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l.INTRODUCTION

Bézier curyes are widely known as one of the basic toors in computer AidedGeometric Design.

The Bézier curve coresponding to a control polygon p=[po .,..p,fr,
Pr'R', is an m-th degree polynomial cuwe whose parametric equation is the
following

(1. 1) B, [p] (r) = f p,. ,(/) p; , / e [o, t],j=0

its blending fi.urctions being the Bemstein basis polynomials

(1.î) p,,.¡(t)=$,t(t-t),-i.

Then each component of ( l . I ) can be regarded as being obtained by means ofthe Bemstein operator B, from any continuãus frrnctioniruri,rru, f(t/m¡= -
= 1' , i = 0, ..., m, tltrougþthe relatìon

Bi(¡= B,(.f :t), t e[0,1],
where either c : x ot c: y.

Piecewise Bézier curves, such
CAGD, are usually considered as the
[3] and [4]). But polynomial gen
polynomial curves that depend on
these, reduce to Bézier curves.
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ffffiJ:i :;;r:;we 
refer to them as GB curyes (Generalized Bézier). rheir

(r.5) 8,,¿[p](r)=ån*),{ùn,, re[0,1], keN,
-¿=0

and their blending functions are

(1.6) py,)Ø=ä}(-r),- , B,*-, (p^,,;t),

U\,: ,:f 
denotes theT'-1¡ iterate of rhe Bernsrein operaro r, i.e., Bl = 8,,-, (8,),

GB curves also link Bézier to Lagange curves, since the poly.omialB..o(f) reduces to B,(.f) if k:1, and,it t"rra, to theiuOurr*. poly'o,rialinterpolating f ontheequally spaced knots as ft _+ oo [g].

-".. ffiffi;rrq 
as proved ìn [11], equarion (1.5)'cán be pur in rhe following

(1.7) B,,o[p] Ø=f rÍ,!,),{Ðr,, / e[0,1],
j=o

and the Bézier polygon T of the GB curve is related to its contror polygon F bymeans of a simple vector relation, namely

(1.9) T=[T0,...,T,,1r.=c,.rP,

where c,.o is a centrosymmetric matrix that can be computed from the collo_
cafion values of the Bernstein basis at the equispaced points {i r m},,,=0. Acfually,c^.t, is the transformation mahix befween the Bernstein basis and the
{nÍ!), {t)}';=o basis in the space rI, of polynomiars of degree at most m.

The main difference between these two generalizations of the Bézierschemelies in the range where their respeciiJ"" puru,o"ters take values. In fact, pólyacurves permit the passage fr, m a Bézter ry. t" a Lagrange cuve continuouslychanging its shape by meanr of the real valued parameter a, while GB curves,discrete parameter É ey'/ does not ailow such continu ous mo,rphing. tn addition,Pólya curve reduces 
:Iu:tly to the iugrung. curve for o = -t r m, whire theLagrange case is just a limiting case in th""GB scheme.

However, pólya curves also have drawbacks. If m is rarge, they exhibitinstability phenomena when c[ upprou.h". - r/m, [7]. Furthermore, in such case
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Pólya curves considered in [1], [2), [6] are such cr¡rves. Their parametric
equation is

(1.3) s;tPl (t)=iwï,,¡(t)P' r e[0,11; a"eff.^,
"/=0

where the blending flrnctions are the Stancu basis polynomials [l3]
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(1.4)

with

and fr, -n-

h=0

cr) . .. (t - (h-l) a), h> l,

wi.¡(t)=(î)Y+*.:

,lh,al -I-

t

l,

t(

k

n-l

Denoting by Si the Stancu operator [13], the component c of the Pólya

curve ( 1 ,3 ) (c : x or y) is given by

Sf, (t; = Si,U;/), / e [0, 1],

whete, again,/is any continuous function such that f (i I m) = P¡', i = 0,..., m.

Stancu polynomials specialize to Bernstein polynomials for o: 0 and to
Lagrange polynomials based on equally spaced knots in [0, 1] for u:-llm,
therefore (1.3) reduces to (1.1) for o:0, and to the equation of the Lagrange
curve interpolating the control polygon P for c¿ : - |lm. ln this sense, when

" .[-;,0], rofvu curves link Bézier to Lagrange curves [5].

