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GENERALIZED STANCU-POLYA CURVES"

D. OCCORSIO, A.C. SIMONCELLI

1. INTRODUCTION

Bézier curves are widely known as one of the basic tools in Computer Aided
Geometric Design.

The Bézier curve corresponding to a control polygon P=[Po .:.Pm]T,
P, eR’, is an m-th degree polynomial curve whose parametric equation is the

-following
(1.1) B,[P1()=3 p, ()P, t€[0,1],
j=0

its blending functions being the Bernstein basis polynomials
(12) ' p,",,-(t)=[ J t(1-1)",
NJ

Then each component of (1 .1) can be regarded as being obtained by mean\s‘of
the Bernstein operator B, from any continuous function f such that fi/my= -

=P%,i=0,...,m, through the relation

B, (1)=B,(f;1), t€[0,1],

where either ¢ = x or ¢ = .

Piecewise Bézier curves, such as B-spline: curves, also widely used in
CAGD, are usually considered as the natural generalization of Bézier curves ([1],
[3] and [4]). But polynomial generalizations can be introduced, too, namely
polynomial curves that depend on some parameters and, for special values of
these, reduce to Bézier curves.
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Pélya curves considered in [1], [2], [6] are such curves. Their parametric

equation is

(1.3) Sa[P1()=Y we (P, t€[0,1]; aeR,,
j=0

where the blending functions are the Stancu basis polynomials [13]
' m t[j’_u](l—t)[m_j’_u]

(1.4) we (=] e

J

with 1 1.

t{h,ﬂ] = g

tt-a)...(t=(h-Da), h=1,

m-|
1
and mm =ER—{—;}’“‘.

- Denoting by S, the Stancu operator [
~curve (1.3) (c=x or y) is given by

S, (O=8,(f30, 1[0, 1],

13], the component ¢ of the Pdlya

i j =P i=0,....,m
where, again, fis any continuous function such that f(i/m)=P°, i=0,

i i = d to
Stancu polynomials specialize to Bernstein polynomials for a =0 an

i ro=—1/m,
Lagrange polynomials based on equally spaced knots in [.O, l]ff(’;1 (xLa anr;e
therefore (1.3) reduces to (1.1) for =0, and to the equation of the Lagr

= i hen
curve interpolating the control polygoni P for a=—1/m. In this sense, w

oe [—i 0} ; Pélya.cﬁrves link Bézier to Lagrange ‘curves [5].
m

1 i . 0 b Jm and b

assume o, €.J,, unless it is stated otherwise. ‘ %! "
A different polynomial generalization of Bézier curves is 1ntr0du§ed91n [;hg
and [12] by means of the generalized Bernstein operator B, , ([8] and [9]).

* latter is defined as
B,,=I-(I-B)", keN.

Curves in this new scheme can be defined componentwise by

B (=B, (fi0), te[0,1); f(i/m)=P5\ i=0,....m
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for c=x and ¢ = Y. We refer to them as GB curves (Generalized Bézier). Their
parametric equation is

(1.5) B,..[PI)= Y s ()P, 1e(0,1], ken
J=0

and their blending functions are
k L[k i1 pi-1

(1.6) Pry()=Y L) EDTB i),
=1

where B denotes the j-th iterate of the Bernstein operator, i.c,, B} =B/"\(B),
B) =1

GB curves also link Bézjer to Lagrange curves, since the polynomial
B, . (f) reduces to B, (f) if k=1, and it tends to the Lagrange polynomial

interpolating fon the equally spaced knots as 4 — oo [8].

Furthermore, as proved in [11], equation ( 1.5) can be put in the following
more convenient form

(17) B, ,[P](1) = iopé,’f} )T, 1€[0,1],

and the Bézier polygon T of the GB curve is related to its contro] polygon P by
means of a simple vector relation, namely

(1-8) T:[TO"'-,Tm]T_—-_Cm’kP’

where C, , is a centrosymmetric matrix that can be computed from the collo-

cation values of the Bernstein basis at the equispaced points {i/my . Actually,

Cox 1is the transformation matrix between the Bernstein basis and the

{P,E,/f} (1)}] -, basis in the space IT,, of polynomials of degree at most .

