REVUE D’ANALYSE NUMERIQUE ET DE THEORIE DE L’APPROXIMATION
Tome XXVI, N* 1-2, 1997, pp. 59-74

NUMERICAL STABILITY OF COLLOCATION METHODS
FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

I. DANCIU

1. INTRODUCTION

In [3] we have presented a method for the construction of an approximation
to the solution of the following initial-value problem for the first-order Volterra
integro-differential equation (VIDE)

(1.1) y'(t) = f(t, y(t)) +jK(t, s, y(s))ds, tel:= [O,T],

with the initial condition ¥(0) = y,, by polynomial spline functions. Here, the
given functions f:/xR— Rand K:Sx R— R (with §:= {(t,s):0<s<r< T})
are supposed to be sufficiently smooth for the initial-value problem for VIDE (1.1)
to have a unique solution y € C*(7), with o e N (see [6]).

In order to describe this method, let 1), :0 = ¢, <4, <...< 1y, = T (with
Hin= z,(,N) ) be a quasi-uniform mesh for the given interval , and set

0o:=[to;11],0,:= (t,,t,14], for n=1,2,...,N -1,
R e e or =0T Y IV 2N
h = max{h, :n=0,1,...,N -1},
Zyi={t,;n=1..,N-1},Zy = Z,, U[T}.

Moreover, let @, denote the space of (real) polynomials of a degree not
exceeding k. Then we define, for given integers m and d with m > 1 and d > -1,

Sr(ndzd(ZN):: {u:u(t)~tec,,::un(t) €Byia n=0,...,N -1,

u,(/_')l(t,,) = u,(,j)(tn) for j=0,1,...,d and ¢, € ZN},
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to be the space of polynomial splines of degree m + d, whose elements possess the
knots Z,, and are d-times continually differentiable on I If d=—1, then the elements

of S,(,;‘i(z ) may have jump discontinuities at the knots Z,,.
An element 4 e S,(:Bd(ZN) has forall n = 0,1,..., N —1and forall 1 €,
the following form (see [7])

12 )= u@ =30l oy S oy

From (1.2) we see that an element y € an"jd(z ) is well defined when we
know the coefficients {aw,} . foralln=0,..., N—1. In order to determine these

coefficients, we consider the set of collocation parameters {C,-} __,where 0 <¢<

j=1,m

<...<c, <1, and we define the set of collocation points by

N-1
X(N):= X, , with X,:={t, 1=, + c;h, j=12,...,m}.
n=0

" The approximate solution y e S,(ndf +(Z,,) will be determined by imposing
the condition that « satisfies the initial-value problem (1.1) on X (&)

(1.3) o' (t) = f(1,u(0)) + | K(t, 5, u(s))ds, t € X(N), with u(0):= y,.

© oy

The above algorithm determines a unique approximate solution u € S,("df N Z5)

whose convergence and local superconvergence properties have been studied in [3].
In this paper, we will analyze the numerical stability of the polynomial spline

collocation method in the case in which the mesh sequences {IT,, } ,, are uniform,
ie,h,=h foralln=0,1,.,N-1

2. NUMERICAL STABILITY

In order to discuss numerical stability, we study the behavior of the method
as applied to the Volterra integro-differential equation

2.1) ¥ () = f(t) + oy(t) + Kj ¥(s)ds, & # 0,

with the initial condition y(0) = y,. Here, the given function f:I — R is supposed
to be sufficiently smooth (i.e., f € C*(I), with a > 1).
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This equation is called the basis test equation and it was suggested by Brunner
and Lfimbert in 1974 (see [2]), and then it has been extensively used for investigating
stability properties of several methods.

Henceforward, we will refer to a polynomial spline collocation method in

the space S,(”‘:) i(Zy ), simply as an (m, d)-method (see [4], [5]).

DEFINITION 2.1. 4n (m, d)-method is said to be stable if all solutions {u(t)}
remain bounded, as n — w,h — 0 while hN remains fixed,
From relation (1.2) we observe that the first 4 + 1 coefficients of the

polynomial u e §\%,(z v ) are determined by the smooth condition, and the last m

coefficients are determined by the collocation conditions. Thus, it is convenient to
introduce the following notations:

0,
Moo= (M), oy with 5= 2ln)

2.2) r!
Byi= (Buy), s With B, = a, 4™, (n=0,1,..., N).