In the following, we shall denote the interval [-l,o] by,I*,and shallL.')
assume cr e J,, unless it is stated otherwise.

A different polynomial generalization of Bézier curves is introduced in [11]
and [12] by means of the generalized Bemstein operator Bn ,t, ([8] and [9]). The

latter is defined as

B,.k=I-(I-8,)0, keN.

Curves in this new scheme can be defined componentwise by

Bí,,0Q)= B^,k(f ;t), t e [0,1]; f (i I m)= p' , i=0,...,m
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prop€rties in Section 4, and pr€sent efficie,nt evah¡ation algorithms in Section 5.
Finally, in section 6, wc give graphical examplos, showing cases in which carefi¡l
rdjushent of the two pararneters permits us to obtain GSÈcrrves that mimic very
closely the contol polygoq avoidirg the instability probtems related to póly;
curoes.

2. PRELIMINARY REST]LTS

in this section we show that

(2.1\ {,sj(l)}".r, c{sj,r(r)}" el,,keN

Since, obviously

VaeB", qØ=Si,r(f),

itsuflicestoprovethat ø e,/, and t el/ existsuchthat

(2.2) sj,r("f) É{,sj(,f)}p.r,.

Indeed, we shall prove that, for any fixed Ë > r, Ap, t finite subset of fi, can
be determined, such that (2.2) holds vo €(fB", .- AÐn Jn. This rneans that there
are infirri.tel)' many values of o such at the conesponding GSp curve ß not a
Póþ curve for ths same control polygon.

In order to prove this result, we shall resort to the sanne technique, l¡ased on
operator's eigenfi.rnctions, &s uscd in [7]. For fhis, füst we need to derive some
properties of the spectra of ,Sff and of Sfi, * .

By defiaition, v(ø) is an eigenvarue of ,9fi, and a(.r) is a eorresponding

cigenftnetion, if ófi {q; x) = v(c) q(.r). since ,sfi û,a¡rsforms degree r polyno-
mials into degree I polynomials if r<in [13j, its eigenfirnetions nnust be
polynomials of inc¡'easingdegrce, {q,(x)li=o. Therefore vve ar.e able to state the
following

Lel'nirn L. rhe eigenvølaes {v,(a)}[o af the stancuoperator sfr are

(2.3) v¡(*)=# =#, i=0,...,m,

where xi (i=,a,...,ffi) denote the eigenvølues of the Bemstein aperator. The
eigenfwnction carrespo?tding to v, (a) is a paþnornial o,f degree i.

4
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defined as

(1.e)

fl't¡t c'= x anó. c: Y'

If k= tr, then Sfi,, reduees to Sfi ' raihile if cr:O it reduces to B"''¡'

t=I-U-Sfi)*'$,

and can be expressed as a linear comtination of iterates of 
-Sfi 

'

The GSP-curve corresponding to the confrol polygon F = [Fo

P, eR.2, is defined comPonentwise bY

si,r(r)=si,rcf;f)' t e[0'1]; f (ilm)= P'" i=a'"''n'

P^ lt,



According to (2'r) and, (2.4), (2.7) rcduces to the folrowing sysrem of rwoalgebraic equations on B, in wtt "i lrìs nxeO, while q, is a parameter

(2.s) [or'r(P)= az(l-f7-vr(ü)]o)

Iorr, (B) = qt(t- 
[ I - y¡ (cr)]* ).

Relations (2,8) trivially hold in the case o2 = e3= 0, that is, if/ is a linear
fimction. Actually, in this case, ,Sj,* (.f)=SiU),Vk.Indeed, this fact is wellknown [10].

