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CONDITIONS OF STABILITY, PSEUDO-STABILITY AND
QUASI-STABILITY OF THE PARETO SET IN A VECTOR
TRAJECTORIAL PROBLEM"

VLADIMIR A. EMELICHEV, DMITRIY P. PODKOPAEV

It has been shown in [1-3] that the coincidence of Pareto set, Slater
set and Smale set is a necessary and sufficient condition of stability of
the Pareto set in vector problems of discrete optimization with linear partial
criteria.

In this paper, the result mentioned above and some analogous results ([3] and
[4]) are extended on a wide class of partial criteria.

Let m>1, C={c|,¢c,,...,c,} be a finite set. Suppose that each element ¢;

of the set C is weighted by the numbers wi(¢;)=a,;,ieN, ={1,2,...,n}, where
A={a;},,, €R™,a' denoting the i-th string of the matrix A.

Let 7'be a system of nonempty subsets of the set C, |T|> 1. All the elements

of the set T"are called trajectories.
Suppose that for any index ieN, a real function « f (¢,x)=

=f(tx,%,,...,x,) is defined on the set T of trajectories and on the set R” of
vectors. Then the vector function (vector criterion)

f(t’A):'(fl(tﬂal)afz(t>a2)s---,fn(f,(ln))ZTXRm"—)R"

is given on the set 7. Without loss of generality, we shall take the components of
the vector criterion (partial criteria) for minimization under the fixed matrix A:

f,(r,a’)—>xn7@n, ieN,.
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In these designations, the well-known partial criteria of the kinds MINSUM
(linear) and MINMAX (bottle-neck) have the following form, respectively:

fta)=2 a,; — min,
ejel

f.(t,a") = maxa; — min.
e; et T

We speak of vector (n-criteria) trajectotial problem to mean the problem of

finding the Pareto set (set of efficient trajectories)
P(f,A)={tel:V1 eT (x(t,t', A)=0=>1(¢,t, A)=0)},

where
t(t,t’,A)=(11,12,...,tn),

a5 =‘t,.(t,t’,a")=jf,.(t,ai)—fi(t',ai), ieN,,

0=(0,0,...,0) eR".

te optimization problems on graphs, some

It is known that many discre
oblems can be

scheduling problems and also the Boolean programming pr
described as special cases of the single-criterion trajectorial problem (see [5)). For
example, taking the edge et of a connected weighted graph as the set C and the
Hamiltonian cycles set (the spanning treess set) as the set of trajectories T, with the
linear objective we obtain the travelling salesman problem (the minimum spanning

tree problem).
Following [3-6], we shall perturb the matrix 4 e R, adding it to the

matrices of the set

B(e)={B e R™:||Bli<e},

where ¢ >0, |l-|| is a norm defined in the space R™ ofi x m-matrices.

The set P(f, 4) is called pseudo-stable if
Je>0V BeB(e)(P(f,4)2 P(f,A+B)).

Evidently, if there exists a trajectory € T\ P(f, A) such that

) Ve>03 BeB(s)(teP(f,A+B)),

then the set P(f, A) is not pseudo-stable.

The vector function f(#, A) is said to posses
" with respect to the variable x.

s o-property if the components

f;(t,x),ieN,, are continuous on R

3
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It can be easil i
y shown that if the vect i
a-property, then the following holds: P 3 i e g

Je>0V BeB(a)(SI(f,A)QSl(f,A+B)),

(f5 ) { \{} Nn( s(’ bl )< )} T t5

i.e., the set of weak] i j i
. y efficient trajectories (see

. 7 ! .
inclusion P(f, A)c SI(f, A) yield the follﬁ)win[g] Tone A s ciden

THEOREM 1. If th ]
If the vector function f(t, A) possesses a-property, then the

equality P(f, A)= SICf, A) is .
5 3 s a .
) SRS sufficient condition of pseudo-stability of the