With these notations, forall t:= ¢ + 14 € a(1.2) becomes

d m
u(t) = u,(t, + th) = 3 m, <"+ DB,
r=0 r=]

for all t €(0,1] and n = 0,1,...,N.

(2.3)

Now, for d > 1, if we apply the collocation method to test integral equation
(2.1) and we use the representation (2.3), we obtain the following collocation equation

2.4 VB, =Wn, + hr,, for all n =0,1,...,N -1,

where V' is the m x m matrix, W is the mx(d+ 1) matrix, and r, is the m-vector,
whose elements are

Mie, _
Vj,r:: ((d +T‘)— thj —m]cd+r 1;
[
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and

f(t()’]) - f(t0)5 lf n= O,
r”»f T f(tn,jl) . f(tn_l’m) iy u;“l(tn—l,m) o u;l—l(tn) + Uv[”n—l(tn) ™ un—l(tn—l,m)] +
+)\‘hJ. un—l(tn-l + Th), if n>0.
C"I

By direct differentiation of relations (2.3), for the smooth conditions of the

approximation u e S\ (7.}, we get a relation between vector 1,,,; and vectors

n, and B, respectively
(2.3) M, = 4n, + BB, , for all n=0,1..,N-2,

where A4 is the (d + 1) x(d+ 1) upper triangular matrix, and B is the (d + 1)x m
matrix, whose elements are

0 if '
w| e T (d+r
aj”'—(),ifij’ by = frailt
: J

In order to prove the results concerning the numerical stability properties of
the polynomial spline collocation method, we need the following lemma (see [8]):

LEMMA 2.2. For any matrix P and any & > 0, there exists a subordinate norm
such that |P|< S(P)+e, with S(P):= max{l?bj\:lj are the eigenvalues of P}- If

P is of class M, then there exists a norm such that ”PH = S[P) ;

By means of this lemma we can characterize numerical stability in the terms
of eigenvalues of the suitable matrix. The following theorem represents a stability
criterion for our method:

THEOREM 2.3. An (m, d)-method is stable if and only if all eigenvalues of
matrix M:=A+ BV -\ W are in the unit disk and all eigenvalues with lpl =1
belong to 1% I Jordan block.

Proof. In order to prove this theorem, we will show that the vectors 1, and
B,, defined by (2.2), are uniformly bounded for A 0,n — oo, while AN remains
fixed, i.e., there exist two finite constants M, and M,, such that

m m

..Bll|.1:: Z P’n,j s Ml Z and “nnnl i Z

j=1 j=1

| € Ma,

uniformly in #, as A 0. These in turn imply, according to (2.3), that
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Jutz,)

and from Definition 2.1, it results that an (m, d)-method is stable.
‘From the.form' of matrix ¥ we see that for 4 small enough, this matrix is
nonsingular. Elimination of B, between (2.4) and (2.5) yields

<M+ M, for all n=0,1,...,N -1

(2.6) My = Mn, + BV, with M:= A+ BV'W,

foralln=0, 1,..., N—2. Thus, relations (2.4) and (2.6) imply that forall n =0, 1
..., N =1, we have <

n—-1
T] = Mnn + MH 1 IBV—I !
@.7) i y Zo i
n—1
HE V—’W[M"no + ZO M"—HBV"lrl} +V 7,
i=

Because the first derivative of the given function fis a continuous function
on Z, it results that there exists a positive constant L such that ’ S (t)‘ < L, for all
t el;and, foralln=0,..., N-1, we have

m

ili= S| <3 {Lh(l— i c,.) s (1) = ()

j=1 =1

(2.8)

m

1
+alun—1(tn—l,m) - un—l(tn ). + '}\’ih_'.lun—l(tn—l 5 Th)‘ dt:l
In the case in which ¢, = 1, relation (2.8) becomes

id m
(2.9) Pl < ALY e; <ALy, with L= LY ¢, <mi,
J=1 Jj=1

and from relation (2.7) we obtain

n-1 R
Il = 1M, + w3y ) 3 ol
i=0

(2.10)
IBull < [P, I+ A g m = 03 -1,

Using Lemma 2.2, it results from (2.10) that
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I, < 2500 o+ | S50~