Suppose, now, that we are in the case q2 # 0,at =0, Then the system (2,8)reduces to the single equation on B

vz (Ê) = (l - [1 _ vz(o)]k ),

7
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This is always an acceptable solution, since if d €J,,, (2,9) implies that also
þ eJ,' Therefore, if/is a quadratic porynomial, for any cx eJ, trrere is one an<lon.ly one value of B such that (2.6) holds, and ir is giurn úy e..g)'Let us now examine the case a2 = 0, a, * 0.In this case, (2.g) reduces to thequadratic equation on B

zø'+sø+lr

which yields the solution

(2.e)

(2.10)

Since

Â = l+ uÀ, 
,0.

a,(a, k)

equation (2.10) admits real solutions pr < þr, namely

(2.1t) p 3^
t -- 4* 4'

3^
,) =--+-- 44

If aeJn,,then 0, < l rmisnotanacceptables lution. fJz,ontheconfrary,
is in ,I' so it is acceptable.

p
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Proof, The method of urdetermined coefficients can be applied to determine

both the eigenvalues and the coefficients of the eigenfirnctions of ^9ff, starting

from the relation Si@)=v¡(a) Q¡, in a similar way as done, for example, in

n4l. !
Remark 1. The first four eigenfunctions of ,Sff are :

6

qo(x)=1, qr(r)= x, Q2(*)= x' - x, 8t(x)= xt - 2x
a
J

,
I+-x.
2

We recall that these are also the first four eigenfi.urctions of 8,, and of
B,,k.Vk [7].

Lnvn¿e 2.The eigenvalues {o,(o, É)}Lo of the operator Si.u are given by

(2.4) o,(cr,fr)=1-(1-v,(ct))t, ì=0,...,m,

where v,(a) denotes the i-th eigenvalue of the Stancu operator. The correspond-

ing eigenfunctions are those of Ífi.

Proof. It is straightforward from (1.9) and from the fact that Sff is a linear

operator. !
Remark2. According to(2.4), if o e J,,k eN, then 0<v,(cr) <o,(cr, fr)<1,

i = 0,,..,m.
Now we are able to prove the following

THEoREM l. IÍ f elIr,k)1, J,=f-llm,}l, there are infinitely manv

values u eJ, suchthat

(2.s) s:.,,oî)+ s|U) YB eJ,.

Proof. Since {4,},'=o ir a basis for llr, exist {o,}?=,,a, e8 such that

f (x) = aoQo(x) + a,q,(x) t azQz(x) + arqr(x). Therefote, because of the linearity

of the operators involved, the relation

(2.6) ST,,.U)= Sf (,f )

is equivalent to

(2.7) f o,o ,(cr, fr) q, =t a,v,(þ) Q,.
t=0 i=0
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*l!,), r Ð= å [j) 
(-r¡,-' s],', (w *,; t)

Now we derive a different, more handy fonn for the poþomi al S,,o(f),
namely a vector form.

TlmoREM 2. For any function f eC0([0,1]), the poþ,uoryial S^.*(f )
admi ts the fo ll ow ing r epr e s e ntat ion

(3.4) S,,u(f ;t)=w,(t)r Ci.tf ,
or, equivalently, the blendingfunctions (3.3) satisfy

wlftç¡7'=w^(t)r c],0,
where

w, (/) =fw,,,oQ),...,w,,,(t)f' ,

f,,, =f-fo, f,,...,.f,f' ¡ = f(i I m)

(3.5) Ci,t =L\,,, t (1,, - A,(a)) + (I o, - A^(a))t + ...(1,,

keN,

and A,,(cr) e R(''*1'""t) is the coilocation marrix of the stancu basis porynomiars
at the points {i I m}|=', i.e.,

(3.6) A,,(a)=(a,,j)¡=0,...t,.j=0,..,n, o,.,=rr,,,.(L),

Proqf , i\ ccording ro (3.5), an equivalent form for (3 .4) is

s,,.*(-[t/) = w,,(/)7b f 1ì (_r), , ,r;,,-,'{¡]r:,,,.
Lã \i '/ 

' Dt '"''-i-'
'I'herefore, to prove (3,4) it suffices to prove that

(3'7) Si,(l;t)=wu,(t), A:,,-'(*)f;, i=t,...,k.
we can do this by inrluction over i. since (3.7) trivia'y hords ifi: I, we assurne tha-t it îords for some i and prove tnát it does for i 1.r,

in which

(3.3)

nl,!) Ø =t Í!)n(t),.,r!Í)^U)1,,

- A, (a))o - l,

D. Occorsio, A. C. Simoncelli 8
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(2.t2)

(3.2)