The main difference between these two generalizations of the Bézier scheme

Pélya curve reduces exactly to the Lagrange curve for o=-1/m, while the
Lagrange case is just a limiting case in the GB scheme.

However, Pélya curves also have drawbacks. If m is large, they exhibit
instability phenomena when o approaches — 1/m, [7]. Furthermore, in such case
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2d can be expressed as linear combination of iterates of S,, - i Cp .
= ’ lygon P=[Py...F,1 >
ding to the control polyg
The GSP-curve cOrrespon
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J

2, (1)=8%,(fs0) tel01) f@/my=Pi=0,....m,

a ";: zndlc _ﬂi;n §¢ . reduces to Sy, while if =0 it reduces to B, i,
) ==L M,k ]

/is an extension of both the class of Pélya curves
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properties in Section 4, and present efficient evaluation algorithms in Section 5.
Finally, in Section 6, we give graphical examples, showing cases in which careful
adjustment of the two. parameters permits us to obtain GSP curves that mimic very

closely the control polygon, avoiding the instability problems related to Pélya
curves.

2. PRELIMINARY RESULTS

In this section we show that

(2‘1) {Sz(t)}ae.lm C{Sma,k(t)}uelm,keN‘

Since, obviously

VaeR, S,(f)=S8u.(f)
it suffices to prove that a. € J,, and k € N exist such that

2.2) St (V) &SH(Npey, -

Indeed, we shall prove that, for any fixed k> 1, A, a finite subset of R, can
be determined, such that (2.2) holds Va €(R,, —4,)NJ,. This means that there

are infinitely many values of o such that the corresponding GSP curve is not a
Pélya curve for the same control polygon.

In order to prove this result, we shall resort to the same technique, based on
operator's eigenfunctions, as used in [7]. For this, first we need to derive some
properties of the spectra of S, and of Sy ,.

By definition, v(a) is an eigenvalue of S%, and ¢(x) is a corresponding

eigenfunction, if S, (g;x)= v(a)q(x). Since S, transforms degree i polyno-
mials into degree i polynomials if i<m [13], its eigenfunctions must be

polynomials of increasing degree, {g, (x)}-o. Therefore we are able to state the
following

LEMMA 1. The cigenvalues {v,(@)}"., of the Stanc operator So are

[, 1/m]
(2.3) v, (@)= =My, g 0,

_-l[i?_a] = 1[!\-0:] ] Y /(N

where A; (i=0,...,m) denote the eigenvalues of the Bernstein operator. The

eigenfunction corresponding to v,(a) is a polynomial of degree i,
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Proof. The method of undetermined coefficients can be applied to determine

both the eigenvalues and the coefficients of the eigenfunctions of S, starting

from the relation S;(g;)=v;(a)q;, in a similar way as done, for example, in
[14]. O

Remark 1. The first four eigenfunctions of S, are :
2 3 3 2
go(x)=1, q,(x)=x, ¢, (x)=x"-x, g;(x)=x -y X tox

We recall that these are also the first four eigenfunctions of B, and of
B, .. Vk [7] '

m k>

LEMMA 2.The eigenvalues {G, (., k)}[_, of the operator S, , are given by

(2.4) o,(a,k)=1-(1-v,(a)*, i=0,...,m,

where v, () denotes the i-th eigenvalue of the Stancu operator. The correspond-
ing eigenfunctions are those of S, . -

Proof. 1t is straightforward from (1.9) and from the fact that S}, is a linear

operator. [
Remark 2. According to (2.4),if o € J,,,k € N, then 0<v,(a) <o, (a, k)<L,

i=0,..,m
Now we are able to prove the following

.THEOREM 1. If f elly, k>1, J, =[-1/m,0], there are infinitely many
values o €J,, such that

(2.5) Sp e ())2SH(S) YBed,.

