REVUE D’ANAL]__(SE NUMERIQUE ET DE THEORIE DE L’APPROXIMATION
Tome XXVII, N°1, 1998, pp. 147-153

INTERPOLATION BETWEEN FUNCTIONS OF MEANS

C.B.M. PEARCE, J. PECARIC

1. INTRODUCTIO

The familiar inequality between the geometric and arithmetic means of a pair
of positive numbers has been translated by Seiffert [1] to a functional context in
order to provide useful upper and lower bounds for certain integrals involving
strictly monotone increasing functions. Seiffert gives the following result.

THEOREM A. For 0 <a<b, let f:la,bl~> R be g4 Riemann-integrable,

positive function and g:[(ab)'?, (a+b)/21> R a strictly monotonically increqs-
ing function. Then the inequality

b b
g(ab)™) < [ f () gh) dt/ [ £y dt < gtasrnyr2)

holds, where h(t)y=(t(a+b— )2,
Arithmetic and geometric means arise as particular instances of a spectrum
of means, the power mean of order r of two positive numbers a, b being defined by

: /r
M,(a,b):[zl(a'#b"):{ , F#£0,

My(a,b)=+[ab, r=0.

The provide the arithmetic mean through 4(a,b) = M,(a,b) and the geometric
mean through G(a, b) = M (a,b).

This suggests that Seiffert’s result may be generalized by making fuller use
of the spectrum, This idea is implemented in Section 2, where we present a
generalization of Theorem A.

In Section 3 we pursue 4 different development of this idea through the use
of extended logarithmic means, which have found a usefyl unifying role in the
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iti bis
literature. The extended logaritmic mean of order » of two positive numbers, a, b i
defined for a= b by

B G
L"(a’b):{r(b—a)] , r#0,1,

b-a

Lo(@.B) = La,b) =1,

1 a —a)
L(a,b)=I(a,b)=— (8" /a")"*"",

fi =b by
and for a Y L.(a,b)=b.

We note that A(a,b)=L,(a,b). : f

The bounds arising in Section 3 may be viewed as aI‘IS.lLI.lg froRrp tk;e n:ifr:l tc:f
integral power means with a function W(x)=x. For a posmve., iem 3
grable function W:[a,b]— R, the integral power mean of order r is defined by

r 1/r

b

L_l“ [ vy dx} ,  r#0,
—a

M, (W;a,b) =1 i

b
1 5
exp[b_a;[ g

In Section 4 we show that the results of Section 3 may be further ex‘[enlc/i;c:1 to
: : ) 2 as
a class of positive, continuous functions W for which either W' or log
appropriate convexity or concavity properties.

2. POWER MEANS

In this section we establish the following generalization of Theorem A.
THEOREM 1. For 0 <a<b,let f:[a,b]—> R be a positive, Riemann-integra-

ble function. For
A=min{M, (a,b), A(a,b)}, B=max{M,(a,b), A(a,b)},

j = —1).
let g:[A, B] > R be a strictly monotonic function and put h(t)= M, (t,a+b—1t)
If r <1, then

b b
o.1) g(M,(a,b))< [ f(0)g(h(r))dt/ [ f(r)dt <g(A(a,b))
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when g is increasing and the reverse inequalities hold when g is decreasing. For
r > 1 the inequalities are reversed.

Proof If g is increasing, then
b b
(2.2) gmy< [ f(0)g(he)) et [ 7(sydt < gan,

where m= min h(t) and M= max h(t).
refa,b) !t ela,b]

Hence, we only need to prove in this case that m = M, (a,b) and M= A(a, b)
when r <1 and that M = A(a, by, M= M (a,b) when r>1. Again, since M. (a,b)=
=M, (b, a), we can restrict our attention to the interval [a,((a+b)/ 2)].

Since a+b-¢>¢ and

) " +(a+b-py " " —(a+b~ 1)
()= ——-—~—____2 et | AL te

we have h'(£)>0 for r<1 and A'(t)<0 for' r>1. Hence m= h(a)= M (a, h)
and M=h((a+b)/2) =4(a,b) for r <1, while for > 1 we have m=h((a+b)/2)
and M = h(a) = M, (a,b). Thus (2.1) follows from (2.2),

A similar argument applies for g decreasing

3. EXTENDED LOGARITHMIC MEANS

THEOREM 2. For 0<gq <b, ler Sila,b] > R be a positive Riemann-inse.
grable function. For

A=min{l,(a,b), 4(a,b)}, B=max{L (a,b), A(a, b)),

let g:[A,B]—> R bea Strictly monotonic function and put h()=L (t,a+b- 0. If
r <2, then

h b
8L (@b < [ (0) g(h(t)) dt/ [ f(ryde < g(d(ay)

when g is increasing and the reverse inequalities hold when g 1s decreasing. For
¥ >2 the inequalities are reversed.
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i i her, we
Proof. As in the previous theorem, (2.2) holds for increasing g. Furt
have for r 20,1 that

h'(t) (2—r)[(a+b—t)"—t"]+rt('a+:b_t)[(a+b_t)r~2_trgz]:
R h(t) ) (r-D(a+b-t)" —t"Ha+b-2t]