Therefore, if/is the PolYnomial

f (x) = aoQo(x) + a,qr(x) + arqr(x),

for any aeJ,, one and only one value p(a,k) can be determined according to

equation (2.10), such that (2'6) is satisfied, and it is given by (2'll)'
Finally, we must examine the case a, + 0, a, -t 0' In order to be a solution of

the system (2.8), p must obey (2.9) and (2.11) at the same time. This can only

happen if the parameter cr is a solution of

I
Indeed, (2.I2) is a 4fr degree equation on c¿. Therefore, for any fixed

k> | there are at most 4Æ different values of cr such that the corresponding

system (2.8) admits a fcasible solution. Let us denote the set of these values

by Ao = {ctr, d2,...,crou }, then, for any fixed Æ > l, Ao is a finite set and there-

forc J,, n(!(, - A) is infinite. Furthermol'e, under the theoretn's assumptions,

Yc..eJ,,, n(n,, -lo) (2.5)holds. I

3, VECTOR FORM OF THE Si,,tU) POLYNOMI'AL

In order to keep our notation not too c¡mbersome, in the following we shall

drop the index c¿ from the symbols denoting the operators or the relative blending

functions, the dependence on the parameter cr being understood illYway. we shall

write S,,,,0 for S,|,0 , wnt,¡(t) for wÏ,,,(t), and so on.

It follows from (1.9) that

(3.1) s,,,k = I -(I -s,, )o = É ll et)' ' s',,,
¡-t \J/

where S,1, = S,, (.ç;, ' ), S,Ï = ¡.

Therefore, for any continuous functionf the polynornial ,S,,,,r (/) is given

by

Sr,,t(f ;l)=

which easily yields tire expression

k

T [j) ,-', ' sf.1r:t),

s,.u(f:,) = Ë r!,!,lftr r(;), o< ¡ < I,
t=0



l1

that is,

(3. l0)

where the blencling fi.rnctions

In vector form;

w,,,(t)rl=q,(t)r'A.

Generalized Crrves

T ¡ = fQ, (0), q, (l / m),..., Q, 0)lr
f =[T 0,T t,....! ^f, t\= diag[yo(a),vr(o),

(3.9) can be rewritten as

w,(t)r y, = Q¡G)y¡ (c¿), i = o,

, v , (cx)),

137

1n

,ffi,

l(o) f =fÂ,
f is nonsingular, since {q,}ï=o is a basis for the space ll,n, therefore

(3. I 1) A(a)f = lÁl--r,
by which A(a) andÂ have the same eigenvarues {r,(a)},10, and the assertionfollows. u

Remark 4' It follows f¡om Theorem 3 that,for a e J*, cr,.o is nonsingurar
and, therefore, {*-[!),(t)]î=0 is a basis f'or trie space of pory'ondals rI,,. w,cdeduce from Theorem2 that ci,.o isthe transformation matrix between the twobases {u,,,,, (t)}ï=o and {wff,).,(t)}ï=0.

Grouping together the vector relations obtained setting t =0,1/m,(3,10), yields the matrix relation

4. DEF'INITION AND PROPEIITIES OF GSP CURVES

Given a control polygon p=lpo ,...,p^]r.,pr.sl2, we define the relaíedGeneralized Stancu-pórya cuve (or Gsp curve) as the curve of equation

(4'r) si,otpl Ur=äwl!),çt¡v,, / e[0,1]; o eR,, k eN,

w[1.) aragiven by (3.3).

(4.2) s,,olPl (t)=wff) e)'p, r e [0,1].