Proof. Since {g,};_, is a basis for TI,, exist {a,})_,,a, €R such that
F(x)=ayqy(x)+a,q,(x) +ayq,(x)+ a,q, (x). Therefore, because of the linearity

of the operators involved, the relation

(2.6) Se x (f)=85(1)
is equivalent to
3 3
2.7) Y a0,(0,k) g, =, av,(B)g;.
i=0 i=0

7 ’
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According to (2 3) and (2.4), (2.7)
< . . “4), (2.7) reduces to the followin t
algebraic equations on B, in which £ is fixed, while g, is a parametegr e

AL {azvz(B)=a2(l—[1—v2 (o)1)
4393 (B) =ay (1-[1-v; (a))").

Relations (2.8) trivially hold in the case a, =a; =0, that is, if fis a linear
function. Actually, in this case, S, . (f)=S%(f), Vk. Indeed, this fact is well
known [10].

Suppose, now, that we are in the case a, #0,a; =0. Then the system (2.8)
reduces to the single equation on 3 ' )

Va(B) = (1=[1-v,(a)]"),
which yields the solution
A‘E

(2.9) .
B on 1.

This is always an acceptable solution, since if ¢ J, (2.9) implies that also
B €J,. Therefore, if /s a quadratic polynomial, for any o eJ there is one ‘and
only one value of 8 such that (2.6) holds, and it is given by (2.9).m

L(j.t us now examine the case a, = 0, a; # 0. In this case, (2.8) reduces to the
quadratic equation on 3 J

(210) 2B2+3B+[1—' 7L3 -0
03(0': k) i
Since
A= 1+_8)"3\> 0,
0-3 (aa k)

equation (2.10) admits real solutions B, <B,, namely

(2.11) 3, A
' P 4 4’
3 A

b, 4 4

I, If o eJ,,then B, <~1/m isnot an acceptable solution. B, ,on the contrary
1sin J, , so it is acceptable. ,
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Therefore, if fis the polynomial
f(x)=agqy (%) +a,q,(x) +asq;(x),

for any o €J,,, one and only one value B(a, k) can be determined according to

equation (2.10), such that (2,6) is satisfied, and it is given by (2.11).
Finally, we must examine the case a, # 0,a; #0. In order to be a solution of

the system (2.8), 'must obey (2.9) and (2.11) at the same time. This can only
happen if the parameter o is a solution of

2.12) __12___]:1(\[“_33:_3)
o, (0, k) 4 oy(a, k)

Indeed, (2.12) is a 4k degree equation on Q. Therefore, for any fixed
k>1 there are at most 4k different values of o such that the corresponding
system (2.8) admits a feasible solution. Let us denote the set of these values
by A, ={&,,0,,...,0 ), then, for any fixed k> 1, 4, is a finite set and there-

fore J, N(R,, —4,) is infinite. Furthermore, under the theorem’s assumptions,
Vo ed, N(R, —A4,) (2.5 holds. U

3. VECTOR FORM OF THE S,‘,f’k(f) POLYNOMIAL

In order to keep our notation not too cumbersome, in the following we shall
drop the index o from the symbols denoting the operators or the relative blending
functions, the dependence on the parameter o being understood anyway. We shall

write S, for Sy ., w, (t) for w, ;(¢), and so on.
It follows from (1.9) that
k .
G.1) Spi=1-U=8,)"=2 [ _](“1)"415,{,,
J

Jj=1
where S/, =S, (S5'), S =1.

m

Therefore, for any continuous function £, the polynomial S, , (/) is given
by

k(K L
S (f31)= ( ] (=17 SA(f5 ),
J=1 J
which easily yields the expression
(3.2) 8 L= w,ﬁ,"?(z)f(ij, 0<r<l
- m

9
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in which
k (k |
(3.3) Wl ()= ( _)(—l)f"sz;‘%w 30
. j=1\J g