@=n) & ~D+m )
T -G D (x-1)

where x =(a+b—1t)/t(>1lon[a,(a+b)/2)).
Let us consider the function

G(x)=(2-r) (x" =) +rx(x2 = 1).
h | r=2
o G'(x)=Q2-r)yrx" " +r(r=-Dx"" —r,

G'(x)=r(r-1)(2-r)x"(x -1,

(H=G'(1)=0. ‘ )
N tha;Li“t(hl;'more(,)G”()c)>0 for re(0,1)U(2,0), while dGG(’)(c)V;(OO t;i
r €(0,1)U(2,»). Therefore G'(x)>0 for r e(—oo,O)U(1£2) Td G(¥)<0 A
re(0,)U(2,0). Hence: G(x)>0 for » e(~00,1?U(1, ) hat e

1HU(2,%). Returning to (3.1), we can see 1 a‘ U
::((?;0,2)\{0, 1}, that is, h increases on [a,(a+2)/2], while A'(¢)
r €(2,0), that is, 4 decreases on [q, (q +b)/12].

Hence for r €(~,2)\{0,1} we have

fa+ b\] p ‘
m=h(a)=1L(a,b), M= h(—z-—-j —. A(a,b)

and for r €(2, 00)_

= h(" i bj = A(a,b), M=ha)="L,(a,b).
2

- P s e
These results may be extended to the special cases =0,

For = O we haVC

h'(ty=-

2 (a+b-2t)(a+Db) =
+ : 5
log(a+b—ty-=logt t(a+b-t){log(a+b—t)—log/]
2L(a+b—1t,1)
Tlatb-20G a+tb1,0)

2 (a 0.
{Ala+b-t. 1) L{a+b=1t.1)-G (a+b—t,1)}>
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That is, A(r) is an increasing function on [a,(a+b4)/2]. Thus

m=h(a)=L(a,b) and M;h(g;;b):A(a,b).

For r=1, we have

h’(t);ﬁz\{CHb a+b-2t }>,

a+b-2t| 2 log(a+b-1)—logs

so we have again that / is increasing on [q, (a+b)/2] and so

m=h(a)=I(a,b), Mzh(i;l) = A(a,b).

The proof is completed as before.

4. INTEGRAL POWER MEANS

Finally, we introduce a function W into our upper and lower bounds,

THEOREM 3. Let S ila,b]—> R be ¢ positive, Riemann-integrable Junction
and W :[a,b]— R* 4 positive, continuous function. For

A :min{M,_(W;a,b_), W(a;b)}, B=maX{M,(W;a>b),W(‘%L2)}’
let g:[A4,R]

= R be a strictly monotonic Junction and put

h(ty= M, (W;t,a+b—1).

If g is an increasin g Junction, then we have the inequality

b b .
@D &M, W;a,b) < [ 1(1) gCh(ey) de [f(r)dmg(w[“*b]]

2
(1]

L

if any of the Jollowing holds:
Dr>0and W' s concave;
1) r<0and W' is convex;
i) r =0 and log W is concave.
Relation (4.1)
Jollowing holds:

W) r>0and W' js convex;

V)r<0and W' is concave;

vi) r = 0 and log W is convex.

applies with the inequalities reversed mequality if any of the
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. : i
If g is a decreasing function, these results hold with the inequalitie
reversed.

Proof. Let g be increasing. For » # 0, we have

. (1)1
el 1 1 Y d"} ’
h(t)"7(a+b—2t)2L+b—2t ,I

a+b-2t 2

t

a+b-1 r e W' (t)
x{_l— f A AR Cha IO }

We employ the wel-known Hadamard’s inequality for convex function ¢,
that is,

1 @) +0(v)
(4.2) Y I D

2

i ity i i function ¢.
i rse inequality is valid for a concave : . ‘ !
Whllelttl“l e;iil\;Zr (1) ((l)r (i) holds, then A(z) is an increasing function on
[a,(a+b)/2] and

m=min h(t) =h(a)= M,(W;a,b),

+b) _fa+b
M-—-suph(t):h(az ):W( 2 )

while

Further, if either (iv) or (v) holds, we have that % is a decreasing function on
[a,(a+b)/2] and that

m=max h(t)=h(a)y=M,(W;a,b),

b a+b
Mzinfh(t):h(a; )=W( 5 )

Using (2.2), we get (4.1).
For » =0, we have

2
h(t)= exp
a

a+b—t
1 dx | x
+b-2t a+b-2t I i }

¢

arb-t log W(a+b-1t)+log W(t)
| Jo e 2 =
| a+b-2t

t
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that is, 4 is increasing on [a.(a+b)/2]

[a,(a+b)/2] if (vi) holds, by Hadamard’
The proof is completed as before.

if (iii) holds, while 4 is decreasing on
s inequality (4.2).

Remark. For W(x) = x, Theorem 3 gives Theorem 2.
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