2.11) ul +,,||V-1||1L1, (= 0,10, NL1)'

IB.l, < Jr~)

1’
From these relations, it results that ||n,, ||1 and ||[3n||1 remain bounded for

n — oo, h — 0and Nh= T, if and only if S(M) < 1. _

In the case in which ¢,, # 1, then we will prove by inducti(?n that relatm'ns
(2.9) and (2.10) hold if we change the constant L,, in (2.9), with a new finite
constant L, , defined by

L, if n=0,
=1~ 1 0\
Lo = VL3 (1= 0 +¢)) 4 m(1 = e )M + b+ ), it m =1,
=
where
0, if n=0,
@, - : . for i = 0,1,2,
M, = max{us,'_)l(t)’:t ecn_l},lf FRd Lt

and, respectively, in (2.10) we take
(2.12) Ly:= max{L,,:n=0,1,...,N -1}
For n = 0, relations (2.7) become: n, = 1, and B, = VW, +V7'r,,

respectively. Because the matrices V-1, ¥ and the vector r, are bounded in norm
for h — 0, it results that the vector B is bounded, too. Thus, by the definition

relation (2.3), we obtain |u0(1:h)| < o, and |u'0 (1h)| < oo, forall 7 € [0, 1], hence,
by (2.8), it results that |||}, < hL,,, with L,, < co.

Now we suppose that “BJ"L < oo and “an1 <o, forallj=0,1,.,n-1

uln—l (f)| < oo,

“n—l(t)l < oo, and

Under this assumption, by (2.3) it results that
forall ¢ € 5, ; furthermore, by (2.8) it follows that ||rn||1 < hL,,, with L,, < oo.

Moreover, relations (2.5) and (2.4) imply ||'r],,||1 < oo, and “[3,,”1 < oo, respectively.
Thus, using the bound of ,, from (2.7) it results that relations (2.10) and (2.11.)
hold with L, replaced by L,, forall n=0,1,.., N-1; accordingly, the theorem is
fully demonstrated.
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Remark 2.4. From (2.6) we see that the dimension of matrix M is
dim M: = d +1. Moreover, if we denote by M, the matrix M with h =0, and byu©
and |\ the eigenvalues of- M, and M, respectively, then it follows that the matrix M,

has b =y =1, forall m=0and d>1

3. APPLICATIONS
In the following we will investigate some special cases,

I. 4= 1. In this case the approximation space is S,("]ll(ZN). From Theorem
2.3 and Remark 2.4, the following theorem results:

THEOREM 3.1. An (m, 0)-method is stable for all m > 1, and for every

choice of the collocation parameters. {c: J.}

.:T;
The above theorem may be directly pjrovned by using the same technique as in

the first application from [4].

Il. m = 1. This choice of m corresponds to a classical spline function, i.e.,

(@)

ue Sd(_IH(Z ~), d 2 1. Using notations from Remark 2.4 (i.e., M, is the matrix M,
with =0, and by u( and p, the eigenvalues of My and M, respectively), we have

JTRES p(o) + ()(h).

If ¢ (0, 1] is the collocation parameter, then, for all ¢ > 1, using the
binomial expansion, we find for matrix M, the trace

d
(3.1 Tr(My) =d+2+ _ld__[l +l) '

As regards the stability of the spline collocation method, we have the following
result:

THEOREM3.2. A (1, d)-method is stable if and only if one from the following
conditions is true:

() d=1and ¢ e(0,1];

(i)d=2andc = 1.