Now we derive a different, mor
. e handy form for the pol i
namely a vector form. penem S ()

THEORE :
| OREM 2. For any function f eC’([o0, 1)), the polynomial § 2
admits the following representation "

(3.4 Spe (Fi)=w, (DT C2 1,

or, equivalently, the blending functions (3.3) satisfy
w0 =w, e,
 where |

.w£f>(r>.=[wa%(tx..‘,w;fZ,,(t)]T, W (D =[w, o(1),...ow,, ()]

fm Z[fO’fli""fm]T fl :f(i/"n)

B-3) G =l + Ly~ Ay (@) + (L, ~ A, ()2 +..(I, — A, (@)

keN,
and A,,,(a) GR(WH-I,IrH:') .

is the collocation matrix of the Stancu basis polynomials

at the poinis {i/my" ;| ie.

(3.6 . ’
) (@)=, ;)i20,om =0, m> LT an,j(i)
m

- .
Proof. According to (3.5), an equivalent form for (3.4)is

S (f31)= Wm(t)rli (k) (—l)f'/I,',,_'(Ot)}f' :
i "

i=
Therefore, to prove (3.4) it suffices to prove that

(3.7) Su(fsty=w, ()" 4 ")t, i=1,... k.

m

We can do this by induction over i

1 Si B . )
=1, we assume that it holds for some i an ot e e

d prove that it does for i+ 1,
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)
too. Denoting by A/ (o) the i-th power of 4, (o), and by aj’ its elements,

we have

) " i .k s
S;”(f;t)=Sm(Sln(f);’)=kZ0 w’"'k(t)S"'(f’Z) B

k=0 1=0 j=0

m ] i (-1 _
= f(—) 2 Wk ()Y ayay ™ =

I=0 m/ —o i=0

=3 1Y) v 0w, 07 4@,
m

ich proves our assertion. {J . .
' V\p}e want to point out explicitly that, for a =0, (3.4) yields (1.7) in vector

. . x In
form (see[11]). Moreover, we observe that C, , is a centrosymmetric matrix
| i c=¢, .. ; holds,
fact, denoting its elements by {c; ;}, ;o ,, the relation ¢, , =¢, , ,_;
m
Vi, j =0, m. Furthermore, Vi=0,m, » ¢, =1 holds.
> s =

As regards the eigenvalues of C,, , , we have the following

. 43
THEOREM 3. The eigenvalues of the matrix C,, , are

[1-(-v(@)*]_o,(c. k)
v.‘ (0') V_,v((l)

where v, (o) and o (o, k) denote the eigenvalues of S, and of S k> Tespec-

, 1=0,...,m,

(3.8) p(a, k)=

tively. i .
Proof. We prove that the eigenvalues of the matrix 4,, (o) are {v,(a)}/,

i ion of S
then the assertion follows from (3.5). Let g,(x) denote the eigenfunction of S,

corresponding to v;(c.) , so that
(3.9) Su(g;)=vi(a)g;, m=zi, g; €ll,.

Setti
e W, (1) =W, o (1), ..cs W, (D]

@ (1) =[go (1)s, 9,0 (D)
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1i=1a,00),9,(1/m),....q,(1))"
Fz[yo,y,,...,ym], Aza’z‘ag[vo(a), v, (oc),...,vm((x)],

(3.9) can be rewritten as

WulD'Y =g (v (@), i=0,...m,
that 1s,
(3.10) W, ()T =q,(n7A.

Grouping together the vector relations obtained setting £ =, I/m,...,1 in
(3.10), yields the matrix relation

A(a)T =TA.

