approximation u . s!]l1z*¡

may be written

(3.r7) u'o(t,+rh) =tL,(r)u',(t,,,,), fo, att n =0;1,..,,N - 1,
j=r

where

Zr(t):= fl , for all j = 0,1,..,,ffi,

13 Collocation Methods 77

m(m +r)
p!o)

2'
allm>2.

(iii) In this choice of collocation parameters, polynomial R,n becomes

R,0) = (t - t) 'P,-r(zt - Ð, for au I e [0,1];

and, from (3.9), we obtain

d

d/
(, ))4,(

l*1"
P^-r(r

4(") P,.(-Ð
1

for all 
^ 

)t
V. d :0 , In the end of this section we analyze the numerical stability of the

spline collocation method in the space lir(0), for m 2. L An element u . S!f) (z r)
has for alln:0, 1,,.,, N- 1 the form

(3,r2) un(t, + ú) = un-rçrr) *i1,,,tr' , for t e (0, t]'

If we denoteby ur*rand by u'n*rthe vectors with z-elements

u,,*tt= (u,(t^ * ",h))'.-- , 
ana u'n*ti= (r',(r, + 

",n))' -- ,

then from equation (3.12) we obtain

(3,13) un+r=(l,1,., .,I)r un-y(tr)+ E.Fn,for n = 0,1,.,.,N - 1,

(3.14) u'r+t= h-r|'. F' fot n = 0,1,..,,N -I,

with the matrices E arñE' defined byE:=("5),,r=rand E:=(r"i-t)..r--,
respectively.

In this case the collocation equationbecomes

(3,15) vþn = hwo(u,-r(t,), u',-tQ))' * rn, for all n = 0,1, "',N - 1,

where matrix lfzo is defined bY

i=l
i+j

are the Lagrange fundamental poþomial associated with the collocation parameters

{r,},=r,Now,replacing ,',(t,,¡)in(3.17)withitsvaluesgivenby (3.I6),forall
n: 0, 1r.,., N- 1, we obtain

'-ci)
cj-ci

(3.1s) u',(t,*r) = hO(h)u,_r(r,,)+ (t + O(h) u',-t(tn) +\t,(1ry,,)[
m

j=r

forall fl:0,1,,.,,N-1.
By integrating relation (3,17), for r e [0, t] , ano us ingagainrelation (3.16),

we obtain

(3,1e)
un(tn*t) = (t + no(h))u,_1(t,) + h(t + o(h))u',,_r(t,) +

*h(r+ o(ùjir,þ),,,,, ror au n = o,r, ,N -1,

Equations (3, 18) and (3.19) form together a system which may be written

( u,(t,*t).1 
= ,,( u,-1Q \\

(3.20) lu'i,(,,ì) lu',-tó,)).(r+o(h))r'''
for all h = 0,1, ,,. , ¡y' - l,
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M, , =((t 
+ ho(h)) a(r + o(t))) v, 

( t- ,n ,, \?'
rvl : = 

[ hoØ) (t . 
"(;;i )' 

/ ni= 
['{ 

Z-,r,(')';,, 'Z-,t,o',,, 
)

Equation (3,20) has the same form as equation (2.7), Thus, because for
h -+ 0 the matrix M' has the eigenvalues F'r - F'z = l, as inproof of Thoorem
2.3,we may prove the following

Tsponnu 3.9 . An (m,0)-method is stablefor ail m > I andfor every choíce
of the collocation param"t"rs {"¡} ¡=n.
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et = 0.2x 10-8, es = 0,5x 10-7,er = 0.8 x 10-6 for d = Ii
et = 0.6 x 10-8, es = 0.'l xl0--7,eN = 0,6 x 10-5 for cl = 2;

el = 0]x 10-8, es = 0.2x 10-3, e¡¡ = 377390,7091 for cl = 3.

c) If the collocation parameters are the Gauss points, i.e., c1 = 

=#,
t a+J6

ct. : -j , ct = ---i-- , then we have:' 2'' 10

el = 0.1 x 10-e, es = 03x 10-8, en = 0,3x 10-7 for d = I;

er = 0,1 x10-8, es=0.4 x10-5,e¡¡ =291,2755 for d =2;
er = 0,1 x10-8,es = 0.0758, eN = 0.433 x 1013 for d =3.

d) Ifthe finttwo collocationpa¡ameten arethe Gauss poinß,i.e.- c, : !- Jt¿'¡v7- lo '

z+Ji
", = -i=, and cr: l, then we have:

et = 0,2x 10-6, es = 03x 10-5, eN - 0.4x 10-a for d = 1;

et=0.9 xl0-8, es=0.4 x10-7,e¡ = 0,5x10-6 for cl =2.;

et = OJx 10-8, es = 0.3 x 10-4, e¡,t = 35.54725 for d = 3.

From this numerical example we observe tliat a (3, d)-method is slable for-
d: I aú, it is unstablefor d:3. in tho case d:2, this method is stable if tlie

collocation parameters ùra ¿, l, ", 
-= 

1 
, "r:1 

(i,e., case a)), or c1 = 

=*,
s+Jl,, = =i-, and cr: 1 (i.e., case d)).
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t

/ (t) = y(t) + zt exn(t2) + t zt,*n(,, _ 
"2)r(")d",(4.r) '0

Y(o) = 1' for / e [o' t]'

whose exact solution isy(r) : exp(t+ t2).
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DOREL I. DUCA, EUGENIA DUCA, LIANA LUP$A

A whole series of production processes, economic systems of different types
and technical objectives are described by matherriatical models which are
multicriteri a optknization problems ,

This paper presents some properties of different classes of multicriteria
optimization problem solutions,

Consider the following model of a multicriteria optimization problem

(P) v - min f(x)
xex,

whereXis anonempty convex compactset of fr, and f = ("Ír,...,.fo,): X -+ ß^
is a continuous function onX

Let us recall some concepts of multicriteriaoptimization problem solutions:

Dnrr¡urtoN L The point .rP e X is said to be a Pareto solution of Problem

(P) if there exists no point x e X such that f(x) . f(r").
The inequaliW f(*) = f(r") means

f,(*)Sft(-') for all ; e {1, ...,m}

afìd

fr(*)+...+ f*(*) . .fr(*')+.,* f,(*')
Let PQf ; X) denote the set of Pareto solutions for Problem (P).

DEFINITIoN 2. The point .rs e X is said to be a Slater solution of Problem

(P) if there exists no point x e X such that
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