136 D. Occorsio. A. C. Simoncelli 10

too. Denoting bV A,(a) the Ëth power of A,(cr,), and AV ofl its elements,

we have

S,.t (f :r) = S, (5,(,f );ù = 
äw*.kG) 

S'^(f ;L) =

= ä'., o a>z \) ä* r,,(Ð':,- " -

-i{ ,f¿l f ,,,*(t)ioo,o(i,-,) =- L¿ J \*, o-o j=o

= f rl1') i *,.0() af)w,(t)'' A^(a) fn,,
,L*" \m, o=o

which proves our assertion, I
We want to point out explicitly that, for ct:0,(3,4) yields (1,7) in vector

form (see[l1]). Moreover, we observe that Cfi,o is a centrosymmetric matrix. ln

fact, denoting its elements by {c,,r),,¡=0,^, the relatioî c,,j =cm-i,m_¡ holds,

Vi,¡=0,2. Furthennore, Vi =0, *, icu =l holds.
j=0

As regards the eigenvalues of Cfl,u,we have the following

TmoREM 3. The eigenvalues of the møtrix Cfi.o are

(3.s) þ¡(a,k)= =i9?, i =0,.,.,m,
v, (o)

where v,(u) and o,(cr,,t) denote the eigenvalues of S^ and of 5,.t , respec-

tively.

Proof. We prove that the eigenvalues of the matrix A^(u) are {v, (a)}Lo,
then the assertion follows from (3.5), Lef q,(x) denote the eigenfi.urction of S,,

corresponding to v, (cr) , so that

(3.9) S^(q,)=v,(a)q¡, m2i, q, efI,.

Setting

w, (/) =fw,.o(t),...,w,n.,(t)]',

q, (/) = lq oU), . . ., q,(t)f' ,
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Relation (a.6) is analogous to relation G.g) in the sense that it gives some
insight of the geometrical nature of GSp curyes, through knowledge of its Bézier
polygon.

some geometrical properties of GSp curues can also be deduced directly
from the corresponding properties of their blending functions (3.3), following the
scheme given in [6].

The rest of this section is devoted to this. But fust we want to poìnt outexplicitly that, since GSp curves do not enjoy the convex hull property, that is,
they are not in the convex hull of their 

"ontroi 
polygon, just as pólya crwes withaeJ, a'e not, relation (a.ó) is a tool of great practical value, as it provides a

means for detennining a eonvex region in which the c'rve fully lies, namely the
convex hull of its Béner polygon D".

we must also notice-that, since they do not enjoy the convex hull property,
GSP curves are not variation-diminishing, either. nut they are endowed with the
t'ollowing geometrical properties:

,m and T. *,.,(r) = I it easily
Weli defìned. From 2",¡=1, Vi =0, l,

j=0
"¡=0

follows that ZrlÍ,',(t)=r, which pïoves that GSp curves are weÌr defined
-/=0

(see [6]).

smootþness" It is hivially true since GSp are polynomial curves.

Endpoixrt Interpolation. This property holds if the following reiations hold
S,,o [F0,...,p,](0) =Fo, S,,o [F0,...,p,] (0) =F,,,.

And, indeed,

S,,.0 [Pl (0) - \-
L,Wif) ror Pi I É w,.,(0) c,,¡ = Z Fi co,i = Fo,Pi
"/=0 j=0 i=0 j =0

srncc. c0../ = A, j t 0. T'he second relation can bs proved similarly.

Symrnetry. Symmetly property holds if
*lÍ)¡(t) =r::.),, _ i0- t), r e[0, t], j =a,m.

Since Cfi,, is centr,osymmeir.ic and wo,.,(t) = w,n.,, , (1_ t), then

,lÍ,)¡(t)=Ë r,n.,(t) c¡,¡ =
¡=0

J4.
= L *,,^-,(l-t)c,_,,,-, =*Í!,),_ j(l_t), j =0,...,tn.

i=0

t2
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This is equivalent to the following componentwise definition:

(4,3) S;,r (/) = S,,r (Í;t), r e[0,1]; f (i I m)= P'" ' i=0'"''ttl; c= x'l'

Special cases of GSP curves, corresponding to special choices of the para-

meters ct and fr, are:

1) Lagrange ctrve for a = -ll m and V& e N;

Z)Lagtange curve for o eE' and k -+ æ;