I" is nonsingular, since {4:}/_ ¢ is a basis for the Space I1,,, therefore

(3.11) A(a) T =TAT,

by which A(a) and A have the same eigenvalues {vi (@)}, and the assertion

follows. 0

m?> m

Remark 4. Tt follows from Theorem 3 that, for o, e J C“‘k is nonsingular
and, therefore, {w,f,’f} (t)};f’zo is a basis for the space of polynomials I1,,. We
deduce from Theorem 2 that C, « is the transformation matrix between the two

bases {w,,, (1)} and (W) (03"

4. DEFINITION AND PROPERTIES OF GSp CURVES

Given a control polygon P=[P0,...,Pm]r,Pj eN?, we define the related

Generalized Stancu-Pélya curve (or GSP curve) as the curve of equation

kenN,

m?

.1 S;i‘,k[PJa):ZOw;f}(r)P,-, 1€[0,1; oeR

where the blending functions ¢

m,

;. are given by (3.3).
In vector form:

4.2) SuePUO=wE ()P, ¢efo,1),
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43) S5 (1)=S,, (f30), £ €[0,1]; f/m="r, i=0,...,

i i ition:
This is equivalent to the following componentwise defini
m;, c=X,).
i i i the- para-
Special cases of GSP curves, corresponding to special choices of thep

eters o and k, are: :
- 1) Lagrange curve for a = —-1/m and Yk eN;

2) Lagrange curve for o eR, and k - ©;
3) Pélya curves for a. €R,, and k=1;
4) GB curves for a =0 and k e N,

5) Bézier curve for a =0 and k= 1.

i rt .
Now we prove some geometrical propertics of GSP curve

Pélya form of GSP curve. Setting

(4.4) T =[T,,.... T, 1" =Cn kP
according to Theorem 2, equation (4.2) takes the form

(4.5) 8, ([P1(1)=w, (O T, 1€l

e curve allows us to observe that GSP

If the Polya curve of a different control
s can be

This new form of the equation of.th
' ked upon as being itse ;
g e e"I‘he:I;efore, all known algorithms for Pdlya curve

polygon, namely T garded as Polya curves with respect to

used for GSP curves, provided these are re
the new control polygon T*.

Bézier form of GSP curve. Furthermore,, since
w, ()] =0, ()[4, A4, (W)

\ = r i i ix of the

h (xX)={ppolt)s..sP (O], A,, denotes the collocation matrix 0

ere p,\x m,0 s ey Pmm H _
| my} (o) denotes the collo

Bernstein basis at the equispaced knots {i [m}l,, and 4,(a) d

i nd (4.5) that
cation matrix of the Stancu basis given by (3.6), 1t follows from (4.4) and (4.5)

(46) Sm,k[P](t):pm(t)TDa’ t E[O’ 1]’
where )

DY = Dm,kP
and

De, =[A4, A, (@] C -
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Relation (4.6) is analogous to relation (1.8) in the sense that it gives some
insight of the geometrical nature of GSP curves, through knowledge of its Bézier
polygon.

Some geometrical properties of GSP curves can also be deduced directly

from the corresponding properties of their blending functions (3.3), following the
scheme given in [6].

The rest of this section is devoted to this. But first we want to point out
explicitly that, since GSP curves do not enjoy the convex hull property, that is,
they are not in the convex hull of their control polygon, just as Pélya curves with

o €J, are not, relation (4.6) is a tool of great practical value, as it provides a
means for deterﬁn'ning a convex region in which the curve fully lies, namely the
convex hull of its Bézier polygon D*.

We must also notice that, since they do not enjoy the convex hull property,
GSP curves are not variation-diminishing, either. But they are endowed with the
following geometrical properties:

Well defined. From Z ¢; =1, Vi=0,1,...,m and Z W, () =1 it easily
/=0 /=0
follows that Z w,(nkz (£)=1, which proves that GSP curves are well defined
J=0

(see [6]).

Smoothuess. It is trivially true since GSP are polynomial curves.