Proof. In the case d = 1, this theorem follows from Theorem 3.1, If d = 2,
then the third eigenvalue of M, is ugo) a2 < -1, for ¢ (0, .1], and its

C
absolute value is 1, if and only if c,=1.Ford > 31, from relation (3.1), we obtain
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~ 0 < Tr(My) < ~(d +1), if d>3and ¢ € (0,1],
and u(zo) +},t(30) <-4, if d=2.Since Tr(M,)= TSNS i Wl < —(d +1),it
results that there exists an eigenvalue u(® whose value is smaller than -1, i.e,,
p,(?)‘>1. Thus, from Theorem 2.3 we have that, for 4 > 2, a (1, d)-method is
unstable for every choice of the collocation parameter ¢, € (0, 1] :

IIL m = 2. In this case, we find for the trace of matrix M, the relation

(1+ Cz)d(cx —g-)+(1-¢)

Tr(M,)=d+3+

Cg(cz i Cl)
(3.2) (+a)(g-a-D+(1-c)
Cld(cz -a) ,

where 0 < ¢, < ¢, <1 are the collocation parameters. Using the above relation,
we obtain the following

THEOREM 3.3. (i) 4 (2, 1)-method is stable for every choice of the collocation
parameters.

(ii) 4 (2, 2)-method is stable if andonlyif ¢, + ¢, 2 % .

(iii) If ¢,= 1, then a (2, d)-method is unstable for all d = 3.

Proof. Assertion (i) follows from Theorem 3. 1. To prove assertion (i), it is enough

(0) 6% =2 +¢y)+3

to observe that, for d = 1, the third eigenvalue of M, is W3’ = ,
Gt

N | W

and the stability condition \Hg' <1 is equivalent to the condition ¢ +¢; 2
If d=2 and ¢,= 1, then one of the eigenvalues of M| is

ul® = Ei—z(—4c12 4, + 1+ 4126 —24¢] + 4] + 8¢y + 1);
1

here we have pgo) > 1 for every choice of the collocation parameter ¢ € (0, 1.

Thus, assertion (iii) holds for d = 3. If > 3, then for ¢, =1 the formula (3.2)
becomes

1 d
a 2d = (l + —] 5 2d+l
G

(=)

Tr(Mg)=d+4+ >d+4,
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forall ¢, €(0,1), and thus the assertion of this theorem follows from Theorem 2.3.

IV. d =2. In this case, approximation u € S,(,ﬂz(Z ~ ), the dimension of the
matrix M, is 3, and u(lo) = H(zo) =1 are its first two eigenvalues. By direct
computation, for the third eigenvalue of M, we find

-1
63 WO Sy = 28p_1 + 38 ot H=1)"" mSy +(~1)"(m +1)
Sh ’
if m=123,4,56,
where
m
(3.4) Sgi= . ¢G..q,for 1<k<m,

16, <..<iy <m

In view of the results obtained form =1, 2, ..., 6 we are led to the following
affirmation:

Conjecture 34 If d=2, then the third eigenvalue of M, may be calculated
by using relation (3.3) for all m > 1.
Now, if we denote by R (£) the polynomial of degree m whose zeros are the

collocation parameters {Cf}j:f‘,,; , then we have the following stability criterion:

THEOREM 3.5. An (m, 2)-method is stable if and only if

L(-20)]
%0

t=1 <1

(3.5)

Proof. Since R (¢) is the polynomial of degree m whose zeros are the

collocation parameters {Cf}j=m , using notation (3.4), it may be written

(3.6) R,(t) = " = Sp" " + Syt" . A(-1)"S,, .
Thus, from (3.3), (3.5) and (3.6), we obtain

o L)

2l f=1.
i E,(0)

and so, if Conjecture 3.4 is true, the assertion of this theorem follows from Theorem 2.3.
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__ are uniformly

COROLLARY 3.6. If the collocation parameters {Cj}jzl,rn

distributed in (0, 1] (i. €.5C; 1= i,for allcjit=1L 2,...,m), then an (m, 2)-

method 1s stable. ‘ :
1f Conjecture 3.4 is true, then forc, =1 the above conjecture and theorem

become
COROLLARY 3.7. If the last collocation parameter is one (ie., c,=1), then:

(i) The third eigenvalue of Mymay be calculated by using the relation

m-1 ,
(0) 1 w1l S'1+S'2‘Sl3+---+(_'1> S m=1
3.7) wy' = (-1) R ’

“m-1

for all m =1, where

m—1
(3_8) S’k: Zﬁcilcizn'cik’ for ISkSm—l.

1<i <..<i, <m-1

(ii) An (m, 2)-method is stable if and only if

[%(Rn(t))L i

where R (1) is the polynomial of degree m defined by (3.8).