3) PólYa curves for ct eE' and k: l;
4) GB curves for o = 0 and /c e N;

5) Bézier curve for o = 0 and k= l'
Now we prove some geometrical properties of GSP curves'

PólYa form of GSF eurve' Setting

(4.4) To =[To '"''Tn

according to Theorem 2, equation (4'2) takes the form

(4.5) S,,o[P] (t)=wu,(¡)t'T'' t e [0' 1]'

ThisnewformoftheequationofthecutveallowsustoobservethatGSP
curve(4.1)canbelookeduponasbeingitselfthePólyacurveofaclifferentcontrol
polygon, namely T" - T'heiefore, all known algorithrns for Pólya curves can be

usedforGsPculves,providedtheseareregardedasPólyacurveswithrespectto
thc new control PolYgon T" '

Bézier form of GSP curve" Furthermore' since

w, (x)t' = P ^(x)' lA;1 A,,, (cL))'

where p,(x) =lpn,o(l),.'. ,p,,,,(t)f'' ,A, denotes the coilocation matrix of the

Benrstein basis at the equispaced knots {i I tn}i'=0, antl A*(a) clenotes the collo-

carion matrix of the stancu basis given by (3.6). it follows from (4'4) and (4'5) ihaf

S,,u [F] (t) = p, (t)t Ð' ' / e [0, 1],

Ð" = Dï,.tP

DÏ,.t =lA;t A,,(a)l C,i,o'

=CI,tP,It

(4.6)

rvhere

and



a fixed value of û,. not only the ¿_th GSp curve but also thcbe profred' rhe procedur" ,';d.;;;'¡ä Ji*rv repeared. Indeedproducr musr be performed, 
-ñ; 

; iäo,r,o'u, cost of m3/2
Finalry' if the value of k can be chosen freery, alrowing for k = 2p ,

p = 7,2,. . ., will drastically reduce tt 
" 

computational cost, sine e

cÏ,ro =cT,ro-, +e - A,,(a))ro-'ci,zo_,, p=1,2,...
In this case, the construction of the matrix cfi, o iscarried out in p steps with pm3long operations, wherep =log2k.

l5

whenever, for
(,t + l)+h must
only a matuix
operations.
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e obtained by means of the
trated.
erally allow us to reproduce
undesired wiggles, 

- 
due to

iiïl¡x1;'.äå:,;Ji:J
examplesinourprevious paperlTl. facts were illustrated b¡,

Availabilify of the ¡vo hun¿l'., at the same time, in the GSp scheme, actualrypendts us to overcome both rimitations.. For exampl., ã" can choose qsufficienrrv far from -Irm, so r. ;;^";; wìggres, *;;-ú"äe È in order ro co;ii:ä¿î'iil:Ï:Ï1,,::y.î:î'1" "u"r;;s ;-nrì;^iu-,îou.,oo .",,rt. ã,
In Fig. 1, the eighteer _point control

ïff .ä."1;"î:,î,ì".uu,,",;"*.,iil,;;Ëiirî;l jlrrì:frîït#"ìr,ïr::î
corresponding to cr :î d",ïf i:i':iiï,ï:1 :lnr,' ilJlå i:H 

^#:
ximarions, bur sr'r not quite .irrä.i"íliìnally, combini'gìhe opümarv¿¡rues of
ti:ilî:ä'¿ff :1î 

* almost p errect .mo otr' råproducti on;ñ" contro l p olygon
Fig' z 

'rustrates 
how the wiggles thatpóryacurves exhibit when cc is crose to- l/m tend ro be exaggerlrec bl increasing oT Gig 2" ;"d;;bur a carefur joinrchoice of s ancr É permits,".'a *rir "ierfect smooth reproduction even of av-shaped conrrol porvs,o:. yt r rrtãtp unei" (Fig. 2d). Thi. .;;;; be achieved bynteans of pólya curves (Fig 2c) o, of ðg .i*., (Fig. 2b) alone.
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Reproduction of points and lines. Since the curve is well defined, repro-
duction of points is assured. As regards the reproduction of lines, it is sufficient to
prove that

f ¡*::.,, (t) = mt.
j=o

S r,,t (et;t) = er(t), er(t) = t,

Nondegeneracy. The curve is well defined, and its blending functions (3.3)
are a basis for the space of polynomials of degree m (see Remark 4), so this
property holds, according to [6].