Endpoint Interpolation. This property holds if the following relations hold

‘ Sm,k[PO""’Pm](O):PO5 Sm,k[PO""’Pm](O):Pm'

And, indeed,

S, [P10)= 2, i (OB, =3 B, > w,,(0)c,, = P, , =P,
‘ j=0 J 2o )

=0
since ¢, , =0, j# 0. The second relation can be proved similarly.
Symmetry. Symmetry property holds if
w,(n’i )= wfn/f?n__ =0, te[0,1], j=0,m.
Since C) ' is centrosymmetric and W, ()=w, ,_.(1-t), then
& m
k
wr(n,.)/'(t) S Z W, (1) G ;=
i=0
n,

al k . - ‘
" ZJ wm’mﬂ'(l_l‘)cm—i,m*j :wr(n,?n—j(l_[): ]:0,...,772.
i=0
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i urve i : ro-
Reproduction of points and lines. Since the curve is well. (%eﬁn?g,c ;:Ii >
duction (f)f points is assured. As regards the reproduction of lines, it is su
u

prove that ;

. (k) =
E W, .(t)_mt.
(47) j=0.] s

i 10
Slnce [ ] Sm k(e];t)=el (t)! e] (t):t,

4.7) follows. | | |
( Nondegeneracy. The curve is well defined, and its blending funcjlonso(?;}.sz
are a szis for the space of polynomials of degree m (see Remark 4), s
property holds, according to [6].

5. RENDERING ALGORITHMS

i from
Efficient rendering algorithms for GSP curves 1catr'l beofolgznzcliending
i on
i 4.6). These do not require eva uation. ¢
slrueh b resorting, instead, to (4.1)
i (k) h value of the parameter ¢ as ,
tions w, ’;, at eac ‘ . Y
ivu::;zl requir:ej. Moreover, the use of an expression of type (1.6f)f ntlayozathe
computational instability, while these algorithms do not. For effects

i es see, for instance [12]. ,
evaluif(;roiif)}; tZuEZ.S), S, [P] can be regarded as the Pélya curve of the new

i first, from (4.4), and then the points

n, T ; this can be constructed , : : :

g(fnglreo 1cgfxllzgcoan be rendered by means of any known algorithm for Pélya curves
applied to the polygon T“.

hich O Mo 2 -
h ntrosymmetric matrix C. ,, which requir k 2) long opera
of the centrosymmetric matri le k> ch requires ( 5 ( ) |

i tive of
tions. However, this construction needs to be performed -only onbce, 11'r:rslgzcr:ed "
t;lo n.umber of points to be rendered, n. Once the first point has ef?ntr o c:m/e

dilitional computational effort required for render%ng one moreh poin (())Irll o
ias just that of performing one Pélya recursive ;ilg(;nthé:ls, Ifocr ue;i(e: ; lcsor;?; s th.an .
i his algorit or _
Obviously, the total cost of t | : B nceenlen (00
i 5 t the difference is negligi .
algorithm for Pélya curves, bu : ' =
e Oafs:ni isgmuch less than the cost of direct evaluation of the blending functi
any case, :
(3.3) and of expression (4.1).
Moreover, taking into account that

C,:kn :C::,k +(1—A'"(a))k’
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whenever, for a fixed value of &, not only the #-
(k+ 1)-th must be plotted, the procedure needs not
only a matrix product must be performed, with
operations, .
Finally, if the value of k£ can be ¢
P=12,.. . will drastically reduce the comp

th GSP curve but also the
be entirely repeated. Indeed,
an additional cost of m’/2

hosen freely, allowing for k=271
utational cost, since

o

—1 g
Cnr = Coam #U= A, @)™ €2, peia

In this case, the construction of the matrix C,. + is carried out in D steps with pm®

long operations, where p=log; k.

6. GRAPHICAL EXAMPLES

In the following examples the results that can be obtained by means of the
careful joint adjustment of the two parameters are illustrated.

As we have pointed out before, Pélya
the control polygon closely but they m
instability phenomena, The GB curve scheme, on the other hand, does not suffer
from such problems, yet it has some drawbacks too, that are related to itg
dependence on a discrete valued parameter, k. These facts were illustrated by
examples in our previous paper [7].