By definition, put .
N(t)y={jeN, ic; et}
The vector function f( is gai
t, A) is said to .
conditions hold for any index i e N. e e following
1) £ - ’
to the(?/ar)i l())lr any trajectory ¢ 7, the function f:(t,x) is constant with respect
! ables x-,jGN(E\l‘) d . S
J , and grows .
)] NG g with respect to the other variables
(B.2) for any trajectories
. tand ¢', the functio l :
W%th respect to the variables x,, j e N(£N1') n 1 (1", x) keeps their mark

THEOREM 2. :

gluality B A)2 ‘I*J;ll:;? 1/)‘Ie)Ct'Orﬁmcnon S (2, A) possesses f-property, then the
1 ™ > s d neces oY ‘a ) ]

P(f, A). essary condition of stability of the Pareto ser

Proof. Assume that the vec i Ity
tor function f(¢, 4)
i - ' » A) possesses 3-prope
‘ 0 s.et P(f,A) is stable. Suppose the -opposite: P(f, A=S y and'the
there exists a trajectory ¢ € SI(f, A)\ P(f, 4) ' PRI e
By definiti ol
1 y detinition of the set SI(f, A), for any trajectory ¢' €T\ {t} there exists
index s e N, such that 1 (z,t' a*) < 1
,, <t <0. For any positive n

i umber ¢, there exi

number & > 0 such that the perturbing matrix B = {b,}, .. with the el rctexms

i $ i xm ements

i

{_6, il ol &)
8 if ieN,, jeN(E\n

b :
‘elongs to the set B(e). In view of condition (B.1), we have

! $ §
T_r(tat a +bv):rx(tat,,as+c+d)’
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here '
whe B, jeN(Nt'),

n
Cc, = :
C:(C'I‘CZ""’CIM) eR ¥1d {0 otherwise,

-9, if jeN(\t'),
" = 1 e N(t'\1),
d=(d,,d,,...,d,)eR",d; =4 8 if Jj
| 0 otherwise.

Usin :' (B.2), we get t,(f,¢"a’ +¢)<0. Since one of the sets 7\¢',¢'\t is
sing (B.2), ., s
nonempty, by condition (B.1) we obtain t (¢,t" @’ +c+d)<0.
Thus, we have
Ye>03 BeB(e) V' eT\{t}3seN, (1,(t,t'a” +b7)<0),

Le. Ve>03 BeB(e)(teP(f,A+B)).

-H nce: the set P(f, A) is not pseudo-stable (see (1)). The contradiction
€nce, >

oves Theorem 2. .
: Theorems 1 and 2 yield the following result.

COROLLARY 1. Assume that the vector function f(t, A) possesses a-pr}ol-
9 1 5 jff the
erty and [-property. Then the Pareto set P(f,A) is pseudo stable. iff
p - ]
equality P(f, A)=SI(f, A) holds. : ‘
The set P(f, A) is called quasi-stable if

de>0V BeB(e) (P(f,A)c.P(f, A+ B)).
-pr hen the
- Evidently,: if the vector function f(f, A) possesses a-property, then
following statement holds:

Je>0V B eB(e)(Sm(f, A) cSm(f, A+ B)),

. ‘a' i Smale
where Sm(f, A)={teT:Vt'eT\{t}3ieN, (t,(t,t',;a")<0)} is the 'n(‘ilent
4 y 5 4 - . 1
t, i.e., the set of strongly efficient trajectorlt.:s (see [9]). This and the ev
?zc,luéic"),n Sm(f, A)c P(f, A) yield the following result.

the
TflEOREM 3. If the vector function f(t, A) possesses a—pr.operz?),. the; g
lity P(f,A)=Sm(f,A) is a sufficient condition of quasi-stability o
equali ,A)= ;
Pareto set P(f, A).
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LetieN, . If for any trajectory ¢ €T the function L,

X) has no constant
intervals with respect to the variables x ;»J €N(2), and this

function is constant
with respect to the other variables x ;»J EN(E\L), then the function £, (¢, X) is
called special.

The following lemma is evident,

LEMMA. Let ¢,¢' éIT,p EN(t\t"), s eN,.