Proof. (i) If the last collocation parameter is one (i.e., ¢, = 1), then, from
(3.4) it results that

S+, it k=1,
(3.10) S, =848, if2<k<m-1,
s if k=m

where S, are defined in (3.8). Now, the first assertion of this corollary follows by

Conjecture 3.4 and relation (3.10). _ ol .
(ii) Using notations (3.8), the polynomial R, whose zeros are the collocation

parameters {Cj} . may be written
J=h

@.11) R, (6)=(r -1)(:’”'1 —8 "y S, t"“3+...+(—1)"“‘S'm_1), for all £ €[0,1],
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Thus, from (3.7), (3.9) and (3.11), we obtain

- {%(Rm(r»]

=1,

R,(0) |

and so, the second assertion of this corollary follows from Theorem 2.3.

In [3] we have proved that, in a suitable choice of the collocation parameters,
we obtain an approximated solution which has a local convergence order greater
than the global order, in the points from Z,. As regards the stability of this local

superconvergent solution y e S,(HZBZ(Z v ), we have

COROLLARY 3.8, (i) If the collocation parameters {c j} o e the Radau
J=im

I points from (0, 1], then an (m, 2)-method is unstable for all m > 2.

(ii) If the collocation parameters {Cj} o are the Gauss points from (0, 1),
J=Lm

then an (m, 2)-method is unstable for all m > 2,

(iii) If the first m — 1 collocation parameters {c j} o are the Gauss points
J=lm i

from (0, 1), and the last is ¢, = 1, then an (m, 2)-method is stable for all m > 2.

Proof. The results from this corollary follow from assertion (ii) of Corollary
3.7 and the properties of the Radau IT points and Gauss points, respectively. In this
proof we will denote by P (s) the Legendre’s polynomial of a degree not expanding
m, for s e [—1, 1] 3

Jj=l,m
(0, 1], then the polynomial R, whose zeros are the collocation parameters

(1) If the collocation parameters {c j}

{c f}j:i";,' , may be written

R,(t) = B,(2¢ - 1)~ B,(2t - 1), for all ¢ €0, 1].
Thus, using the properties of Legendre’s polynomial, from (3.9), we obtain

PP, ()
SR E)

(o

2

=m>1, for all m > 2.

__ are the Gauss points from (0, 1),

(ii) If the collocation parameters {c } i
J=lm

J
then the polynomial R _ is

___ are the Radau II points from ~ -
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R,(t) = B,(2t 1), for all te [0, 1].

Because P', (1) =

all m > 2.
(iii) In this choice of collocation parameters, polynomial R, becomes

R,(¢) = (t =1)- B,4(2¢ - 1), for all # €[0,1];

and, from (3.9), we obtain

forall m >'1.
V. d=0. In the end of this section we analyze the numerical stability of the

spline collocation method in the space S, (9, for m > 1. Anelement u € S, 0z,
has foralln=0, 1,..., N— 1 the form

(3.12) u,(t, + Th) = u,_y(t ZB,,, for © e (0,1].

If we denote by u, , and by ', , | the vectors with m-elements

Uy ( (t +ch)) Lh

]~m

, and u’,,+1:—( (t +ch)) a1,

j=lm

then from equation (3.12) we obtain

G13)  wy =1, ) () + E-B,, for n=0,1.. ,N~1,

(3.14) u'n+1=h_1E'-Bn, for n=0,1,...,N -1,

with the matrices E and E' defined byE:=(c;-) — and E:=<rc§‘1) ==
. Jr=lm J,r=Lm

respectively.

In this case the collocation equation becomes

(15) VB, = hWo(tty_(ty)s #oy (4)) + 1, for all m=0,1,..,N -1,
where matrix ¥, is defined by
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Mc;, if r =1,

1, ifr=2

W, : = (WO ) ith 0 ._
0" — with w; =
Ir j=Lmr=12" Lr

Here, matrix V and vector r, are like in (2.4).
Because V= E'+ O(h), the elimination of B, between (3.14) and (3.15) yields

u, (t,,)=(1+0m',_ (1) + +(1+ 0, , + O(Ru, 4(1,),

(3.16)
for all j =12,...,m (n:O,l,... N—l).