Availability of the two handles at the same time, in the GSP scheme,
permits us to overcome both limitati
sufficiently far from ~1/m, so as to avoj
closer to the contro] polygon, thus
illustrated in the examples below.

ay exhibit undesired wiggles, due to

approximation. GB curve corresponding to k=2
corresponding to o = — ()03 (Fig. 1c) and to o =
Ximations, but stil] not quite satisfactory. F ally,
the two barameters, an almost perfect smooth rep
is obtained (Fig. 1f).

Fig. 2 illustrates how the wi

= 1/m tend to be Cxaggerated by increasing of (Fig. 2¢ and 2f) but 4 careful joint

- 0.036, provide better appro-
combining the optimal values of
roduction of the contro] polygon

means of Pélya curves (Fig 2¢) or of GB curves (Fig. 2b) alone.
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Fig. la— o =0., k=1, Actually yields a
Bézier curve.

Fig. 1c—o.=—0.03., k=1, A Pélya curve.

Fig. le — Polya curve obtained for
a=-0036,k=1

Fig. 1d — GSP curve foraa =-0.03, k=2,

Fig. 1f— GSP curve obtained for a
o=-0.036,k=2.

i - ntrol
ig. 1a - 1f, Different GSP-curves are obtained from the same 18-p0.mt bottle-neck-shaped co
el polygon by means of diffrent choices of the pair (¢, k).
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Fig. 2b- GB curve: o = 0., £=10.

Fig. 2¢ - Pélya curve: ¢ =— 0.027, k=1, Fig. 2d - GSP curve: o = - 0.027., k=10.

Fig. 2e - Pélya curve: o = — 0.045., k=1,

Fig. 2f ~ GSP curve: o= - 0.045., k=2,

Fig. 2a — 2f. Reproduction of a v-shape. Adherence 1o the control polygon can be achieved by means

of a careful choice of ¢ and k.

—

5 e
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: 25 ; . : , - The third figure illustrates the behaviour of Pélya, GB and GSP curves with
— - = I\ respect to a fourtyone control points, located on the boundary of an aircraft. This
] control polygon was firstly proposed in [7]. As we can deduce from F ig. 3a and 3f,
| ] the Bézier curve is a poor approximant of the contro] polygon, while the Pélya
% curve for o =—0.022 (Lagrange curve is obtained for o = — 0.025) is definitively
osf unacceptable. For this control polygon graphical tests performed in [7] allowed the
of authors to conclude that the GB curve for k=10 was a satisfactory approximation
as} of the control polygon. GB curve for k=10 is shown in Fig. 3b, while in
N Fig. 3¢, 3d and 3e there are given GSP curves for o=~ 0.012 and k=1, k=35,
Ll k=8, respectively. As we can see, the optimal values of the two parameters are
13 | o 0 =-0.012 and £ = 8. In fact, in this case the corresponding GSP curve shapes the
2} I : | " ; ; " - . + A control polygon better than the optimal GB curves for & = 10,
28 : - ' 3 4 § A
How Y 2 | Fig. 3b — GB curve for k= 10.
Fig. 3a - Bézier curve. u . 7. CONCLUSIONS
25 - T Y ; : 2
2 t ] A new class of
1.5
1.5

polynomial curves is introduced, which generalizes well-
! known schemes such as Bézier and Poélya ones.

1 1
1

Key properties of the new schem
(K-

€ are its compact vector form and the
dependence on two free parameters. The

first property leads to efficient rendering

o algorithms and also provides precious practical tools such as easy computation of
i o its Bézier and Pélya polygons.

i 4 1 * Careful combined use of the two parameters allows for great flexibility, thus
S ) permitting us to obtain a close reproduction of the control polygon, bypassing the
15 ‘ | unpleasant instability phenomena that Pélya curves sometimes exhibit.

1 -2
b i . - A ; ' 5
BT o 1 2 3 A s [ 25 [ v 2 : U‘Ul?‘ :— 5
Fig. 3¢~ Pélya curve for o= 0,012, e e S —1 O
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