If the Junction  f.(1,x) is
special, then

(2) VxeR" Ve>0 3§ e(—s;e)(ts(t,t',x'+6ep)¢0),

. . m
wheree, is the P-th basis vector of R

The vector function S, 4) is said to possess y-property if theré exists a
special function among the components of f(¢t, A).

REMARK 1. It is evident that the vector

functio_n S(t, 4) possesses Q-pro-
perty, B-property and Y-property if

VieN, fi(t,x)=g( 2> Jy(x)),
JeN()
where g(x) and S (x) are continuous growing functions.

If all the partial criterig are of MINMAX kind, then the vector function
S (2, A) possesses a-property only.

THEOREM 4. If the vector Junction f(t, A) possesses Y-property, then the

inequality P(f, A4)= Sm(f, A) is a hecessary condition of quasi-stability of the
Pareto set P(f, A).

Proof. Assume that the functlon Ji(t,x) is special and the Pareto set
P(f,A) is quasi-stable, Suppose' the opposite:  P(f, A) # Sm(f, 4), ie.,
there exists an efficient trajectory ¢ that is not strongly efficient. Then there
exists a trajectory ¢’ eP(f, 4)\{1) such  that ©(2,t', 4)=0. Without loss of
generality, put £\¢' =@, peN(t\t’).' Using the lemma, we get (2), ie.,
T (1,1'a° +5°) %0, where b° is the s'-t'h'string of the matrix B = {6} With
the elements

y _{0, it (i, /)% (s, p),
YLt ()= (s, p).
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Taking into account the equality ©(z,1', A) =0, we obtain
Vizs (t,(,t',a +b)=0),
t1,(¢,t,a" +b°)#0.

11 the memberships
i "¢ P(f,A+B). Ifwer_eca _
, either t ¢ P(f, A+B) or t' & . - A
It{etr: Cee P(f, A), we see that the Pareto set P(f, A) is not quasi-stable. The con ‘
diction proves Theorem 2. .
’ Tﬁeorems 3 and 4 imply the following
COROLLARY 2. Assume that the vector function f(t, A) possesses oc—p;*.o-
‘ . 3 - . l
ty and y-property. Then the Pareto set P(f, A) is quasi-stable iff the equality
per - !
P(f, A)=Sm(f, A) holds. ‘
The Pareto set P(f, A) is called stable if

Je>0 V B eB(e) (P(f, A)=P(f, A+ B)).

Clearly, the set P(f,4) is stable iff this set is pseudo-stable and quasi-
e 3 b

table. :
" Theorems 1 and 3 yield the following

the
THEOREM 5. If the vector function f(t, 4) possesses a—pr?uertl);,.l .ttiz}e:fthe
‘ J j dition of stabili
jon 'S ; A)= =SI(f, A) is a sufficient con
relation Sm(f; A)=P(f, 4)
Pareto set P(f,A4). P MR
Evidently if the vector function f(t, A) possesses P pro?rellrty, e
[ \ . . re ,
vector function possesses y-property. Using this, Theorem 2 and Theo
obtain the following result.
- then the
THEOREM 6. If the vector function f(t, A) possesses B. ;?ropeizty,l : eyn ]
jon Sm(f, Ay=P{f, =SS A) is a necessary condition of staviiily of
relation Sm(j,A)= ) ,
t P(f,A). | | -
o PaI:eto Si"heo(r}ecm 5 and Theorem 6 we obtain a necessary and sufff'ﬁllentacg:l
: . . . e ]
dition olt(") rsr’tlabili‘ty of the Pareto set that is formulated in the beginning o pap
COROLARY 3. Assume that the vector function f(t, A) possesses a—proie)r t—y
and B-property. Then the Pareto set P(f, A) is stable iff the equalities Sm( 7,
=P(f,A)=SI(f,A) hold ~
REMARK 2. Evidently, the afore-mentioned results are valid in the cc;se when
the functions f;(t,x),ieN,, are defined on arbitrary open subsets of R™.
e i s bl na
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REMARK 3. It is easy to show that the restrictions imposed on the vector
Junction f(t, A) in Theorems 1-6 cannot be omitted unconditionally.
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