Forall T e [0 1] the first derivatives of the approx1mat10n ue S(O)( Zy)
may be written

m

(B.17) U (¢, + th) = ZLj('c)u'n (tn_"j), for all n = 0,1,...,N — 1,
=
where
m fa vl b
Li(t):= I I—-—(‘t 2) , forall j =0,1,...,m
=1 (¢ - )
oy

are the Lagrange fundamental polynomial associated with the collocation parameters

{c y }] o . Now, replacing u', ( n j) in (3.17) with its values given by (3.16), for all
=0, 1, , N—1, we obtain

(3.18) “'n(m) hO(h)“n 1() (1+Oh)( ZL(I n;J)

foralln=0,1,..., N-1.
By integrating relation (3.17), for t [O 1] and using again relation (3.16),
we obtain
(3 19) L ( n+1) (1 i hO(h)) (tn) + h(l + O(h))u'n-l (tn) +
. 1 m
K1+ O(h J.ZLj(T)rn’j, for all n=0,1,..,N 1.
0 Jj=1

Equations (3.18) and (3.19) form together a system which may be written

(3.20) [;f:((tf:l))] L '[;f::z((tt”n))J +(1+ o)y,

for all n=0,1,...,N -],
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where

il {(1 + h'o(h)) h(l + O(h))} . {hj' i Lj(’f)’h,j ; i Lj(l)rn,j] .

hO(h) (1+0(n)

Equation (3.20) has the same form as equation (2.7). Thus, because for
h — 0 the matrix A" has the eigenvalues p', = p', = 1, as in proof of Theorem
2.3, we may prove the following i

THEOREM 3.9. 4n (m, 0)-method is stable for all m > 1 and for every choice

of the collocation parameters {c } 5 .
J J=lm

4. A NUMERICAL EXAMPLE

We give below the results obtained when applying various (3, d)-methods to
the following integro-differential equation of the first order

y'(2) = y(t) + 2 exp(tz) + th exp(t2 - sz)y(s)ds,

(4.1)
¥0) =1, for ¢ €[0,1],

whose exact solution is y(f) = exp(z + £2).
In the following we use the notations: e, := I y(t)—ult, )I, e5:= | W(ts)—u(t )‘,
ey = l (1) - u(l)l,where u eSgd) is the approximated solution and #:=ihecZ, .

Thus, for N =10 (4= 0.1) we obtain:

a) If the collocation parameters are q==,¢ = % and ¢, = 1, then we have:

Il
5
e, =01%x107°, e, =02x107,¢e, =.03x10™ for d = 1;
e, =07x107% e =07 x107, e, 03 %107 for d = 2;
e; =01x10"°% e, = 01x10™ e, =3350 for d = 3.

4-6

10

b) If the collocation parameters are the Radau II points, i.e., ¢ =

4446

2= 710

)

and c; =1, then we have:
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e =02x10% e =05x107, e, = 08x107 for d = 1;
e, =06x107 e =07 x107, e, = 06x107° for d = 2;
e; = 01x107% e, = 02x 107, ¢, =317390.7091 for d = 3.

5-415

c) If the collocation parameters are the Gauss points, i.e., ¢ = ,
Svinonil0
1 4 6
Cy = —,C = —il/———, then we have:
2 10

e, =01x107, e, =03x107% ¢, =03x107 for d = 1;
e, = 01x107%, e; = 04 x107°, e, = 2912755 for d = 2;
e, = 01x107%, ¢, = 0.0758, e, = 0433 x 10" for d = 3.

343

d) Ifthe first two collocation parameters are the Gauss points, i.e., ¢, = e

3+43

d ¢;= 1, then we have:
6

, an

sz

e =02x107% e = 03%x1075, ey = 04 x107* for d = 1;
e = 09x107% e = 04x107, ey = 05x107 for d = 2;
e; = 01x107% es = 03107, ey = 3554725 for d = 3.

From this numerical example we observe that a (3, d)-method is stable for .
d =1 and it is unstable for 4 = 3. In the case 4 = 2, this method is stable if the

2 3-43

collocation parameters are ¢, = %, ¢ = 3’ c;=1(i.e.,, case a)), or ¢; = e

3-{-\,/?:
02=

,and c;=1 (i.e., case d)).
o
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