5. RENDERING ALGORITHMS

Efficient rendering algorithms for GSP curves can be obtained from
equations (4.5) and (4,6). These do not require evaluation of the blending
functions w[!), at each value of the parameter / as resofting, instead, to (4.1)

would require, Moreover, the use of an expression of type (1.6) may cause

computational instability, while these algorithms do not. For effects on the
evaluation of GB curves see, for instance [2].

According to (4.5), ,S,, k [P] can be regarded as the Pólya curve of the new

control polygon T"; this can be constructed first, from (4.4), and then the points
of the curve can be rendered by means of any known algorithm for Pólya crtrves,

applied to the polygon Tu .

A great part of the total computational effort is devoted to the constructjon

(4.7)

Since [10]

(4.7) follows.

of rhe centrosymmetric matrix Cfr,*, wtnchrequires ,(TU- zl) r*e opera-

tions. However, this construction needs to be performed only once, irrespective of
the number of points to be rendered, n. Once the first point has been rendered, the

additional computational effort required for rendering one more point on the curve
is just that of performing one Pólya recursive algorithm, for each component.

Obviously, the total cost of this algorithm for GSP curves is bigger than the
cost of any algorithm for Pólya curves, but the difference is negligible if n >> m.In
any case, it is much less than the cost of direct evaluation of the blending functions
(3.3) and of expression (a. l).

Moreover, taking into account that

Ci.o,, = Ci,.t + (I - A,,(c¿))r ,
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Fig, 2a - Bézier: a = 0., /r = I Fig. 2b- GB curve: q, = 0.. k= 10.

Fig. 2c -- Pólya crwe: a = - 0.027., k : l Fig. 2d - GSP curve: a = - 0.027., k : 10.

Fig. 2e - Pólya curve: c¿ = _ 0.045.. k: I lì'ig. 2f- GSp crrrve: u= _ 0.045.. k : 2

I:ig'2a 2f J{eproductio'of a v-sliape, Arlhere'ce to the contror polygon can be acirieved by mea'sofa careful choice ofa and /c. I

I
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Fig. 1a - cr : 0., k: 1, ActuallY Yields a

Bézler ctlrve.

Fig. lb - cr = 0., K = 2, This is a GB curve.

Fig. 1c- c¿ = - 0.03., k= l, APólya curve. Fig. 1d GSP curve for acr =- 0.03, k-2,

Fig. 1e - Pólya curve obtainecl for
cr--0.036,/c-1.

Fig. 1f GSP culve obtained for a

0.036, k - 2.

Fig. 1a - 1f, Different GSP-curves are obtained fronr the same 18-point bottle-neck-shaped control

polygon by means ofdiffrent choices ofthe pair (o., fr)
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The third figure illustrates the behaviour of pórya, GB and GSp curves with

cuve for a:-0.022 (Lagrange curve is
unaccepta
authors to
of the co
Fig' 3c,3d and 3e there are given GSp cuves for cr: -0.012 and k:r, k:5,fr: 8, respectively' As we can see. the optimal values of tn" *o pu.u-"ters arecr : - 0.012 and k: g. In fact, in this .u." th" corresponding GSp cuve shapes thecontrol,polygon better than the optimal GB curves for Æ: 10,

7. CONCLUSIONS

A new class of polynomial curves is introduced, wrrich generalizes weil_known schemes such as Bézier and pólya ones.
Key properties of the new schåme are its compact vector form arrd thedependence on two free parameters. The first property leads to efficient r.endering

fs31þs and also provides precious practicaì toot. ir.r, uu 
"u.y 

computation i;f.its Bézier and pólya polygons.
' careful combined use of the two par ers allows for great ftexibility, thuspcrnitting us to obtain a close reproductic the control polygon, bypassi'g tlieunpleasant instability phenomena ihat pólya curves sometimes exhibit.
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